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Abstract This paper deals with a smuggling game with multiple stages, in which Customs and a smuggler
participate. Customs and the smuggler are allowed to take an action of patrol and smuggling, respectively,
within the limited number of chances. Customs obtains reward by the capture of the smuggler and the
smuggler gets reward by the success of smuggling. The reward or the payoff of the game is brought at
each stage and is assumed to be zero-sum. Almost all past researches modeled their games by the so-
called complete information game and they assumed that each player knows the past strategies taken by
his opponent or never knows them. Recently, we recognize that information is crucial to the results of
the games. In this paper, we deal with a smuggling game with incomplete information, where information
acquisition is asymmetric between players and is disadvantageous to Customs, and we evaluate the value of
information by developing a computational methodology to derive Bayesian equilibrium.
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1. Introduction

The paper deals with an inspection game or a smuggling game with multiple stages, in
which Customs and a smuggler participate. Dresher [6] formulated a compliance problem
for the treaty of arms reduction and started studying the inspection game, where a violator
wishes to violate the treaty in secret for his benefit and an inspector wants to prevent the
illegal behavior of the violator. Maschler [15] generalized Dresher’s problem.

Their research has two branches as its extension. One is the problem of the arms-
reduction treaty and the international inspection of nuclear plants by the International
Atomic Energy Agency (IAEA). Avenhaus et al. [2] surveyed past studies on the compliance
with regulations and treaties. Canty et al. [5] modeled a sampling problem of inspecting
nuclear materials as a sequential game model and proposed an efficient inspection strategy
to compel an inspectee to the Treaty on the Non-Proliferation of Nuclear Weapons and
related treaties. Avenhaus and Canty [1] analyzed two types of errors in the inspection by a
sequential game model. Avenhaus and Kilgour [3] discussed a nonzero-sum one-shot game
with an inspector and two inspectee countries as an optimization problem of inspection
resource, where the inspector distributes his inspection resources to two countries and each
inspectee decides to take a legal or an illegal action for his interest. Hohzaki [11] extended
their model to the inspection game with many inspectees and derived an optimal dispatching
plan of inspection staffs to facilities in the inspectee countries.

The other branch stemming from Dresher’s research is the smuggling game with Customs
and a smuggler. Thomas and Nisgav [17] would be the first research that dealt with the
smuggling game with multiple stages. They proposed a numerical algorithm of repeatedly
solving a matrix game stage by stage to derive the value of the game. Baston and Bostock [4]
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gave a closed form of solution for the game similar to Thomas-Nisgav’s model. At the early
stage of this research field, many researchers adopted the so-called perfect-capture assump-
tion that Customs certainly captures the smuggler when both players meet. Baston and
Bostock modeled the smuggling problem into the imperfect-capture model, where Customs
captures the smuggler with some probability depending on the number of patrol boats. The
smuggler was still assumed to have at most one opportunity to ship contraband, though.
Garnaev [8] handled a model with three patrol boats. Sakaguchi [16] first assumed that
the smuggler might take an action several times by the perfect-capture smuggling model.
Sakaguchi model was extended by Ferguson and Melolidakis [7], who assumed that the
smuggler can get rid of the capture by means of side payment but he must pay penalty on
his capture. Hohzaki et al. [13] and Hohzaki [10] also extended Sakaguchi’s model such that
the capture of the smuggler terminates the game and the encounter of the smuggler and
Customs stochastically results in one of capture, success of smuggling or no-event. Almost
all researches so far treated a two-option strategy of smuggling or non-smuggling as a smug-
gler’s strategy. Hohzaki [12] first analyzed the smuggling game with the Customs’ decision
on the amount of contraband.

Recently, we recognize that information is crucial to the results of the game. The concept
of complete information and incomplete information was proposed by Harsanyi [9] and it has
been applied to a variety of game models. In the smuggling game, players would acquisition
information about their opponents in an asymmetric manner. Customs is generally thought
to be a public organization and the smuggler would be a secret society. Therefore, the
behavior of Customs is comparatively open to outside but the smuggler’s information tends
to be kept in secret. Considering the practical situation, the information acquisition must be
asymmetrical between players. In the past models, they never thought of the asymmetrical
information. They assumed that players know the behavior their opponents took in the
past or that information about their opponents is perfectly hidden to competitors. Hohzaki
and Maehara [14] considered the latter model by a one-shot game. In all models surveyed
so far, the information acquisition is symmetric between players. In this paper, however,
we deal with a smuggling game with incomplete information and asymmetric information,
where Customs decides to patrol or not to patrol and the smuggler chooses one of smuggling
or not smuggling. In terms of the assumption about information acquisition, this paper is
located between two references [13] with disclosure of information and [14] with perfect
secrecy of information. This paper carries the same assumptions as in [13] and [14] except
for the system of information and adopts a multi-stage game model as in [13]. So we could
evaluate the value of information by comparing our results with ones of [13]. The evaluation
of the information value is a main purpose of this paper.

In the next section, we model our smuggling problem on a time horizon with multiple
stages or multiple days, and formulate it by elucidating the difference between the states
which two players can observe. In Section 3, we develop the system of equations to solve
the optimization problem formulated in the previous section and propose a numerical algo-
rithm to derive Bayesian equilibrium point in a general case. At the same time, we derive
analytical forms of equilibrium points in some special cases in Section 4. In Section 5, we
analyze optimal strategies of players by some numerical examples and evaluate the value of
information by comparing this model with the previous one.

2. Modeling and Formulation

We consider the following smuggling model, which Customs and a smuggler play.
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A1. There are N stages or N days on a time horizon. The number of stage is represented
by the number of residual days so that time passes like N , N − 1, . . . , 1.

A2. After the first stage n = N , Customs has K chances of patrol and the smuggler has L
opportunities of smuggling.

A3. At each stage, Customs has a strategy with two options of patrol (P ) or no-patrol (NP ),
and the smuggler also has a two-option strategy with smuggling (S) or no-smuggling
(NS). They can take their strategies once per stage. That is the reason why excess
chances of patrol and smuggling are discarded at any stage if the number of residual
chances is larger than the number of stage.

A4. If Customs patrols and the smuggler smuggles, there can be two events of the capture
of the smuggler by Customs or the success of smuggling, or no-event, exclusively. The
first event happens with probability p1 and the second one does with probability p2 and
the no-event has the residual probability 1−(p1+p2), where p1+p2 ≤ 1. If the smuggler
tries to smuggle when not patrolling, he certainly succeeds in smuggling.

A5. On capture of the smuggler, Customs earns reward α > 0 and the game is terminated.
On success of smuggling, the smuggler gets reward 1. The payoff of the game is assumed
to be zero-sum, that is, a player loses the same amount of payoff as the other player’s
reward. We define the payoff of the game as the reward on the Customs’ side. We
suppose an inequality γ ≡ αp1 − p2 > 0 such that the smuggler does not dare to
smuggle on the patrol day.

A6. The game transfers to the next day if there occurs no capture of the smuggler. At
the beginning of the next stage, the smuggler knows the strategy taken by Customs at
the previous stage but the smuggler’s past strategy is in secret to Customs. The initial
state of the game, (N,K,L), is common information for both players.

A7. On capture of the smuggler or expiration of stages, the game ends.
By (n, k, l), we denote the state in which Customs keeps k chances of patrol and the smug-
gler has l chances of smuggling at Stage n. At the beginning of the stage n, the smuggler
recognizes the state (n, k, l). However, Customs only knows (n, k) and anticipates the num-
ber of the residual chances of smuggling, l, by his belief on it. We denote his belief by
qn = {qn(l), l = ln, ln+1, · · · , l̄n}, which is a probability distribution with respect to l. qn(l)
is the probability that the smuggler has l chances of smuggling left and has to satisfy the

condition
∑l̄n

l=ln
qn(l) = 1, qn(l) ≥ 0 for all l. We call the smuggler with l chances of smug-

gling as the l-type smuggler. The lower bound ln of l is estimated by everyday smuggling
and the upper bound l̄n is calculated by no-smuggling, as follows:

ln = max{L−N + n, 0}, l̄n = min{L, n}. (1)

Because all players are supposed to know initial state (N,K,L) from Assumption (A6),
Customs has a faultless belief of

qN(L) = 1, qN(l) = 0 (l ̸= L) (2)

at the first stage N . We can also derive lN = l̄N = L by applying n = N to Equation (1).
Let us denote the strategies of players in State (n, k, l) by xn and yn(l). Let xn and 1−xn

be the respective probabilities of taking P and NP by Customs. Let yn(l) and 1− yn(l) be
the probabilities that the l-type smuggler takes S and NS, respectively. We denote a whole
set of strategies for all types of smuggler by yn ≡ {yn(l), l ∈ [ln, l̄n]}. Please note that xn

or yn(l) ought to be zero for k = 0 or l = 0, respectively, because Customs or the smuggler
is forced to take Strategy NP or NS in such cases. We illustrate the stage game with the
state (n, k, l) by Table 1.
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Table 1: A table of payoffs in State (n, k, l)

Belief qn(ln) qn(l) qn(l̄n)
· · · yn(l), 1− yn(l) · · ·

C\S S, NS · · · S, NS S, NS
xn P · · · (1), (2) · · ·

1− xn NP · · · (3), (4) · · ·
For the stage game at Stage n, a combination of strategies of both players, (X,Y ), X ∈
{P,NP}, Y ∈ {S,NS}, brings an expected payoff Rl(X, Y ), which is defined by the fol-
lowing equations and is to replace (1)–(4) in the table:

(1) Rl(P, S) = γ + (1− p1)v(n− 1, k − 1, l − 1; ΓP (qn)), (3)

(2) Rl(P,NS) = v(n− 1, k − 1, l; ΓP (qn)), (4)

(3) Rl(NP, S) = −1 + v(n− 1, k, l − 1; ΓN(qn)), (5)

(4) Rl(NP,NS) = v(n− 1, k, l; ΓN(qn)), (6)

where ΓP (qn) or ΓN(qn) are the revised beliefs of qn for the next stage n− 1, depending on
the Customs’ patrol strategy P or NP at the current stage n. By v(n, k, l; qn), we denote
the expected payoff which the smuggler expects from State (n, k, l) to the end of the game.
The payoff is realized by an equilibrium solution of both players. Anyway, please note that
the players have some limits to their strategies in the special cases of k = 0 and l = 0, as
mentioned above.

Here let us confirm initial values and boundary values of v(n, k, l; qn) in some special
cases of (n, k, l), as follows.

(i) If the stage expires or the game ends, there is no payoff:

v(0, k, l; qn) = 0. (7)

(ii) In the cases of k > n or l > n, excess chances are discarded:

v(n, k, l; qn) = v(n, n, l; qn) if k > n, v(n, k, l; qn) = v(n, k, n; qn) if l > n. (8)

(iii) In the case of k = 0, the smuggler certainly succeeds in smuggling at any stage because
he knows the current situation:

v(n, 0, l; qn) = −l for n > 0 and l ≤ n. (9)

(iv) If there is no chance of trying smuggling, no payoff occurs:

v(n, k, 0; qn) = 0. (10)

After State (n, k), Customs with belief qn expects to get the payoff P (xn, yn) given by
the following expression, depending on the players’ strategies xn and yn. Customs tries to
maximize the payoff P (xn, yn) by changing his strategy xn:

P (xn, yn) =
l̄n∑

l=ln,l ̸=0

qn(l) [xn {yn(l)Rl(P, S) + (1− yn(l))Rl(P,NS)}

+ (1− xn) {yn(l)Rl(NP, S) + (1− yn(l))Rl(NP,NS)}] . (11)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



A Smuggling Game with Secret Information 27

The smuggler of type l (l ∈ [ln, l̄n], l ̸= 0) recognizes the state (n, k, l) and correctly
anticipates the Customs’ belief qn. Without knowing the Customs’ strategy xn, the l-type
smuggler wants to minimize the following expected payoff:

V (xn, yn(l)) = xn {yn(l)Rl(P, S) + (1− yn(l))Rl(P,NS)}
+(1− xn) {yn(l)Rl(NP, S) + (1− yn(l))Rl(NP,NS)} . (12)

We can exclude l = 0 from the enumeration of index l in Equation (11) because the smuggler
of type l = 0 never tries smuggling and the no-smuggling strategy has no effect on the payoff
afterwards. Therefore we can limit the region of the type of smuggler, l, to Λn ≡ {l | ln ≤
l ≤ l̄n, l ̸= 0} at Stage n.

Noting that the minimization of the function (12) with respect to yn(l) for all l ∈ Λn

is equivalent to the minimization of the function (11) with respect to yn. Because of that,
we can regard the smuggler as a minimizer for the expected payoff P (xn, yn). Therefore,
the stage game in State (n, k, l) is a two-person zero-sum game between Customs as a
maximizer and the smuggler as a minimizer for the expected payoff P (xn, yn). We can
derive an equilibrium point of x∗

n and y∗n by solving a minimax optimization problem of
P (xn, yn). Then we can calculate the value v(·) by using Equation (12), as follows:

v(n, k, l; qn)

= min{x∗
nRl(P, S) + (1− x∗

n)Rl(NP, S), x∗
nRl(P,NS) + (1− x∗

n)Rl(NP,NS)}. (13)

We aim to obtain value v(N,K,L; qN) in the initial state (N,K,L), which is just the value
of the game, and optimal strategies x∗

n and y∗n in any state (n, k, l; qn) on an equilibrium
path by repeatedly solving a sequence of stage games from the last stage n = 1 to the initial
one n = N .

3. A Computational Method for Bayesian Equilibrium Point

Because the expression (11) is bilinear for variables xn and yn = {yn(l)}, we can obtain its
minimax value and its maximin value comparatively easily. By the maximization of (11)
with respect to xn, we have

max
0≤xn≤1

P (xn, yn) = max

{∑
l∈Λn

qn(l) {yn(l)Rl(P, S) + (1− yn(l))Rl(P,NS)} ,

∑
l∈Λn

qn(l) {yn(l)Rl(NP, S) + (1− yn(l))Rl(NP,NS)}

}
(14)

and, by the minimization of Equation (14) with respect to yn, we have the following linear
programming problem (PS):

(PS) min
η,{yn(l),l∈Λn}

η

s.t.
∑
l∈Λn

qn(l) {yn(l)Rl(P, S) + (1− yn(l))Rl(P,NS)} ≤ η, (15)∑
l∈Λn

qn(l) {yn(l)Rl(NP, S) + (1− yn(l))Rl(NP,NS)} ≤ η, (16)

0 ≤ yn(l) ≤ 1, l ∈ Λn.
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The problem (PS) gives us the value of the stage game in State (n, k, l; qn) and an optimal
strategy of the smuggler y∗n.

We also have the following transformation,

min
{0≤yn(l)≤1,l∈Λn}

P (xn, yn) =
∑
l∈Λn

qn(l)min{xnRl(P, S) + (1− xn)Rl(NP, S),

xnRl(P,NS) + (1− xn)Rl(NP,NS)},

and the following linear programming problem through the maximization of the above ex-
pression:

(PC) max
xn,{ν(l),l∈Λn}

∑
l∈Λn

qn(l)ν(l)

s.t. xnRl(P, S) + (1− xn)Rl(NP, S) ≥ ν(l), l ∈ Λn, (17)

xnRl(P,NS) + (1− xn)Rl(NP,NS) ≥ ν(l), l ∈ Λn, (18)

0 ≤ xn ≤ 1.

By solving the problem (PC), we obtain the maximin value and an optimal patrol strategy
x∗
n. Comparing Equations (17) and (18) with (13), we can see that an optimal value of ν(l)

in Problem (PC) is just the value v(n, k, l; qn), i.e.,

v(n, k, l; qn) = ν∗(l), l ∈ Λn. (19)

The two problems (PS) and (PC) are dual to each other as there is duality between the
minimax optimization and the maximin optimization problems for an ordinary matrix game.
If we set two kinds of dual variables z1(l) ≥ 0 and z2(l) ≥ 0 corresponding to the equations
(17) and (18), respectively, we have y∗n(l) = z∗1(l)/qn(l) and 1− y∗n(l) = z∗2(l)/qn(l). We also
have the other relation that x∗

n and 1− x∗
n become optimal dual variables to two conditions

(15) and (16). So we can obtain a set of optimal strategies x∗
n, y

∗
n and the value v(n, k, l; qn)

by solving one of Problems (PS) or (PC).
We calculate Rl(·) in Problems (PS) or (PC) at Stage n by applying v(n − 1, ·) to the

equations (3)–(6). Thus we can derive a full set of Bayesian equilibrium solution at all
stages and the value of the game v(N,K,L; qN) in the following manner, theoretically. We
start from the initial value (7) at n = 0 and recursively solve Problems (PS) or (PC) in the
order of n = 1, · · · , N , taking account of boundary conditions (8), (9) and (10). However,
Customs has to revise his belief stage by stage. To embed the revision into the recursive
calculation, we need some algorithmic idea to reach the value of the game. We mention the
idea later, though.

Here we are going to discuss the operators of the revision ΓP and ΓN . Depending on the
strategy P or NP taken at the present stage n, Customs revises his belief at the beginning
of the next stage n − 1. We can enumerate several cases that the smuggler would have l
chances of smuggling left at hand at Stage n − 1. The first case is the ordinary case that
l + 1 chances decrease to l by smuggling at Stage n or l chances remain unchanged by
no-smuggling. We have other cases as follows:
(a) Case of n − 1 ≥ L: l becomes l̄n−1 = min{L, n − 1} = L at Stage n − 1 only if l̄n = L

residual chances is kept the same by no-smuggling at Stage n.
(b) Case of L ≥ n: l becomes l̄n−1 = min{L, n − 1} = n − 1 at Stage n − 1 if one chance

of l̄n = n is discarded by no-smuggling at Stage n besides the ordinary case mentioned
above.
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(c) Case of L−N + n > 0: l becomes ln−1 = max{0, L−N + (n− 1)} = L−N + n− 1 at
Stage n− 1 only if l = ln = L−N + n chances decrease by one by smuggling at Stage
n.

Customs can carry out the revision of belief by taking account of the transition of l enumer-
ated above and the optimal smuggler’s strategy y∗n. An exception is the case of L−N+n ≤ 0,
where the number of smuggling chances l = ln = max{0, L−N +n} = 0 at Stage n remains
l = ln−1 = max{0, L−N + (n− 1)} = 0 at Stage n− 1 with certainty because the smuggler
of type l = 0 cannot smuggle at all. In addition to the cases above, Customs has to consider
the condition of no capture of the smuggler at Stage n to revise his belief because the tran-
sition of the game to the next stage is conditioned by the no-capture. The capture could
happen for the Customs’ strategy P but never happens for NP . Considering all above, we
have the following evaluation for the revision operators ΓP and ΓN .
(i) For l of ln−1 < l < l̄n−1,

ΓP (qn)(l) =
qn(l + 1)y∗n(l + 1)(1− p1) + qn(l)(1− y∗n(l))∑l̄n

s=ln
qn(s)(1− y∗n(s)p1)

,

ΓN(qn)(l) = qn(l + 1)y∗n(l + 1) + qn(l)(1− y∗n(l)).

(ii) For l = L in the case of l̄n−1 = L,

ΓP (qn)(l) =
qn(l)(1− y∗n(l))∑l̄n

s=ln
qn(s)(1− y∗n(s)p1)

, ΓN(qn)(l) = qn(l)(1− y∗n(l)).

(iii) For l = l̄n−1 = n− 1 in the case of l̄n = n,

ΓP (qn)(l) =
qn(l + 1)(1− y∗n(l + 1)p1) + qn(l)(1− y∗n(l))∑l̄n

s=ln
qn(s)(1− y∗n(s)p1)

,

ΓN(qn)(l) = qn(l + 1) + qn(l)(1− y∗n(l)).

(iv) For l = ln−1 = ln − 1 in the case of ln > 0 and l̄n−1 > ln−1,

ΓP (qn)(l) =
qn(l + 1)y∗n(l + 1)(1− p1)∑l̄n

s=ln
qn(s)(1− y∗n(s)p1)

, ΓN(qn)(l) = qn(l + 1)y∗n(l + 1).

(v) For l = ln−1 = 0 in the case of ln = 0,

ΓP (qn)(l) =
qn(0) + qn(1)y

∗
n(1)(1− p1)

qn(0) +
∑l̄n

s=1 qn(s)(1− y∗n(s)p1)
, ΓN(qn)(l) = qn(0) + qn(1)y

∗
n(1).

Let us finally recall the initial value of belief of Equation (2), i.e.,

qN(L) = 1, qN(l) = 0 (l = 0, 1, . . . , L− 1). (20)

As seen above, the revision of belief starts from the initial value of Equation (20) at Stage
N and the belief qn at Stage n is revised to ΓP (qn) or ΓN(qn) at the next stage n − 1 by
taking account of the smuggler’s optimal strategy y∗n. So the revision proceeds in the order
of n = N,N − 1, . . . , 1. On the other hand, the stage game at each stage n is solved by
Problem (PS) or (PC) in the order of n = 1, 2, . . . , N in contradiction to the order of the belief
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revision. Let us discretize the belief {qn(l), l ∈ Λn} in order to resolve the contradiction. We

assign a continuous qn(l) a discrete number in a set Φ ≡
{
0,

1

m
, . . . ,

k

m
, . . . , 1

}
, based on

which interval of

[
0,

1

2m

)
,

[
1

2m
,
3

2m

)
, . . . ,

[
2k − 1

2m
,
2k + 1

2m

)
, . . . ,

[
2m− 1

2m
, 1

]
the value

qn(l) belongs to. The belief qn or the probability distribution is represented by a vector with
the discretized numbers, as

qn ∈ Ψn ≡

{
qn = (qn(0), . . . , qn(L)) | qn(l) ∈ Φ(l = 0, . . . , L),

qn(l) = 0 (l /∈ Λn),
∑
l∈Λn

qn(l) = 1

}
.

We can build a computational algorithm to derive a Bayesian equilibrium point, as follows.
Using the discretized belief, we solve the stage games sequentially in the order of stages
n = 1, 2, . . . , N and obtain Bayesian equilibrium. Then we check the optimality of the
equilibrium while calculating continuous beliefs in an exact manner and sometimes modify
the equilibrium to keep the consistency of optimal strategies with the beliefs in the order of
n = N,N − 1, . . . , 1. In the algorithm, we use the newly defined notation: kn ≡ max{K −
N + n, 0}, k̄n ≡ min{K,n} and ∆n ≡ [kn, k̄n].

(Disc Bf) Derivation algorithm for Bayesian equilibrium under discretized belief

(S1) Initialize v(n, k, l; qn) to be zero for all k, l, qn at Stage n = 0. Set n = 1.
(S2) If n = N , execute (S3) by applying k = K, qN(L) = 1 and qN(l) = 0 (l ̸= L− 1), and

stop the algorithm. The obtained v(N,K,L; qN) is the value of the game.
Else if n < N , execute (S3) for all k ∈ ∆n and qn ∈ Ψn.

(S3) Using v(n−1, ·; q′) and v(n−1, ·; q′′) by substituting randomly selected q′ and q′′ ∈ Ψn−1

for ΓP (qn) and ΓN(qn), calculate the expressions (3)–(6) and solve Problem (PS) or (PC)
to obtain optimal strategies x∗

n, y
∗
n(l) and the value v(n, k, l; qn) (l ∈ Λn) for the stage

game at Stage n. Revise the belief qn to ΓP (qn) and ΓN(qn) in accordance with Cases (i)–
(v) above. Furthermore, discretize the two revised beliefs.
If q′ = ΓP (qn) and q′′ = ΓN(qn), we save x∗

n as an optimal Customs’ strategy for
the information set (n, k; qn). We also save y∗n(l) as an optimal smuggler’s strategy and
value v(n, k, l; qn) for the information set (n, k, l; qn). Otherwise, we select other discrete
beliefs q′ and q′′ from Ψn−1 and repeat the above process.
If we cannot find the above coincidence between (q′, q′′) and (ΓP (qn),ΓN(qn)) for all
q′, q′′ ∈ Ψn−1, we notify that the information set (n, k; qn) is off path of equilibrium.

(S4) Increase n by one, n = n+ 1, and go back to (S2).

In the algorithm below, we calculate exact beliefs using the value of the stage game v(n, ·)
obtained in the above algorithm, in the order of n = N,N−1, . . . , 1. If the newly computed
value v(n, ·) is different from the original value at a stage n, we go back to the previous stage
n + 1 and redo the calculation. This type of calculation with repetition possibly does not
converge to a solution. The algorithm results in two states; success and failure of confirming
the optimality of Bayesian equilibrium.

(Conf Sol) Algorithm of calculating continuous belief and rebuilding Bayesian equilibrium

(B1) Call Subroutine Θ(n, k; qn) by setting (n, k, l) = (N,K,L) and initial belief qn = qN . If
it returns with a normal state of flag, we have obtained an exact Bayesian equilibrium.
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If with an abnormal flag, it means the incompletion of confirming the optimality of
Bayesian equilibrium. If the subroutine comes back with a revision flag, we repeat
calling the subroutine Θ(N,K; qN) until the allowed number of times. The failure of all
callings means the failure of confirmation of the optimality.

(B2) Subroutine Θ(n, k; qn):
(1) In some special cases of n = 0, k > n or k = 0, we return the values given by initial

conditions or boundary conditions with a normal flag.
If n = N , we calculate revised beliefs ΓP (qn) and ΓN(qn) by saved optimal strategies
x∗
n, {y∗n(l), l ∈ Λn} and a fixed belief qN at the initial stage N . Go to (3).

(2) Solve the problems (PS) or (PC) using saved values v(n − 1, ·) to obtain optimal
solutions x∗

n, {y∗n(l), l ∈ Λn} and {v(n, k, l; qn), l ∈ Λn}.
(i) If obtained {v(n, k, l; qn), l ∈ Λn} is different from saved value v(n, ·), replace

v(n, ·) with new one and return with a revision flag.
(ii) If both values of v(n, k, l; qn) coincide, revise the present belief qn into ΓP (qn)

and ΓN(qn) using optimal strategies.
(3) Recursively call subroutines Θ(n− 1, k − 1; ΓP (qn)) and Θ(n− 1, k; ΓN(qn)).

(i) If any of these subroutines returns with an abnormal flag, return with an ab-
normal flag from the current subroutine Θ(n, k; qn).

(ii) If any subroutine returns with a revision flag, go back to (2).
(iii) If all subroutines have normal flags, return with a normal flag from the current

subroutine.

4. Analytical Form of Bayesian Equilibrium Point in Some Special Cases

Here we are going to derive an equilibrium point in an analytic manner in some special
cases.

4.1. Optimal strategies in some special cases

In this subsection, we find some analytical forms of solutions in special cases of k = n and
L = 1.
Lemma 1. (i) The value v(·), including the value of the game v(N,K,L; qN), is nonnega-

tive:
v(n, k, l; qn) ≤ 0. (21)

(ii) For State (n, n, l) with k = n, v(n, n, l; qn) = 0 for all l and qn. An optimal patrol
strategy is an arbitrary x∗

n satisfying x∗
n ≥ 1/(γ + 1) and an optimal smuggling strategy

is no-smuggling, y∗n = 0.

Proof. (i) It is self-evident because always-no-smuggling strategy brings any stage game zero
payoff regardless of Customs’ strategy.

(ii) Let us prove this by mathematical induction. This statement is valid for n = k = 0
because of v(0, k, l; q) = 0. By the assumption of v(n− 1, n− 1, l; qn−1) = 0 for Stage n− 1,
we have Rl(P, S) = γ, Rl(NP, S) = −1 and Rl(P,NS) = Rl(NP,NS) = 0 by the equations
(3)–(6). Therefore, we can see

ν(l) = min{(γ + 1)xn − 1, 0}

for any l ∈ Λn in Problem (PC), from the conditions (17) and (18). Noting that, in the brace
{ } on the right-hand side, the first expression equals the second for xn = x̂∗ ≡ 1/(γ + 1),
ν(l) is (γ + 1)x − 1 for 0 ≤ x ≤ x̂∗ and 0 for x̂∗ < xn ≤ 1. Since this fact is valid for any
l ∈ Λn, the objective function of (PC) is

(∑
l∈Λn

qn(l)
)
{(γ + 1)xn − 1} for 0 ≤ xn ≤ x̂∗
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and 0 for x̂∗ < xn ≤ 1. Therefore, any x∗
n of x̂∗ ≤ x∗

n is optimal and then we have
v(n, n, l; qn) = ν∗(l) = 0.

We have η =
∑

l qn(l)γyn(l) in Problem (PS) from the conditions (15) and (16), and an
optimal smuggler’s strategy y∗n(l) = 0 for any l ∈ Λn.

Because, in the case of n = k, Customs can patrol every day, the smuggler inevitably
takes no-smuggling strategy and then the value v(n, n, l; qn) should be 0. Lemma 1 tells us
that the probability of patrolling more than x̂∗ deters any smuggling.

Lemma 2. In the case of L = 1, we have

v(n, k, 1; qn) = −
(
n− 1

k

)/ k∑
s=0

γk−s
(n
s

)
(22)

for any state (n, k, 1) of n > k.

Proof. In this case, Problem (PC) becomes the maximization problem of qn(1)ν(1) under
conditions 0 ≤ xn ≤ 1 and

(γ + 1)xn − 1 ≥ ν(1), (23)

−{v(n− 1, k, 1; ΓN(qn))− v(n− 1, k − 1, 1; ΓP (qn))}xn + v(n− 1, k, 1; ΓN(qn)) ≥ ν(1)
(24)

by applying Λn = {1} and Equation (10). The problem has only two variables ν(1) and xn,
and it is easy to solve. First, we can see v(n−1, k−1, 1; q) < γ and −1 ≤ v(n−1, k, 1; q) for
any belief q, and v(n − 1, k, 1; ΓN(q)) ≥ v(n − 1, k − 1, 1; ΓP (q)) since Customs had better
not go patrolling if he never meets the smuggling.

Considering the inequalities above, an optimal strategy x∗
n of (PC) is given by equalizing

the left-hand sides of the conditions (23) and (24) to be

x∗
n =

1 + v(n− 1, k, 1; ΓN(q))

γ + 1 + v(n− 1, k, 1; ΓN(q))− v(n− 1, k − 1, 1; ΓP (q))
.

Then we have

v(n, k, 1; q) = ν∗(1) =
γv(n− 1, k, 1; ΓN(q)) + v(n− 1, k − 1, 1; ΓP (q))

γ + 1 + v(n− 1, k, 1; ΓN(q))− v(n− 1, k − 1, 1; ΓP (q))
. (25)

Because the values v(1, 1, 1; q) = 0 and v(1, 0, 1; q) = −1 at Stage 1 are determined regardless
of q, v(n, k, 1; q) does not rely on qn(1) at Stage n = 2. Thus the value v(n, k, 1; q) calculated
by the recursive equation (25) does not depend on q, in general. We delete q and argument
1 from v(n, k, 1; q) to create a new symbol u(n, k) as a substitute for v(n, k, 1; q). In the
result, we have a recursive formula to derive the value u(n, k), as follows:

u(n, k) =
γu(n− 1, k) + u(n− 1, k − 1)

γ + 1 + u(n− 1, k)− u(n− 1, k − 1)
, (26)

Initial value : u(1, 1) = 0, u(1, 0) = −1. (27)

We could solve the difference equation (26) to derive the analytic form (22) for u(n, k) or
v(n, k, 1; qn). But readers can refer to Theorem 1 in Reference [13], where the same difference
equation is discussed and the formula (22) is derived.
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In a similar manner, we can derive an optimal smuggler’s strategy

y∗n =
v(n− 1, k, 1; ΓN(q))− v(n− 1, k − 1, 1; ΓP (q))

γ + 1 + v(n− 1, k, 1; ΓN(q))− v(n− 1, k − 1, 1; ΓP (q))

from Problem (PS), which is solved by connecting the left-hand sides of Equations (15) and
(16) with an equality.

In the situation of Lemma 2, the type of smuggler is l = 0 or 1 at any stage. Because
the smuggler of type l = 0 cannot take an action of smuggling, the payoff should be zero for
any Customs’ strategy of P and NP . Therefore, Customs might presume only the smuggler
of type l = 1. We see that the objective function of (PC) is essentially ν(1), as shown in the
proof above, so that Customs does not need any information about the type of smuggler in
the case of L = 1.

4.2. A basic procedure for the analytical form of equilibrium point and the
special case of N = 3

The problems (PS) and (PC) look comparatively simple in terms of the number of variables
and conditions. It encourages us to try to derive Bayesian equilibrium point in an analytical
manner. Here we discuss a basic procedure for the solution and try to find all equilibrium
points for allK and L (0 ≤ K, L ≤ 3) in the case of N = 3. Before discussing the procedure,
let us estimate some qualitative relation among four values of Rl(·) in Problem (PC).

If Customs patrols, the smuggler would prefer no-smuggling. Getting reward 1 by the
smuggling on the no-patrol day is the best for the smuggler. If the patrol never meets the
smuggling, Customs had better keep a chance of patrol for later use. When the smuggler
tries to smuggle, the best for the smuggler is to get reward 1 on the no-patrol day and the
worst is to meet the patrol. The following inequalities represent the properties above:

γ + (1− p1)v(n− 1, k − 1, l − 1; ΓP (qn)) ≥ v(n− 1, k − 1, l; ΓP (qn)), (28)

−1 + v(n− 1, k, l − 1; ΓN(qn)) ≤ v(n− 1, k, l; ΓN(qn)), (29)

v(n− 1, k − 1, l; ΓP (qn)) ≤ v(n− 1, k, l; ΓN(qn)), (30)

γ + (1− p1)v(n− 1, k − 1, l − 1; ΓP (qn)) ≥ −1 + v(n− 1, k, l − 1; ΓN(qn)). (31)

These inequalities can be replaced with the values of Rl(·) from the definitions (3)–(6), as
follows:

Rl(P, S) ≥ Rl(P,NS), Rl(NP, S) ≤ Rl(NP,NS),

Rl(P,NS) ≤ Rl(NP,NS), Rl(P, S) ≥ Rl(NP, S).

We have not proved yet that these inequalities are always valid. In practice, we have to
make sure of the validity in the process of calculating solutions at each stage.

Recalling that the conditions (17) and (18),

(Rl(P, S)−Rl(NP, S))xn +Rl(NP, S) ≥ ν(l),

−(Rl(NP,NS)−Rl(P,NS))xn +Rl(NP,NS) ≥ ν(l),

and denoting the left-hand side expression of the first inequality and the second one by hl
1(xn)

and hl
2(xn), respectively, ν(l) is given by ν(l) = hl

1(xn) for 0 ≤ xn ≤ x̂∗
l and ν(l) = hl

2(xn)
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for x̂∗
l ≤ xn ≤ 1 with a boundary point x̂∗

l because we have hl
1(0) ≤ hl

2(0) for xn = 0 and
hl
1(1) ≥ hl

2(1) for xn = 1. The boundary x̂∗
l is

x̂∗
l =

Rl(NP,NS)−Rl(NP, S)

Rl(P, S)−Rl(NP, S) +Rl(NP,NS)−Rl(P,NS)

= {v(n− 1, k, l; ΓN(qn)) + 1− v(n− 1, k, l − 1; ΓN(qn))}/
{γ + 1 + (1− p1)v(n− 1, k − 1, l − 1; ΓP (qn))− v(n− 1, k, l − 1; ΓN(qn))

+ v(n− 1, k, l; ΓN(qn))− v(n− 1, k − 1, l; ΓP (qn))} . (32)

Since the function hl
1(xn) is linearly non-decreasing for xn and hl

2(xn) is linearly non-
increasing, ν(l) is maximized by xn = x̂∗

l . Therefore, the objective function of (PC),∑
l qn(l)ν(l), is piecewise linear for xn and then an optimal x∗

n coincides with x̂∗
l for some

l ∈ Λn. An optimal value of ν∗(l) or v(n, k, l; qn) belongs to the following interval:

max{Rl(P,NS), Rl(NP, S)} ≤ ν∗(l) = v(n, k, l; qn) ≤ min{Rl(P, S), Rl(NP,NS)}.

Using the basic procedure to derive x∗
n and v(n, k, l; qn) explained above, we could solve the

game with small number of stages in an analytical manner. As an example, we find the
values of the games for all parameters (N,K,L) = (3, K, L), K, L = 1, 2, 3. In Appendix A,
we enumerate the results of them but omit the process of the calculation and self-evident
equilibrium points for the sake of simplicity. We can also check that the derived solutions
coincide with the solutions given by Lemma 2 in the case of L = 1 and additionally, we can
say that the inequalities (28)–(31) are always valid in this case.

5. Numerical Examples

In this section, we first analyze the game with parameters (N,K,L) = (3, 2, 2), using the
solutions we have already obtained in Appendix A.

Figure 1 shows the tree of the game branching from a root node or the first information
set (N,K,L) = (3, 2, 2). At each stage, there are a pair of two branches with Customs’
strategies {P,NP} and the smuggler’s strategies {S,NS}. A stage game consists of a
pair of these two sets of branches. Customs decides his strategy based on the history of
his past strategies without any information about his opponent’s strategy. On the other
hand, the smuggler takes his strategy without the current strategy of Customs, knowing
past Customs’ strategies. The asymmetric acquisition of information generates complicated
information sets, which are depicted by ovals at Stages 3 and 2, and lines connecting some
nodes or moves at Stage 1 in Figure 1. The player cannot discriminate the difference among
the nodes contained in the information set. In the ovals or besides the lines, we write a
pair (n, k) or a triplet (n, k, l) indicating the Customs’ or the smuggler’s information set,
respectively, where n, k and l are the numbers of stage, the residual chances of patrol and
the residual chances of smuggling. For the combination of strategies P and S, there could
be the capture of the smuggler by Customs, which is illustrated by a square on an arc. From
the assumption, the capture occurs and the game ends with probability p1 but the game
proceeds to the next stage with probability 1− p1.

If the pure strategy is optimal, we draw the arc of the optimal strategy with a bold red
line. At Stage 1, all states have optimal pure strategies and then all other arcs except the
optimal ones are deleted for the sake of simplicity. After information set (n, k) = (2, 2),
for example, the optimal Customs’ strategy is always-patrol P and the optimal smuggler’s
strategy is always-no-smuggling NS at every stage. So Customs does not need any infor-
mation about the smuggler’s strategy to make his strategy. However, for information set
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(n, k) = (2, 1), Customs’ decision making depends on his anticipation or belief on how many
chances of l = 1 or l = 2 the smuggler keeps for smuggling.
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Figure 1: Game tree in the case of (N,K,L) = (3, 2, 2)

(1) Dependency of equilibrium point on parameter setting and Customs’ belief
Here we set α = 3 for all examples taken here. The game has some natural properties

that the value of the game, v(3, 2, 2; q3), monotonically increases and the optimal probability
of smuggling at Stage 3, y∗3, decreases as the capture probability p1 becomes larger. We can
also easily understand that the value of game decrease and y∗3 increases as the success
probability of smuggling, p2, becomes larger. The value of the game and y∗3 are illustrated
on a p1 − p2 plane in Figures 2 and 3, respectively. Please note that p1 and p2 have their
feasible regions of p1 + p2 ≤ 1，γ = αp1 − p2 > 0 and p1, p2 ≥ 0 on the plane.

Next we are going to analyze optimal patrol strategy x∗
3 at Stage 3. Figure 4 illustrates

the change of x∗
3 for p1 and p2. Figure 5 shows its profile for p1 while fixing p2 to 0.2. The

reward of Customs is directly born by α on capture of the smuggler and indirectly born by
deterring the smuggler from earning reward 1 on success of the smuggling. In both cases, it

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



36 R. Hohzaki

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

-1
-0.75

-0.5
-0.25

0

0

0.25

0.5

0.75

1

0.25

0.5

0.75

0.25
0.5

0.75
1

-1

-0.5

0 p2

p1

1

v(3,2,2;q3)

Figure 2: Value of the game

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0

0.2

0.4

0.6

0

0.25

0.5

0.75

1

0.25

0.5

0.75

0.25
0.5

0.75
1

p2

p1

1

0.6

0.4

0.2

0

y*3

Figure 3: Optimal smuggling probability

is crucial that the patrol meets the smuggling. Therefore, it is reasonable that x∗
3 decreases

corresponding to smaller y∗3 as p1 becomes larger. However Figures 4 and 5 show us the
discontinuity of x∗

3 along a curve in Figure 4 and at a point in Figure 5. Let us analyze the
discontinuity by Customs’ strategy x∗

2 in State (n, k) = (2, 1).
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Figure 5: Optimal patrol probability

At Stage n = 2, we have Λ2 = {1, 2} and the objective function
∑

l∈Λ2
q2(l)ν(l) of

Problem (PC) becomes neutral on the curve of

−ΓP (q3)(1) + (γ + p1)ΓP (q3)(2) = 0 (33)

from Equation (A4) in Appendix A, that is, the objective function does not change even
though x2 varies on the curve. The curve partitions a whole space into the region of
−ΓP (q3)(1) + (γ + p1)ΓP (q3)(2) > 0, say Region (i), and the other region of −ΓP (q3)(1) +
(γ + p1)ΓP (q3)(2) < 0, say Region (ii). In Region (i), Customs estimates that the smuggler
has l = 2 chances of smuggling with more probabilities and then the smuggler is more likely
to take an action of smuggling. The estimation makes Customs expect larger payoff by his
patrol. That is why Customs is more likely to patrol in Region (i) than (ii). From the
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equations (A1)–(A3), we have the following solution:

x∗
2 =

1

γ + 1 + p1
, (34)

v(2, 1, 1; q) = − 1

γ + 1 + p1
, v(2, 1, 2; q) = − 1

γ + 1 + p1
(35)

in Region (i) and

x∗
2 =

1

γ + 2
, (36)

v(2, 1, 1; q) = − 1

γ + 2
, v(2, 1, 2; q) = −2− p1

γ + 2
(37)

in Region (ii). On the neutral curve, x∗
2 might take an arbitrary value of 1/(γ + 1 + p1) ≥

x∗
2 ≥ 1/(γ + 2) between two values given by Equations (34) and (36). From Equations (35)

and (37), we can prove that value v(2, 1, 2; q) is larger in Region (i) than (ii) and v(2, 1, 1; q)
is smaller in (i) than (ii). We can qualitatively explain the fact, as follows. In Region (i),
Customs has the belief that the smuggler more likely has l = 2 than l = 1. The value
v(2, 1, 2; q) with l = 2 is congruent with the belief and it becomes larger in Region (i) than
(ii), but v(2, 1, 1; q) with l = 1, which is not congruent with the belief, is smaller.

We make use of the analysis above for State (n, k) = (2, 1) to inspect the change of x∗
3

at Stage 3. The initial state (N,K,L) = (3, 2, 2) transfers to State (n, k) = (2, 1) by patrol
strategy P and to (n, k) = (2, 2) by no-patrol strategy NP . From Lemma 1(ii), we have
v(2, 2, l; q) = 0 for all l in State (2, 2). Now we solve Problem (PS) using the value of the
game v(2, ·; q) at Stage 2 and obtain an optimal smuggling strategy y∗3 at Stage 3. Using
the revised belief ΓP calculated by y∗3, the neutral curve of Equation (33) becomes γ = γ̂,
where γ̂ is defined by Equation (A6) in Appendix A. The curve can be written down to

p22 − {(2α+ 1)p1 + 1} p2 + α(α + 1)p21 + (α + 2)p1 − 1 = 0 (38)

by variables p1 and p2. With feasibility conditions p1 + p2 ≤ 1 and γ = αp1 − p2 > 0,
the curve separates a whole space into two regions. Region (i) is placed in the area with
comparatively larger p1 because larger p1 makes the smuggler negative for smuggling and
the smuggling probability y∗3 smaller at Stage 3, and the tendency causes larger ΓP (q3)(2)
with l = 2 left chances of smuggling at Stage 2. These coincide with the properties analyzed
above for State (n, k) = (2, 1). Similarly, Region (ii) is assigned to the area with smaller p1.
In Figure 6, the neutral curve γ = γ̂ and two additional curves of p1 + p2 = 1 and γ = 0 are
drawn on the p1 − p2 space.

The value v(2, ·) discontinuously changes between Regions (i) and (ii), as seen by Equa-
tions (35) and (37), for both states (2, 1, 1) and (2, 1, 2) at Stage 2. Let us figure out how the
discontinuity at Stage 2 is inherited to Stage 3 in Regions (i) and (ii). Both players know
the initial state (N,K,L) = (3, 2, 2) and the stage game has the following payoff matrix at
the first stage n = 3:

S NS
P
NP

(
γ + (1− p1)v(2, 1, 1; ΓP (q3)) v(2, 1, 2; ΓP (q3))

−1 + v(2, 2, 1; ΓN(q3)) v(2, 2, 2; ΓN(q3))

)
.

Two elements in the second row are −1 and 0 but two elements in the first row change
depending on which region of (i) and (ii) a point (p1, p2) belongs to. Denoting the two
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Figure 6: Regions (i) and (ii)

elements by a and b from left, the following relation holds in the payoff matrix: a > b
∨ ∧
−1 < 0

 .

Therefore, mixed strategies are optimal for both players and the optimal probability of
patrolling is given by

x∗
3 =

1

a− b+ 1
(39)

at Stage 3 after solving the equation of ax − (1 − x) = bx. From the previous analysis on
the largeness of v(2, 1, 1; ΓP (q3)) and v(2, 1, 2; ΓP (q3)) in Regions (i) and (ii), the value a is
smaller in Region (i) than (ii) and b is larger in (i) than (ii). That is why x∗

3 becomes larger
in Region (i) than (ii) from Equation (39) and the discontinuity appears on the neutral
curve separating Regions (i) and (ii) in Figures 4 and 5.

In Figure 5 with the fixed parameter p2 = 0.2, the discontinuity appears at p1 ≈ 0.1953,
which is derived as a solution of the equation (38). If we substitute Equations (35) and
(37) into (39) and calculate an optimal patrol probability x∗

3, the probability changes from
(γ + 1 + p1)/((γ + 1)2 + p1(γ + 1) + p1) in Region (i) to (γ + 2)/((γ + 1)(γ + 2) + 1) in
Region (ii). On the neutral curve of the boundary between Regions (i) and (ii), Customs
might patrol with probability x∗

3 = 1/(γ+2− (γ+1)z) at Stage 3 under the condition that
he would take a probability z of 1/(γ + 2) ≤ z ≤ 1/(γ + 1+ p1) as the patrol probability in
the coming state (n, k) = (2, 1). We can see only the results of the discussion above by the
equations (A7)–(A9) in Appendix A.

(2) Value of information
In this paper, we deal with the asymmetric system of information that the smuggler

knows all past Customs’ strategies but Customs does not know the type of the smuggler.
We already have the published analysis on the symmetric model [13], where both players
get information about opponents’ past strategies. We could estimate the value of the infor-
mation about the smuggler’s type by comparing this model with the symmetric one. We
name the asymmetric model of this paper M2 and the symmetric one M1.

Setting parameter α = 2, p1 = 0.5, p2 = 0.3 and m = 5, we compute the values of the
games for all combinations (N,K,L) of the number of stages N = 3, 4, 5, the number of
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permitted patrols K (≤ N) and the number of feasible smuggling L (≤ N) for Models M1
and M2, and show them in Table 2. Upper figures are for M1 and lower ones for M2.
We omit them in such self-evident cases as v(N,N,L; qN) = 0, v(N, 0, L; qN) = −L and
v(N,K, 0; qN) = 0. Table 3 shows the values of the games with the same parameters as
Table 2 except for p1 = 0.2.

Algorithm (Disc Bf) proposed in Section 3 always provides us a unique Bayesian equi-
librium, that is, a unique value of the game but Algorithm (Conf Sol) fails to confirm the
optimality of the equilibrium in three cases for p1 = 0.5 and in one case for p1 = 0.2.
In such cases with no convergence, Algorithm (Conf Sol) vibrates between two values of
v(N,K,L; qN). Two values are close to each other and one of them is what (Disc Bf) gives.
We show the figures that (Disc Bf) gives us in Tables 2 and 3, but write the other figure
below the tables with symbol “*”. The two tables show us some properties of the value of
the game.
(1) In the case of L = 1 or L = N , we have Λn ⊆ {0, 1} or Λn = {n} at any stage n,

respectively, and Customs does not need any information about l for his decision making.
Therefore, the values of the games of Models M1 and M2 coincides.

(2) It is natural that the value of the game for M2 is equal to or smaller than for M1. Its
monotonically non-decreasingness or its monotonically non-increasingness is seen with
respect to K or L, respectively, for both models. As N becomes larger while fixing K
and L, the estimation on the type of smuggler l is getting more difficult for Customs
and it puts down the value of the game for both models.

Table 2: Value of the game (p1 = 0.5, Upper: M1, Lower: M2)

N K L
1 2 3 4 5

3 1 −0.54 −0.91 −1.03
−0.54 −0.94 −1.03

2 −0.18 −0.23 −0.24
−0.18 −0.24 −0.24

4 1 −0.64 −1.15 −1.51 −1.64
−0.64 −1.19∗1 −1.55 −1.64

2 −0.32 −0.51 −0.58 −0.59
−0.32 −0.54 −0.59 −0.59

3 −0.10 −0.13 −0.13 −0.13
−0.10 −0.13 −0.13 −0.13

5 1 −0.70 −1.31 −1.80 −2.15 −2.28
−0.70 −1.35∗2 −1.83 −2.19 −2.28

2 −0.43 −0.73 −0.92 −1.00 −1.01
−0.43 −0.77∗3 −0.95 −1.01 −1.01

3 −0.20 −0.31 −0.35 −0.36 −0.36
−0.20 −0.33 −0.36 −0.36 −0.36

4 −0.05 −0.07 −0.07 −0.07 −0.07
−0.05 −0.07 −0.07 −0.07 −0.07

*1: −1.17, *2: −1.32, *3: −0.76

To check the change of the value of the game between Models M1 and M2, we compare the
increasing ratios of the value of the game in two models. The increasing ratio is defined by
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Table 3: Value of the game (p1 = 0.2, Upper: M1, Lower: M2)

N K L
1 2 3 4 5

3 1 −0.65 −1.20 −1.59
−0.65 −1.23 −1.59

2 −0.30 −0.52 −0.61
−0.30 −0.54 −0.61

4 1 −0.73 −1.41 −2.0 −2.42
−0.73 −1.42 −2.06 −2.42

2 −0.47 −0.86 −1.15 −1.30
−0.47 −0.87 −1.22∗1 −1.30

3 −0.22 −0.38 −0.47 −0.50
−0.22 −0.39 −0.50 −0.50

5 1 −0.78 −1.53 −2.21 −2.82 −3.25
−0.79 −1.53 −2.24 −2.88 −3.25

2 −0.57 −1.08 −1.51 −1.84 −2.01
−0.57 −1.09 −1.55 −1.91 −2.01

3 −0.36 −0.66 −0.89 −1.04 −1.09
−0.36 −0.67 −0.93 −1.09 −1.09

4 −0.16 −0.29 −0.37 −0.41 −0.42
−0.16 −0.30 −0.40 −0.42 −0.42

*1: −1.23

|w − v|/|v|, where w and v are the values of the game of Models M1 and M2, respectively.
Furthermore, in Table 4, we compare two cases of capture probability, p1 = 0.5 and p1 = 0.2,
in terms of the ratio. Upper figures are for p1 = 0.5 and lower ones for p1 = 0.2. The ratio is
a kind of indicator for the value of the information about the smuggler’s type. We attach an
asterisk “*” to the larger of two ratios. Let us use an adjective “strong” for Customs with
larger p1 and “weak” for Customs with smaller p1. Thinking that the number K would rely
on the budget of Customs for patrol as the political matter, we use words “rich” or “poor”
for the large number or the small number of K. Similarly, we call larger L “in funds” or
smaller L “out of funds” for the smuggler. From Table 4, we can see a common tendency
that the information value of the smuggler’s type is higher for strong Customs than weak
Customs in the area of small K and L in Table 4. In the area of large K and L, the value
is higher for weak Customs than strong Customs. From the tendency, we itemize some
characteristics of the value of information, as follows.

(3) Strong Customs expects higher information value under the circumstance of smaller K
or less budget than enough budget, and weak Customs gets higher information value
using a lot of budget than a shortage of budget.

(4) Under the circumstance of the same budget, the information of the smuggler out of funds
is more critical not for weak Customs but for strong Customs, and the type information
of the smuggler in funds is more valuable for weak Customs than strong Customs.

Our common sense would support the characteristics above. If strong Customs has an abun-
dance of budget, he is too strong for the smuggler to dare to take any action of smuggling.
In this case, Customs could perfectly deter the smuggling and he does not have to depend
on the information about the smuggler at all. Only if strong Customs does not have a lot
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Table 4: Comparison of the increasing ratio (Upper: p1 = 0.5, Lower: p1 = 0.2)

N K L
1 2 3 4 5

3 1 0 0.031* 0
0 0.019 0

2 0 0.021 0
0 0.050* 0

4 1 0 0.032* 0.023 0
0 0.007 0.030* 0

2 0 0.048* 0.022 0
0 0.016 0.056* 0

3 0 0.038* 0 0
0 0.031 0.060* 0

5 1 0 0.030* 0.016* 0.017 0
0 0.003 0.011 0.022* 0

2 0 0.050* 0.026* 0.013 0
0 0.007 0.023 0.039* 0

3 0 0.058* 0.025 0.003 0
0 0.013 0.042* 0.045* 0

4 0 0.041* 0.014 0 0
0 0.024 0.073* 0.019* 0

of budget, however, the smuggler sometimes tries to smuggle and the information about the
smuggler brings strong Customs higher increase of his reward by capturing the smuggler
more likely than weak Customs. If weak Customs does not have a lot of budget, he cannot
be active enough to patrol and capture the smuggler because of a shortage of budget. With
enough budget, weak Customs could make an effective patrol plan and expect the increase
of his payoff by making use of the smuggler’s information.

Before closing this section, we have to mention the accuracy of the computational al-
gorithm proposed in Section 3. The algorithm shows us exact Bayesian equilibrium points
in many cases but sometimes fails to confirm their optimality. Even in such fail cases, the
proposed algorithm brings alternative values of game that are close to each other. We also
derive the analytical forms of equilibrium points in some special cases of N = 3 or L = 1.
In such cases, our numerical algorithm provides the same solutions as the analytical form
of solutions.

6. Conclusion

In this paper, we analyze the smuggling game with asymmetric information about players,
where the system of information acquisition is disadvantageous to Customs. We adopt
the so-called Bayesian equilibrium point as the concept of solution. We derive analytical
forms of solutions in some special cases and propose a computational algorithm to derive a
solution in a general case. By some examples, we quantitatively clarify the characteristics
of optimal strategies and the value of the information about the smuggler’s type, which
could be supported by our common sense. We also numerically analyze problems with the
number of stages N = 5 at most. If the smuggler makes a smuggling plan every month, these
examples correspond to the analyses on the time span of half a year. As a form of the game,
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we handle the extensive form or the game tree as Figure 1 and develop a computational
methodology to derive Bayesian equilibrium on the tree. However, the form is inadequate
for computation because the tree with the whole options or the whole braches of players’
behaviors expands on an exponential scale. Therefore, we have to devise more efficient forms
of representing the game as our future work. We also have the future topics of extending
our model to the nonzero-sum smuggling game with incomplete information, where players
have different criteria of payoff.
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A. Bayesial Equilibrium Points in the Case of N = 3

Case of (N,L) = (3, 3)
(1) At Stage n = 1, v(1, 1, l; q) = 0, v(1, 0, l; q) = −l (l ≤ 1).
(2) At Stage n = 2, Λ2 = {2}.

(i) For k = 2, v(2, 2, 2; q) = 0.
(ii) For k = 1, h2

1(x) = (γ + p1)x− 1, h2
2(x) = −x,

x∗
2 = x̂∗

2 =
1

γ + 1 + p1
, y∗2 =

1

γ + 1 + p1
, v(2, 1, 2; q) = − 1

γ + 1 + p1
.

(3) At Stage n = N = 3, Λ3 = {3}.
(i) For K = 3, v(3, 3, 3; q) = 0.

(ii) For K = 2, h3
1(x) =

(
γ + 1− 1− p1

γ + 1 + p1

)
x− 1, h3

2(x) = − x

γ + 1 + p1
,

x∗
3 = x̂∗

3 =
γ + 1 + p1

(γ + 1)2 + p1(γ + 1) + p1
, y∗3 =

1

(γ + 1)2 + p1(γ + 1) + p1
,

v(3, 2, 3; q) = − 1

(γ + 1)2 + p1(γ + 1) + p1
.

(iii) For K = 1, h3
1(x) =

(
γ − 1 + 2p1 +

1

γ + 1 + p1

)
x− γ + 2 + p1

γ + 1 + p1
,

h3
2(x) = −2γ + 1 + 2p1

γ + 1 + p1
x− 1

γ + 1 + p1
,

x∗
3 = x̂∗

3 =
1

γ + 1 + 2p1
, y∗3 =

2γ + 1 + 2p1
(γ + 1 + p1)(γ + 1 + 2p1)

,

v(3, 1, 3; q) = − 3γ + 2 + 4p1
(γ + 1 + p1)(γ + 1 + 2p1)

.

Case of (N,L) = (3, 2)
(1) At Stage n = 1, v(1, 1, l; q) = 0, v(1, 0, l; q) = −l (l ≤ 1).
(2) At Stage n = 2, Λ2 = {1, 2}.

(i) For k = 2, v(2, 2, l; q) = 0 (l = 1, 2).

(ii) For k = 1, h1
1(x) = (γ + 1)x− 1, h1

2(x) = −x, x̂∗
1 =

1

γ + 2
,

h2
1(x) = (γ + p1)x− 1, h2

2(x) = −x, x̂∗
2 =

1

γ + 1 + p1
.

The objective function of (PC), q(1)min{h1
1(x), h

1
2(x)} + q(2)min{h2

1(x), h
2
2(x)}, is

maximized by the following solutions.
(a) If −q(1) + (γ + p1)q(2) > 0,

x∗
2 = x̂∗

2 =
1

γ + 1 + p1
, (A1)

v(2, 1, 1; q) = − 1

γ + 1 + p1
, v(2, 1, 2; q) = − 1

γ + 1 + p1
. (A2)

(b) If −q(1) + (γ + p1)q(2) < 0,

x∗
2 = x̂∗

1 =
1

γ + 2
, v(2, 1, 1; q) = − 1

γ + 2
, v(2, 1, 2; q) = −2− p1

γ + 2
. (A3)
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(c) If −q(1) + (γ + p1)q(2) = 0,

x∗
2 =

∀x ∈
[

1

γ + 2
,

1

γ + 1 + p1

]
, (A4)

v(2, 1, 1; q) = −x∗
2, v(2, 1, 2; q) = (γ + p1)x

∗
2 − 1.

Noting that q(1) + q(2) = 1, Case (c) occurs only for the belief

q(1) =
γ + p1

γ + 1 + p1
, q(2) =

1

γ + 1 + p1
. (A5)

(3) At Stage n = N = 3, Λ3 = {2}.
(i) For K = 3, v(3, 3, 2; q) = 0.
(ii) For K = 2, we sort out solutions in accordance with the classifications (a)–(c) for

(n, k) = (2, 1), as follows:
(a) If −ΓP (q)(1) + (γ + p1)ΓP (q)(2) > 0,

h2
1(x) =

(
γ + 1− 1− p1

γ + 1 + p1

)
x− 1, h2

2(x) = − 1

γ + 1 + p1
x,

x∗
3 = x̂∗

2 =
γ + 1 + p1

(γ + 1)2 + p1(γ + 1) + p1
, y∗3 =

1

(γ + 1)2 + p1(γ + 1) + p1
,

v(3, 2, 2; q) = − 1

(γ + 1)2 + p1(γ + 1) + p1
.

(b) If −ΓP (q)(1) + (γ + p1)ΓP (q)(2) < 0,

h2
1(x) =

(
γ + 1− 1− p1

γ + 2

)
x− 1, h2

2(x) = −2− p1
γ + 2

x,

x∗
3 = x̂∗

2 =
γ + 2

(γ + 1)(γ + 2) + 1
, y∗3 =

2− p1
(γ + 1)(γ + 2) + 1

,

v(3, 2, 2; q) = − 2− p1
(γ + 1)(γ + 2) + 1

.

(c) If −ΓP (q)(1) + (γ + p1)ΓP (q)(2) = 0, Customs might decide to take a number z
in [1/(γ+2), 1/(γ+1+p1)] as his patrol probability when he is in State (n, k) =
(2, 1) at the next stage 2 and we have

h2
1(x) = (γ − (1− p1)z + 1)x− 1, h2

2(x) = − (1− (γ + p1)z)x,

x∗
3 = x̂∗

2 =
1

γ + 2− (γ + 1)z
, y∗3 =

1− (γ + p1)z

(γ + 1)(1− z) + 1
,

v(3, 2, 2; q) = − 1− (γ + p1)z

γ + 2− (γ + 1)z
,

depending on z.
Furthermore, Customs would select z to maximize the value of the game v(3, 2, 2; q).
An optimal value of z could be given by maxz v(3, 2, 2; q).

Applying y∗3 to Customs’ belief q at StageN = 3, we generate the revised belief ΓP (q)
and ΓN(q), and check the conditions of the classifications (a)–(c) above. The check
gives us the relation between parameters γ and p1 which validates the conditions of
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(a)–(c). Before we itemize the relation, we have to say that y∗3 is uniquely determined
in the result although, in the classification (c), the smuggler’s strategy y∗3 seemingly
depends on the strategy z in Customs’ hands. We use notation γ̂ as a solution of
the equation γ2 + (1 + p1)γ + 2p1 − 1 = 0, which is given by

γ̂ ≡ 1

2

{
−(1 + p1) +

√
(5− p1)(1− p1)

}
. (A6)

In the case of (N,K,L) = (3, 2, 2)

(a) If γ > γ̂,

x∗
3 =

γ + 1 + p1
(γ + 1)2 + p1(γ + 1) + p1

, y∗3 =
1

(γ + 1)2 + p1(γ + 1) + p1
, (A7)

v(3, 2, 2; q) = − 1

(γ + 1)2 + p1(γ + 1) + p1
.

(b) If γ < γ̂,

x∗
3 =

γ + 2

(γ + 1)(γ + 2) + 1
, y∗3 =

2− p1
(γ + 1)(γ + 2) + 1

, (A8)

v(3, 2, 2; q) = − 2− p1
(γ + 1)(γ + 2) + 1

.

(c) If γ = γ̂,

x∗
3 =

1

γ + 2− (γ + 1)z
, y∗3 =

1

γ + 2
, v(3, 2, 2; q) = − 1

γ + 2
, (A9)

where z is an arbitrary number in interval 1/(γ + 2) ≤ z ≤ 1/(γ + 1 + p1) and
Customs is supposed to patrol with the probability z in State (n, k) = (2, 1) at
Stage n = 2.

(iii) For K = 1, we also sort out solutions in accordance with the classifications (a)–(c)
for (n, k) = (2, 1), as follows:
(a) If −ΓN(q)(1) + (γ + p1)ΓN(q)(2) > 0,

h2
1(x) =

(
γ + p1 +

1

γ + 1 + p1

)
x− γ + 2 + p1

γ + 1 + p1
,

h2
2(x) = −2γ + 1 + 2p1

γ + 1 + p1
x− 1

γ + 1 + p1
,

x∗
3 = x̂∗

2 =
1

γ + 2 + p1
, y∗3 =

2γ + 1 + 2p1
(γ + 1 + p1)(γ + 2 + p1)

,

v(3, 1, 2; q) = − 3

γ + 2 + p1
.

(b) If −ΓN(q)(1) + (γ + p1)ΓN(q)(2) < 0,

h2
1(x) =

(
γ + p1 +

1

γ + 2

)
x− γ + 3

γ + 2
, h2

2(x) = −2γ + 2 + p1
γ + 2

x− 2− p1
γ + 2

,

x∗
3 = x̂∗

2 =
1

γ + 3
, y∗3 =

2γ + 2 + p1
(γ + 3)(γ + 1 + p1)

, v(3, 1, 2; q) = −4− p1
γ + 3

.
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(c) If −ΓN(q)(1) + (γ + p1)ΓN(q)(2) = 0, Customs decides to take a number z in
[1/(γ + 2), 1/(γ + 1 + p1)] as his patrol probability when he is in State (n, k) =
(2, 1) at the next stage and we have

h2
1(x) = (γ + p1 + z)x− (1 + z),

h2
2(x) = − (1 + (γ + p1)z)x− (1− (γ + p1)z) ,

x∗
3 = x̂∗

2 =
z

z + 1
, y∗3 =

1 + (γ + p1)z

(γ + 1 + p1)(z + 1)
, v(3, 1, 2; q) = −1 + (2− γ − p1)z

z + 1
.

Checking the conditions of the classifications (a), (b) and (c) above by y∗3, we obtain
the following results. y∗3 is also determined uniquely in the classification (c).

In the case of (N,K,L) = (3, 1, 2)

(a) If γ + p1 > 1, x∗
3 =

1

γ + 2 + p1
, y∗3 =

2γ + 1 + 2p1
(γ + 1 + p1)(γ + 2 + p1)

,

v(3, 1, 2; q) = − 3

γ + 2 + p1
.

(b) If γ + p1 < 1,

x∗
3 =

1

γ + 3
, y∗3 =

2γ + 2 + p1
(γ + 3)(γ + 1 + p1)

, v(3, 1, 2; q) = −4− p1
γ + 3

.

(c) If γ + p1 = 1, x∗
3 =

z

z + 1
, y∗3 =

1

2
, v(3, 1, 2; q) = −1,

where z is an arbitrary number in interval 1/(γ + 2) ≤ z ≤ 1/2 and Customs is
supposed to patrol with the probability z in State (n, k) = (2, 1) at Stage n = 2.

Case of (N,L) = (3, 1)
(1) At Stage n = 1, v(1, 1, l; q) = 0, v(1, 0, l; q) = −l (l ≤ 1).
(2) At Stage n = 2, Λ2 = {1}.

(i) For k = 2, v(2, 2, 1; q) = 0.

(ii) For k = 1, h1
1(x) = (γ + 1)x− 1, h1

2(x) = −x, x∗
2 = x̂∗

1 =
1

γ + 2
, y∗2 =

1

γ + 2
,

v(2, 1, 1; q) = − 1

γ + 2
.

(3) At Stage n = N = 3, Λ3 = {1}.
(i) For K = 3, v(3, 3, 1; q) = 0.

(ii) For K = 2, h1
1(x) = (γ + 1)x− 1, h1

2(x) = − x

γ + 2
,

x∗
3 = x̂∗

1 =
γ + 2

γ2 + 3γ + 3
, y∗3 =

1

γ2 + 3γ + 3
, v(3, 2, 1; q) = − 1

γ2 + 3γ + 3
.

(iii) For K = 1, h1
1(x) = (γ + 1)x− 1, h1

2(x) = −γ + 1

γ + 2
x− 1

γ + 2
,

x∗
3 = x̂∗

1 =
1

γ + 3
, y∗3 =

1

γ + 3
, v(3, 1, 1; q) = − 2

γ + 3
.
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