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Abstract  In this paper, we provide a simple approximation for the distance from an arbitrary location to
the kth nearest point. Distance is measured as the Euclidean and the rectilinear distances on a continuous
plane. The approximation demonstrates that the kth nearest distance is proportional to the square root of k
and inversely proportional to the square root of the density of points. The accuracy of the approximation is
assessed for regular and random point patterns. Comparing the approximation with road network distances
shows that the approximation on a continuous plane can be used for estimating the kth nearest distance on
actual road networks. As an application of the approximation to locational analysis, we obtain the average
distance to the nearest open facility when some of the existing facilities are closed.

Keywords: Facility planning, point pattern, Euclidean distance, rectilinear distance,
road network distance

1. Introduction

The nearest neighbour distance, which is the distance between neighbouring points, has
been used in point pattern analysis for describing patterns for the distribution of various
geographical objects [4,12]. Since the nearest neighbour distance method was introduced
by Clark and Evans [3], many statistics based on the nearest neighbour distance have been
proposed. Although the nearest neighbour distance is the most important, the distance to
the kth nearest point is necessary to deal with complicated patterns. The distance to the
second nearest point was considered in Holgate [11]. Ripley’s K-function, which is one of
the most frequently used tools for point pattern analysis, handles distances between all pairs
of points as well as the kth nearest distance [25]. The K-function method has been applied
to the distribution of population [8], traffic accidents [13], and trees [9].

Another application of the nearest neighbour distance can be found in locational analysis.
The distance from customers to their nearest facility represents the service level of facility
location. The distance to the kth nearest facility is also important when facilities are closed
or disrupted because of accidents and disasters. A number of facility location models in-
corporating a reliability aspect have considered non-closest facility service. Weaver and
Church [30] addressed the vector assignment p-median problem, where a certain percentage
of customers could be serviced by the kth nearest facility. Pirkul [24] studied a similar prob-
lem in which customers are served by two facilities designated as primary and secondary
facilities. Drezner [6] formulated the unreliable p-median and p-centre problems and sug-
gested heuristic solutions when the probability of facility failure is the same for all facilities.
In both models, customers are assigned to the kth nearest facility when closer facilities have
failed. Berman et al. [2] extended the Drezner’s model by assuming that the probabilities
of facility failure are not identical. Snyder and Daskin [26] presented two reliability models
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based on the p-median problem and the uncapacitated fixed-charge location problem. They
made an ordered assignment of each customer to each facility. Non-closest facility service is
also found in emergency vehicle location models, where the service availability is computed
using queueing theory [16, 18, 27].

Analytical expressions for the kth nearest distance have been obtained for regular and
random point patterns. An overview of the literature is presented in Table 1. The nearest
Euclidean distance was derived in Clark and Evans [3] for the random pattern, Persson [23]
for the square lattice, and Holgate [10] for the triangular lattice. The kth nearest Euclidean
distance was derived in Thompson [28] and Dacey [5] for the random pattern, Koshizuka [14]
for k = 1,2,3 for the square lattice, and Miyagawa et al. [21] for &k = 1,2,...,7 for the
square, triangular, and hexagonal lattices. The kth nearest rectilinear distance has also
been obtained. The nearest rectilinear distance was derived in Larson and Odoni [17] for
the random pattern. The kth nearest rectilinear distance was derived in Miyagawa [19] for
the random pattern, and for £ = 1,2, ...,8 for the square and diamond lattices. For higher
order distances of regular patterns, upper and lower bounds were obtained [19-21].

Table 1: Literature on the kth nearest distance

Year Distance k Pattern
Clark and Evans [3] 1954 Euclidean 1 Random
Persson [23] 1964 Euclidean 1 Square
Holgate [10] 1965 Euclidean 1 Triangular
Thompson [28] 1956 Euclidean 1,...,00 Random
Dacey [5] 1968 Euclidean 1,...,00 Random
Koshizuka [14] 1985 Euclidean 1,2,3 Square
Miyagawa et al. [21] 2004 Euclidean 1,...,7  Square, Triangular, Hexagonal
Larson and Odoni [17] 1981 Rectilinear 1 Random
Miyagawa [19] 2008 Rectilinear 1,...,00 Random

Rectilinear 1,...,8  Square, Diamond

In this paper, we provide an approximation for the kth nearest distance. The kth nearest
distance is defined as the distance from an arbitrary location to the kth nearest point. The
approximation allows us to estimate the kth nearest distance that has not previously been
derived. Given the distribution of points, the kth nearest distance can be numerically
calculated. The result, however, depends on the specific data and cannot be applied to
other situations. The approximation is useful to examine fundamental relationships between
variables, for example, how the density of points affects the kth nearest distance. Thus, the
approximation will supply building blocks for further spatial analysis based on the kth
nearest distance.

The remainder of this paper is organized as follows. The next section obtains an ap-
proximation of the Euclidean distance. The accuracy of the approximation is then assessed
for regular and random point patterns. Section 3 gives an approximation of the rectilinear
distance. Section 4 compares the approximation with the kth nearest distance on a road
network. Section 5 provides an application of the approximation to locational analysis. The
final section presents concluding remarks.

2. Euclidean Distance

Let Ry be the Euclidean distance from an arbitrary location in a study region to the kth
nearest point. We call Ry the kth nearest distance. In this section, we give an approximation
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for the kth nearest distance Rjy,.

Consider a circle centred at an arbitrary location with radius Rj. The circle contains
k points (one point on the circumference and k — 1 points in the inside). The number of
points in the circle can be approximated as

k=~ prR;, (2.1)

where p is the density of points (the number of points per unit area). An approximation for
Ry, is then obtained as

k
Ry~ —. 2.2
2 o (2.2)

For a deeper understanding of this approximation, we examine R of regular and random
point patterns.

2.1. Grid pattern

Suppose that points are regularly distributed on a square grid with side length a. The grid
pattern is assumed to continue infinitely. This assumption enables us to examine the kth
nearest distance without taking into account the boundary effect. Let R; be the Euclidean
distance from an arbitrary location to the kth nearest point distributed regularly. Let us
consider the relationship between the area of a circle with radius Ry and the area of squares
centred at grid points within the circle, as illustrated in Figure 1. The area of the circle
is mRZ, whereas the area of the squares is ka?, because the circle contains k points. The
difference in these areas is at most the area of squares that intersect the circumference.
Since the squares that intersect the circumference lie between two concentric circles with
radii Ry — Vv2a and Ry + \/§a, we have

m(Ry, — V2a)? < ka® < n(Ry + V2a)%. (2.3)

(\/é—ﬁ)a<}%k.< <\/§+\/§> a, (2.4)
1—\/%<Rk/\/pzﬂ<l+\/%, (2.5)

where p (= 1/a?) is the density of points. Then we have

Rk/\/pzw —1 (k — o0). (2.6)

The approximation (2.2) therefore corresponds to the asymptotic value as k tends to infinity.

Solving for Ry yields

which reduces to
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Figure 1: Circle with radius Ry and points within the circle

2.2. Random pattern

Suppose that points are uniformly and randomly distributed on a plane. The random pattern
is assumed to continue infinitely. Let Ry be the Euclidean distance from an arbitrary location
to the kth nearest point distributed at random. The average kth nearest distance E(Ry)
was obtained in Thompson [28] and Dacey [5] as

2k -1 1
F = 2.
where (2k — 1)!! = (2k — 1)(2k — 3) ---5- 3 - 1, which reduces to
2k -1 k
E(Ry) = ——F——. 2.8
From Wallis’ formula
2K 1

R oy By A (29)

E(Rk)/\/pz7T —1 (k — o0). (2.10)

Note that the asymptotic value of the random pattern is identical with that of the grid
pattern. Hence, the difference in the kth nearest distance between the two patterns is small
for large k. The average distance of the random pattern (2.7) might also be used as an
approximation for the kth nearest distance. Our approximation (2.2) is, however, simpler
than (2.7).

Now, let us assess the accuracy of the approximation. The average distance E(Ry) (k =
1,2,...,7) of the grid and random patterns and the approximation (2.2) are shown in
Figure 2, where the density of points is p = 1. The relative error of the approximation is
shown in Table 2. Although the error is somewhat large for small k, the approximation
becomes more accurate as k increases.

we have
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Figure 2: Average kth nearest Euclidean distance

Table 2: Relative error of the approximation (%)
E(R,) E(Ry) E(Rs) E(Rs) E(R;) E(Rs) E(R;)
Grid 47.5 14.1 7.6 10.3 1.5 2.5 5.7
Random 12.8 6.4 4.2 3.2 2.5 2.1 1.8

3. Rectilinear Distance

Although the Euclidean distance is a good approximation for the actual travel distance,
the rectilinear distance is more suitable for cities with a grid road network [29]. In fact,
the rectilinear distance has frequently been used in facility location models [1,7,22]. The
rectilinear distance between two points (z1,41), (72, y2) is defined as |x1 — xo| +|y1 — yo|. Let
Ry, be the rectilinear distance from an arbitrary location in a study region to the kth nearest
point. In this section, we give an approximation for the kth nearest rectilinear distance Ry.

An approximation for R; can be obtained by the same way as the Euclidean distance
case, except for replacing a circle with a diamond, which is a square rotated at angle 7/4.
Recall that a diamond gives the set of points within a given rectilinear distance from its
centre (see, e.g., [15]). Since the area of a diamond with radius Ry, is 2R?, the number of
points in the diamond can be approximated as

k ~ 2pR;. (3.1)

An approximation for Ry is then obtained as

| k
Ry ~ 2 (3.2)

The approximation of the rectilinear distance (3.2) is y/7/2 (& 1.25) times as large as that
of the Euclidean distance (2.2). This result is consistent with the fact that the ratio of the
average kth nearest rectilinear distance to the average kth nearest Euclidean distance is

\/m/2 for the random pattern.
3.1. Grid pattern

Let Ry be the rectilinear distance from an arbitrary location to the kth nearest point dis-
tributed regularly. Let us consider the relationship between the area of a diamond with
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radius Ry and the area of squares centred at grid points within the diamond, as illustrated
in Figure 3. The difference in these areas is at most the area of squares that intersect the
circumference. Since the squares that intersect the circumference lie between two concentric
diamonds with radii R, — 2a and Ry + 2a, we have

2(Ry, — 2a)* < ka* < 2(Ry + 2a)*. (3.3)

Solving for Ry yields
which reduces to
where p (= 1/a?) is the density of points. Then we have

Rk/\/g —1 (k — 00). (3.6)

The approximation (3.2) therefore corresponds to the asymptotic value as k tends to infinity.
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Figure 3: Diamond with radius Ry and points within the diamond

3.2. Random pattern

Let Ry be the rectilinear distance from an arbitrary location to the kth nearest point dis-
tributed at random. The average kth nearest distance E(Ry) was obtained in Miyagawa [19]
as

2k — 1) 7
2k — 2)1122p°

E(R)) = (3.7)

From Wallis’ formula (2.9), we have

E(Ry /\/>—>1 (k — 00). (3.8)
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The average distance E(Ry) (k= 1,2,...,8) of the grid and random patterns and the
approximation (3.2) are shown in Figure 4, where the density of points is p = 1. The relative
error of the approximation is shown in Table 3. The approximation becomes more accurate
as k increases.
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Figure 4: Average kth nearest rectilinear distance

Table 3: Relative error of the approximation (%)

E(R) E(R)) E(R;) E(R,) E(Rs) E(Rs) E(R7) E(Rs)
Grid 41.4 20.0 5.0 6.1 5.4 3.9 2.0 9.1
Random 12.8 6.4 4.2 3.2 2.5 2.1 1.8 1.6

4. Road Network Distance

In this section, we discuss whether or not the approximation on a continuous plane can be
used for estimating the kth nearest distance on actual road networks. As an example, we
consider road network distances to hospitals, police stations, and post offices in Tsukuba,
Japan, as shown in Figure 5.

Let Ry be the road network distance from an arbitrary node of the network to the
kth nearest facility. The average kth nearest distance E(Ry) is shown in Figure 6. The
solid and dotted curves are the approximations of the Euclidean distance (2.2) and the
rectilinear distance (3.2), respectively. The difference between the road network distance
and the approximation increases with k. This is because we consider a finite network, even
though the approximation is based on an infinite plane. Apart from this boundary effect,
there exists a close relationship. Obviously, this may not be the case for clustering patterns
of facilities. If facilities are clustered, the distance to the nearest facility would be much
greater than the approximation. As long as facilities are sufficiently dispersed, however, the
approximation on a continuous plane gives a good estimate for the road network distance
to the kth nearest facility.

5. Application

The kth nearest distance is useful for facility location problems with closing of facilities, as
discussed in Miyagawa [20]. In this section, we provide an application of the approximation
for the kth nearest distance to locational analysis.
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(a) Hospital (b) Police station (c) Post office

Figure 5: Facilities on the road network of Tsukuba

Suppose that facilities are closed independently and at random. Let p be the probability
that each facility is open. Customers are assumed to be uniformly distributed and use their
nearest open facility. Then the probability that customers use the second nearest facility,
that is, the nearest facility is closed and the second nearest facility is open, is (1 — p)p. In
general, the probability that customers use the kth nearest facility is (1 — p)*~!p. Using
this probability and the average kth nearest distance F(Rj), we can express the average
distance from customers to the nearest open facility E(R) as

E(R)=p)» (1—-p)* " E(Ry). (5.1)

Miyagawa et al. [21] and Miyagawa [19, 20] obtained the upper and lower bounds of E(R) to
find the optimal pattern of facilities that minimizes the average distance. For estimating the
service level when some of the existing facilities are closed, the approximation for E(R) would
be helpful. Substituting the approximations (2.2) and (3.2) into (5.1) yields approximations
for the average Euclidean and rectilinear distances E(RY), E(R%) as

U\ p .
A=
P i,
(1—=p)V2p 2
where Lig(2) = > 5, 2¥/k® is a polylogarithm. These approximations are depicted in Fig-
ure 7, where the density of facilities is p = 1. The upper and lower bounds of E(R) of
the grid pattern and E(R) of the random pattern obtained in [19-21] are also shown in the
figure. The approximation is greater than E(R) of the grid and random patterns when p is

(1-p), (5.2)

E(R™) ~ (1—p), (5.3)
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Figure 6: Average kth nearest network distance

large, because the approximations (2.2) and (3.2) overestimate the kth nearest distance for
small &k (see Figures 2 and 4).

Suppose now that customers use up to the nth nearest facility. If all of the n facilities
are closed, customers give up using facilities. The average distance is then rewritten as

ER)=p)» (1-p)* 'E(Ry) + (1-p)"A, (5.4)

where A is a penalty for failing to use facilities. Substituting the approximations (2.2) and
(3.2), we have approximations for the average distance E(R) as shown in Figure 8. It can be
seen that F(R) increases with A and decreases with n. This implies that, if the penalty is
large, customers should search for an open facility, even though the distance to the facility is
great. The result makes sense intuitively, because customers in an emergency will certainly
use a facility.

6. Conclusion

This paper has provided a simple approximation for the kth nearest distance. The approx-
imation, which becomes more accurate as k increases, allows us to estimate higher order
distances that have not previously been derived. The approximation demonstrates that the
kth nearest distance is proportional to the square root of £ and inversely proportional to
the square root of the density of points. These relationships lead to a better understanding
of fundamental characteristics of the kth nearest distance.
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Figure 8: Average distance to the nearest open facility

The approximation for the kth nearest distance will be useful for further facility location
problems with closing of facilities. Using the kth nearest distance, we have obtained the
average distance to the nearest open facility when some of the existing facilities are closed.
This average distance gives an estimate for the service level of actual facility location.
By comparing the average distances, we can evaluate the efficiency of actual location. In
addition, the analytical expression for the average distance helps planners in estimating the
number of facilities required to achieve a certain level of service. The estimated number
of facilities can be used as an input in location models. The effect of a closing policy (e.g.
seismic retrofitting) can also be assessed in terms of the reduction in the average distance.
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