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Abstract Search theory has been a major theme in Operations Research. This paper deals with a two-
person zero-sum search game, called search allocation game (SAG), with a searcher and a target as players.
In the SAG, the searcher distributes his searching resource in a search space to detect the target while
the target moves to evade the searcher. Practical searching resource has a variety of properties on their
effects and constraints. A flare fired by a drifting person in the water keeps its brightness within a limited
range during some time. Namely, the flare has the property of long-distance effectiveness and temporal
durability. There have been so far few researches focusing on the property of searching resource. From a
general discussion about the property of searching resource, we notice that linear expressions of variables
denoting the resource are crucial to formulate the SAG. In this paper, we propose two linear programming
formulations to solve the SAG with linear expressions concerning the effect and the constraints of searching
resource and to derive optimal strategies of the searcher and the target.
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1. Introduction

Search theory has been a major theme in Operations Research. This paper deals with a
two-person zero-sum search game, called search allocation game (SAG), with a searcher and
a target as players. In the SAG, the searcher distributes his searching resource in a search
space to detect the target while the target moves to evade the searcher. Practical searching
resource has a variety of properties on their effects and constraints. A flare fired by a drifting
person in the water keeps its brightness within a limited range during some time. Namely,
the flare has the property of long-distance effectiveness and temporal durability. There have
been so far few researches focusing on the property of searching resource. From a general
discussion about the property of searching resource, we notice that linear expressions of
variables denoting the resource are crucial to formulate the SAG. In this paper, we propose
two linear programming formulations to solve the SAG with linear expressions concerning
the effect and the constraints of searching resource and to derive optimal strategies of the
searcher and the target.

We are going to survey the past researches on the search problems. Search problems
involve two decision makers: a searcher and a searched object or, a ‘target’. In the general
search, the searcher uses his searching resource to detect the target. Koopman [23] first
discussed a search problem to find an optimal distribution of searching resource. Since
then, search theory has been a major theme in Operations Research. Koopman’s research
also motivated the so-called resource allocation problem [16]. de Guenin [8] generalized
Koopman’s model to an optimal distribution problem of continuous searching resource.
Kadane [20] dealt with an optimal distribution of discrete searching resource. In these
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problems, the target was assumed to be stationary. It was natural, in ongoing research, that
the stationary target was replaced with a moving target. The first research on the moving
target was done by Pollock [26], who discussed an optimal search for a target moving between
two cells. Dobbie [5], Hellman [9], Iida [17] and Kan [21] developed similar search models.
Stone [27] devoted himself to precise mathematical formulations for a variety of search
problems and gathered his results in a book. Brown [1] developed an algorithm to optimize
the distribution of continuously divisible searching resource with respect to the detection
probability of the target. Washburn [30] refined Brown’s method for an optimal distribution
of discrete resource. Their research were generalized by Stromquist and Stone [28].

The search problems mentioned above theoretically belong to the convex programming
problem, or the global optimization problem, which is concerned with the one-sided decision
making of the searcher. In those problems, participants were given the probability law
on the distribution of stationary target or the choice of paths by the moving target as
prior information. Those one-sided problems progressed to two-sided problems, i.e. search
games, with the other decision maker, the target. In almost all search games, the target
was assumed to take the moving strategy, as done in one-sided problems. The search game
is classified in two ways [7]: search allocation game (SAG), or search-and-evasion game
(SAEG), depending on whether the searcher’s strategy is the distribution of the searching
resource or the moving strategy, respectively. The SAEG model looks easy to understand,
and there are many papers, e.g. Danskin [4], Nakai [24] and Kikuta [22], for the model.
Washburn [29] discussed a multi-stage game with the traveling time of the searcher as payoff,
in which each player decides his next position after being informed of his enemy’s current
position. Eagle and Washburn [6] dealt with a one-stage game, the payoff of which is the
total reward calculated from a sequence of players’ positions.

Many efforts also have been expended on the SAG. Nakai [25] and Iida et al. [19] are
concerned with SAGs with stationary targets, and Hohzaki and Iida’s works [12, 18] are
the SAG models with moving targets. Especially, Hohzaki and Iida [13] proposed a general
method to find an optimal strategy for a convex game of the SAGs. After then, practical
conditions or constraints were introduced as assumptions on the target motion, and the
SAG models were made more realistic, which brings the models more precision, and more
complex solutions. As one example of those complex models, Hohzaki and Washburn [15]
introduced energy constraint on the target motion in a SAG defined on a continuous search
space. Hohzaki et al. [14] developed a method to solve a SAG with energy constraint in a
discrete space, and Hohzaki [10] elucidated a relation between two types of SAGs defined
on a continuous space and on a discrete one.

Reviewing past research about the SAG, we notice that almost all researches assume
comparatively simple type of searching resource. Only Dambreville and Le Cadre [3] con-
sidered several constraints on the amount of resource. They characterize searching resource
by some linear constraints. However, in almost all past researches, including Dambreville
and Le Cadre’s work, constraints are handled just on the amount of resource. Practical
searching resource has a variety of properties on its effects and constraints. One of some
examples is the flare fired by a drifting person in the water, as I mentioned at the begin-
ning of this section. We can say that the flare is the searching resource with the property of
long-distance effectiveness and temporal durability. Many researches, however, neglect these
properties of searching resource so far. Only exception is Hohzaki [11], which takes account
of concrete attributes of searching resource. When we distill general properties from those
practical resources, we notice that linear expressions of variables denoting the searching
resource are the key to formulate the SAG with the practical attributes of resource. This
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paper aims to construct a general model for such a SAG and to propose a general method
to solve it, considering the linear effects and linear constraints of searching resource.

In the next section, we explain a concrete example of our SAG for comprehensibility, and
then describe a general model of the SAG. In Section 3, we derive a linear programming for-
mulation as a methodology for an optimal solution. In Section 4, we point out a shortcoming
of the proposed method and generate an additional method to find optimal strategies of the
searcher and the target. Using numerical examples, we analyze how sophisticatedly optimal
strategies of players are generated in a practical search game on a two-dimensional plane
and compare proposed methods for solution by some numerical examples in Section 5.

2. Modeling and Formulation

Here we discuss a search game in a general way, where a searcher and a target participate
as two players. However we review the mathematical model of Hohzaki [11] to illustrate
one example of the search game for comprehensibility before the general discussion. In a
search space consisting of time and geographic space, the searcher distributes his searching
resource to detect the target, while the target moves to evade the searcher. Effects of
searching resource last during some time, and reach a great distance from the resource’s
dropped point; that is, the searching resource has durability and reachability. Here is a
model of this search problem.

(A1) A search space consists of a discrete geographic cell space K = {1, · · · , K} and a
discrete time space T = {1, · · · , T}. The space is denoted by K × T .

(A2) The target chooses a path running across the search space. A path ω goes through
cell ω(t) ∈ K at time t. A set of all target paths is denoted by Ω.

(A3) The searcher distributes his searching resource in the search space. His distribution
strategy is denoted by ϕ = {ϕ(i, t), i ∈ K, t ∈ T }, where ϕ(i, t) ∈ R is the
nonnegative amount of resource to be distributed in cell i at time t. The effectiveness
of the resource lasts for time tc after the time it is dropped, and it expands to an area
A(i) ⊆ K away from its dropped point i, although the intensity of the effectiveness
attenuates depending on the distance from the point i. The rate of attenuation is
denoted by β(i, j). As an example of the rate, we might as well assume that i ∈ A(i)
and β(i, i) = 1 for any cell i but β(i, j) ≤ 1 for any other cell j ∈ A(i) if it is getting
smaller at the longer distance.

The searcher can begin to distribute his resource from time τ and then we denote a
time period available for searching by T̂ = {τ, τ + 1, · · · , T}. Two constraints are
assumed on the amount of searching resource: upper bound at each time, and the
total amount over the entire time, that is,

(a) Upper bound at each time:
∑

i∈K

ϕ(i, t) ≤ Φ(t), t ∈ T̂ , (1)

(b) Total amount:
T∑

t=τ

∑

i∈K

ϕ(i, t) ≤ M. (2)

(A4) For a target path ω and a distribution plan of searching resource ϕ, the searcher
can detect the target with probability 1− exp(−g(ϕ, ω)), where g(ϕ, ω) is a weighted
amount of effective resources accumulated over path ω. We weight effective resources
accumulated in cell i with αi. On detection of the target, the searcher wins reward 1
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but the target loses the same. The searcher gets nothing when he cannot detect the
target. The searcher’s reward defines the payoff of the game.

We name this model Model A. From Assumption (A3) and (A4), the weighted number
g(ϕ, ω) is calculated as follows. Please note that the detection of the target staying in cell
i = ω(t) at time t is affected by all the resources allocated in an area given by A∗(i) ≡
{j | i ∈ A(j)} and during a time period from max{τ, t − tc} to t.

g(ϕ, ω) =
∑

t∈
c
T

αω(t)

t∑

ξ=max{τ,t−tc}

∑

j∈A∗(ω(t))

β(j, ω(t))ϕ(j, ξ)

=
T∑

ξ=τ

min{ξ+tc,T}∑

t=ξ

∑

j∈A∗(ω(t))

αω(t)β(j, ω(t))ϕ(j, ξ)

=
T∑

ξ=τ

∑

j∈K

min{ξ+tc,T}∑

t=ξ

δj∈A∗(ω(t))αω(t)β(j, ω(t))ϕ(j, ξ), (3)

where δj∈A∗(ω(t)) is a kind of the Kronecker’s delta defined as 1 if j ∈ A∗(ω(t)) and 0
otherwise. Now we have the payoff of the game, W (ϕ, ω), from Assumption (A4) and
Equation (3).

W (ϕ, ω) = 1 − exp



−
∑

t∈
c
T

αω(t)

t∑

ξ=max{τ,t−tc}

∑

j∈A∗(ω(t))

β(j, ω(t))ϕ(j, ξ)



 . (4)

We have so far discussed the search game with durable and reachable searching resource,
and we can see that the payoff of the game is given by a function of a linear expression of
variable ϕ(·), as in Equation (4). We also must note that constraints on this variable are
linear, as seen in Equations (1) and (2). From here we will deal with a generalized search
game with some linear expressions of searching resource in its constraints and the payoff of
the game, and we will develop a solution method for an equilibrium point. Let us consider
a two-person zero-sum game defined in an abstract finite discrete space X. We name the
following model Model G.

(G1) A target moves in a search space X. His pure strategy is to choose one path among
a finite set of paths Ω, which is defined as a subset of X.

(G2) A searcher distributes his searching resources. We denote his strategy by ϕ = {ϕ(x),

x ∈ X} ∈ R
X , which is a set of continuous variables defined on X. On a strategy

ϕ, there are L linear constraints ak · ϕ ≤ Φk, k ∈ L ≡ {1, · · · , L} and ϕ ≥ 0, where
ak · ϕ is an inner product between two vectors ak and ϕ with dimension |X|.

(G3) The payoff is given by R(ϕ, ω) = f(bω · ϕ) depending on a searcher’s strategy ϕ and
a target strategy ω ∈ Ω. The payoff R represents the total reward the searcher gets
in the search operation. The function f(y) is monotone-increasing and concave for

y ∈ R. bω ∈ R
X is a parameter defined on X and depends on path ω. bω(x)

indicates an effectiveness of resource ϕ(x) to the payoff.

The searcher is a maximizer who desires to maximize the payoff, and the target is a
minimizer who wishes to minimize it.
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Here, as a simple example, let us take a basic search game without durable or reachable
searching resource, which have been often discussed in Search Theory in the past. The basic
assumptions are the same as Assumption (A1) ∼ (A4), but they are made by simplifying
Assumption (A3) and (A4) like this: No durability and no reachability of searching resource
leads us to a simpler function g(ϕ, ω) =

∑
t∈

c
T

αω(t)ϕ(ω(t), t) and we assume only upper

bound constraint (1) but not (2) on searching resource. This model is an example generated
from the general model (G1) ∼ (G3) by setting parameters as follows. Let a search space X

be K×T . A target path and a searcher’s strategy are defined by ω = {(ω(t), t) ∈ X, t ∈ T }

and ϕ = {ϕ(i, t), (i, t) ∈ K × T̂ }. For ϕ and ω, payoff R(ϕ, ω) is given by an inner product
of bω and ϕ, y = bω ·ϕ, and function f(y) = 1−exp(−y), where bω(i, t) is set as being αi for

i = ω(t), ∀t ∈ T̂ and 0 otherwise. Feasibility conditions on searching resource are given by

ak · ϕ ≤ Φk, k ∈ T̂ using L = T̂ , ak(i, t) = {1(for i ∈ K, t = k), 0 (otherwise)}, k ∈ T̂

and Φk = Φ(k), k ∈ T̂ .
We name the above model Model Basic. Model A with Assumption (A1) ∼ (A4) is

also another concrete example of a general model G, of course. Dambreville and Le Cadre
[2] illustrate an interesting attribute of searching resource, i.e. renewability. If available
resource is renewed up to Φ every two consecutive time points, we can represent the condition
by linear constraints:

∑
i∈K(ϕ(i, t) + ϕ(i, t + 1)) ≤ Φ, t = 1, 3, 5, · · ·.

3. Equilibrium Point

Here we develop a method to find an equilibrium point for Model G with general assumptions
(G1) ∼ (G3). We consider a mixed strategy for the target. It can be denoted by π =
{π(ω), ω ∈ Ω}, where π(ω) is the probability that the target chooses a path ω. A feasibility
region for π is

Π = {π(ω) |
∑

ω∈Ω

π(ω) = 1, π(ω) ≥ 0, ω ∈ Ω}. (5)

An expected payoff R(ϕ, π) =
∑

ω π(ω)R(ϕ, ω) is linear for π and concave for ϕ. That is why
we are sure that a minimax value of the expected payoff coincides with its maximin value,
that is, there exists an equilibrium point, as Hohzaki [13] shows that there is an equilibrium
point with a pure strategy of the searcher, ϕ, and a mixed strategy of the target, π, when the
payoff is linear for π and concave for ϕ. From now, we focus on the derivation of an optimal
mixed strategy of the target and an optimal pure strategy of the searcher. A feasible region
for a searcher’s strategy ϕ is given by

Ψ = {ϕ | ak · ϕ ≤ Φk, k ∈ L, ϕ(x) ≥ 0, x ∈ X}. (6)

Taking account of the region (5) and the monotonic increasingness of the function f(·), we
can transform the maximin optimization problem as follows.

max
ϕ∈Ψ

min
π∈Π

R(ϕ, π) = max
ϕ∈Ψ

min
ω∈Ω

R(ϕ, ω) = max
ϕ∈Ψ

min
ω∈Ω

f(bω · ϕ) = f(max
ϕ∈Ψ

min
ω∈Ω

bω · ϕ).

An optimization problem lying in parentheses in the last expression is solved by the following
linear programming problem.

GS : max
ϕ

η

s.t. bω · ϕ ≥ η, ω ∈ Ω (7)

ak · ϕ ≤ Φk, k ∈ L (8)

ϕ(x) ≥ 0, x ∈ X.
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From the above formulation, we can find an optimal strategy of the searcher ϕ∗ = {ϕ∗(x), x ∈
X} and calculate a maximin value of R(ϕ, π) by f(η∗) using an optimal value of (GS), η∗.
We have to note that problem (GS) is nothing but a maximin problem for a redefined
expected payoff R(ϕ, π) =

∑
ω π(ω)bω · ϕ. That is why from now we take this bilinear

expression of variables π and ϕ as the expected payoff.
If we set dual variables µ(ω) and νk corresponding to conditions (7) and (8), respectively,

we have the following dual problem to (GS).

DS : min
µ(ω),νk

∑

k∈L

Φkνk

s.t.
∑

ω∈Ω

µ(ω) = 1 (9)

µ(ω) ≥ 0, ω ∈ Ω (10)

−
∑

ω∈Ω

bω(x)µ(ω) +
∑

k∈L

ak(x)νk ≥ 0, x ∈ X

νk ≥ 0, k ∈ L.

We notice that conditions (9) and (10) are the same as those in Equation (5). Really we
can prove that optimal µ(ω) gives an optimal mixed strategy of the target π∗(ω) as follows.

A maximization problem of the expected payoff is

max
ϕ

∑

ω∈Ω

π(ω)bω · ϕ s.t. ak · ϕ ≤ Φk, k ∈ L, ϕ(x) ≥ 0, x ∈ X.

As a dual problem to the above, we have the following formulation, the optimal value of
which is the same as that of the primal problem.

DT : min
ǫk

∑

k∈L

Φkǫk s.t.
∑

k∈L

ak(x)ǫk ≥
∑

ω∈Ω

π(ω)bω(x), x ∈ X, ǫk ≥ 0, k ∈ L.

To find a minimax value of the expected payoff, let us minimize further the value of problem
(DT ) with respect to π(ω) to get

GT : min
π(ω),ǫk

∑

k∈L

Φkǫk

s.t.
∑

k∈L

ak(x)ǫk −
∑

ω∈Ω

π(ω)bω(x) ≥ 0, x ∈ X (11)

ǫk ≥ 0, k ∈ L (12)∑

ω∈Ω

π(ω) = 1 (13)

π(ω) ≥ 0, ω ∈ Ω. (14)

After comparing problems (GT ) and (DS), we can see that π(ω) and ǫk are equivalent to
µ(ω) and νk, respectively. We can state our results as a theorem.

Theorem 1. An optimal strategy of the searcher ϕ∗(x) is given as a solution of Problem
(GS) and an optimal strategy of the target π∗(ω) is given as an optimal dual variable cor-
responding to condition (7). On the other hand, Problem (GT ) gives us an optimal target
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strategy π∗(ω) as its optimal solution and an optimal dual variable to condition (11) brings
us an optimal searcher strategy ϕ∗(x).

We can calculate the value of the game by f(η∗) using an optimal value η∗ of (GS) or
(GT ).

In Table 1, we list the parameter setting of Model G when we apply the model to Model
Basic and Model A. In the last row of the table, we use notation

γit(π) ≡

min{t+tc,T}∑

ξ=t

∑

j∈A(i)




∑

ω∈Ωjξ

π(ω)



 αj β(i, j) (15)

and Ωjξ ≡ {ω ∈ Ω | ω(ξ) = j} which indicates a set of target paths running through cell j

at time ξ.
Table 1: Parameter setting for Model Basic and Model A

Model G Model Basic Model A

L T̂ T̂ ∪ {T + 1}

X K × T K × T

x ∈ X (i, t) ∈ K × T (i, t) ∈ K × T

ak(x) for ∀t ∈ T̂ , for ∀t ∈ T̂ ,

ak(i, t) =

{
1(for i ∈ K, k = t)
0(othewise)

ak(i, t) =

{
1 (for i ∈ K, k = t)
0 (othewise)

aT+1(i, t) = 1, ∀(i, t) ∈ K × T̂

bω(x) for ∀t ∈ T̂ , for ∀t ∈ T̂ , bω(i, t)

bω(i, t) =

{
αi (for i = ω(t))
0 (otherwise)

=

min{t+tc,T}∑

ξ=t

δi∈A∗(ω(ξ))αω(ξ)β(i, ω(ξ))

Φk, k ∈ L Φk = Φ(k), k ∈ T̂ Φk = Φ(k), k ∈ T̂ , ΦT+1 = M∑

k∈L

ak(x)ǫk ǫt −
∑

ω∈Ωit

π(ω)αi ≥ 0 ǫt + ǫT+1 − γit(π) ≥ 0

−
∑

ω∈Ω

π(ω)bω(x) ≥ 0 for x = (i, t) ∈ K × T̂ for x = (i, t) ∈ K × T̂

Using expressions in the last row, let us write down Problem (GT ) for Model Basic.
Condition (12) is not necessarily required because ǫk becomes nonnegative from other con-
ditions.

P T
B : min

π,ǫ

T∑

ξ=τ

Φ(ξ) ǫξ

s.t. αi

∑

ω∈Ωit

π(ω) ≤ ǫt, i ∈ K, t ∈ T̂ ,
∑

ω∈Ω

π(ω) = 1, π(ω) ≥ 0, ω ∈ Ω.

Applying Table 1 to Model A, we obtain the following problem.

P T
A : min

π,ǫ

∑

ξ∈
c
T

Φ(ξ)ǫξ + MǫT+1

s.t.

min{t+tc,T}∑

ξ=t

∑

j∈A(i)




∑

ω∈Ωjξ

π(ω)



 αj β(i, j) ≤ ǫt + ǫT+1, i ∈ K, t ∈ T̂

ǫt ≥ 0, t ∈ T̂ ∪ {T + 1},
∑

ω∈Ω

π(ω) = 1, π(ω) ≥ 0, ω ∈ Ω.
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4. Another Formulation Explicitly Involving Path Constraints

In Assumption (G1) of Model G and Assumption (A2) of Model A, we assume that the
target paths Ω are given in advance and don’t give any constraint on the target path,
explicitly. No constraint gives Problem (GS) and (GT ) flexibilities to make these problems
suitable to some special cases of feasible paths by adding concrete path constraints and
materializing Ω if necessary. However in terms of the size of Ω, we cannot say that these
problem formulations are practical or feasible for the large size of the search space X or
K × T . For example, if there is no constraint on Ω in the finite search space K × T of

Assumption (A1), we can count the number of paths up to |K||T | and the number would be
too huge to solve even the linear programming problem such as (GS) or (GT ). To cope with
this computational difficulty, in this section, we adopt another type of target strategy, say
existence probability and transition probability, and discuss another formulation without
enumerating target paths.

First of all, let us begin with assuming some concrete conditions on the target path in
a search space X = K × T of a geographic space K and time space T . For the target, we
provide a set of attributes to represent his state. We itemize the full specification of a new
model with a linear form of payoff, as follows. The linear payoff is essentially equivalent to
a concave and monotone increasing payoff, as stated before.

(C1) A search space consists of a finite discrete time space T = {1, · · · , T} and a finite
discrete geographic space Kt, which varies depending on time t ∈ T .

(C2) A target strategy is to choose one path among a set of feasible paths, Ω, running
through the space. On a path ω ∈ Ω, he is in cell ω(t) ∈ Kt at time t and at the same
time he must be in a state s among a set St. From a state (i, t, s), which represents
being in cell i at time t with attribute s, the target can move to only a set of cells
B(i, t, s) at the next time t + 1. If he moves to cell j ∈ B(i, t, s), his current attribute
s changes to an attribute Γ(i, t, s, j) at time t+1. Equation u = Γ(i, t, s, j) is assumed
to have a one-to-one correspondence between u and s for any i, t and j.

(C3) A searcher strategy is to distribute his searching resource in the search space. A
strategy is denoted by ϕ = {ϕ(i, t), i ∈ Kt, t ∈ T }, where ϕ(i, t) is the amount of
resource to be allocated in cell i at time t. On ϕ, there are L linear constraints
al · ϕ ≤ Φl, l ∈ L ≡ {1, · · · , L} and ϕ ≥ 0, where al · ϕ is an inner product∑

t∈T

∑
i∈Kt

al(i, t)ϕ(i, t).

(C4) A searcher strategy ϕ and a target strategy ω yield a payoff R(ϕ, ω) = bω · ϕ. An
element bω(i, t) of a vector bω is determined by a sum of values c(i, ω(ξ), ξ) with respect
to ω(ξ) over an area of cells A(i, ξ) while time index ξ varies through a time period
T (t) ⊆ T with time base t, that is,

bω(i, t) =
∑

ξ∈T (t)

δω(ξ)∈A(i,ξ)c(i, ω(ξ), ξ),

where δω(ξ)∈A(i,ξ) is 1 if ω(ξ) ∈ A(i, ξ) and 0 otherwise. Time period T (t) is assumed
to contain its time base t, that is, t ∈ T (t). Area A(i, ξ) contains its cell base i,
i ∈ A(i, ξ), and it is set as a subset of Kξ, that is, A(i, ξ) ⊆ Kξ.

The searcher is a maximizer who wants to maximize the payoff and the target is a
minimizer with his desire to minimize it.

We can think of the moving energy of the target as an example of the attribute St in
(C2). The possession of much energy would give the target high mobility and his residual
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energy would be getting smaller while moving. Coefficient c(i, ω(ξ), ξ) in (C4) represents
an element of influence by searching resource on the payoff R(ϕ, ω), as we can see from
Equation (3) in terms of the long-distance effectiveness and temporal durability of resource.

We already have developed a formulation for the value of the game in Section 3. We can
begin our discussion from the formulation (GT ). We are going to redefine a strategy of the
target and rewrite the formulation (GT ) by the newly-defined strategy. We can expand the
second term in condition (11) as follows.

∑

ω∈Ω

π(ω)bω(i, t) =
∑

ω∈Ω

π(ω)
∑

ξ∈T (t)

δω(ξ)∈A(i,ξ)c(i, ω(ξ), ξ)

=
∑

ω∈Ω

π(ω)
∑

ξ∈T (t)

∑

k∈A(i,ξ)

δkω(ξ)c(i, k, ξ) =
∑

ξ∈T (t)

∑

k∈A(i,ξ)

(
∑

ω∈Ω

π(ω)δkω(ξ)

)
c(i, k, ξ). (16)

In the above,
∑

ω∈Ω π(ω)δkω(ξ) is a sum of target probabilities gathering in cell k at time ξ.
This is one of reasons that we adopt the following variables as a target strategy instead of
choosing paths.

We represent a state of the target by a triplet (i, t, s), which indicates that the target
is in cell i at time t with attribute s. Let q(i, t, s) be the probability that the target is in
state (i, t, s) and v(i, j, t, s) be the probability that the target is in state (i, t, s) and it moves
to cell j at next time t + 1. Using these new variables, we can replace

∑
ω∈Ω π(ω)δkω(ξ)

with
∑

s∈Sξ
q(k, ξ, s). By variables q(·) and v(·), feasibility conditions (13) and (14) can

be rewritten in some expressions, which is referred to as so-called the conservation law of
probability flows.

CT : min
q,v,ǫk

∑

l∈L

Φlǫl

s.t.
∑

l∈L

al(i, t)ǫk −
∑

ξ∈T (t)

∑

k∈A(i,ξ)

∑

s∈Sξ

q(k, ξ, s)c(i, k, ξ) ≥ 0, i ∈ Kt, t ∈ T (17)

ǫl ≥ 0, l ∈ L

q(i, t, s) =
∑

j∈B(i,t,s)

v(i, j, t, s), i ∈ Kt, s ∈ St, t = 1, · · · , T − 1 (18)

q(i, t, s) =
∑

j∈B∗(i,t,s)

v(j, i, t − 1, Γ∗(j, i, t, s)), i ∈ Kt, s ∈ St, t = 2, · · · , T (19)

∑

i∈Kt

∑

s∈St

q(i, t, s) = 1, t ∈ T (20)

v(i, j, t, e) ≥ 0, i ∈ Kt, s ∈ St, j ∈ B(i, t, s), t = 1, · · · , T − 1. (21)

Γ∗(j, i, t, s) is an inverse function obtained by solving an equation s = Γ(j, t − 1, u, i) with
respect to u. It indicates a target attribute at time t−1, with which the target is transferable
to state (i, t, s) from cell j. B∗(i, t, s) indicates a set of cells, from which the target can move
to state (i, t, s) and it is an inverse function of B(·), defined by

B∗(i, t, s) ≡ {j ∈ Kt−1 | i ∈ B(j, t − 1, Γ∗(j, i, t, s))} .

Equation (18) is set so as to conserve out-flow probabilities of the target from state (i, t, s)
and Equation (19) is for in-flow probabilities into (i, t, s). Equation (20) secures that the
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10 R. Hohzaki

target should be always somewhere in a geographic area Kt with one of attributes St. The
transition probability v(·) must be nonnegative as shown in condition (21).

Problem (CT ) gives us the value of the game and an optimal target strategy as its
existence probability and transition probability. Next we turn our attention to a procedure
to find an optimal strategy of the searcher. It seems difficult to replace original target path ω

with representative variables q(·), v(·) in Problem (GS). So we give up using the formulation
(GS) directly and try another approach. From Assumption (C4) and the transformation
(16), we can rewrite the expected payoff

∑
ω∈Ω π(ω)bω · ϕ by variable q(·), as follows.

∑

ω∈Ω

π(ω)bω · ϕ =
∑

t∈T

∑

i∈Kt




∑

ξ∈T (t)

∑

k∈A(i,ξ)

∑

s∈Sξ

q(k, ξ, s)c(i, k, ξ)



ϕ(i, t)

=
∑

ξ∈T

∑

k∈Kξ

∑

s∈Sξ




∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)ϕ(i, t)



 q(k, ξ, s), (22)

where T ∗(ξ) ≡ {t ∈ T |ξ ∈ T (t)} and A∗(k, ξ) ≡ {i ∈ Kξ|k ∈ A(i, ξ)}.
We define a new value w(k, ξ, s) as the minimum payoff yielded by an optimal target

path after time ξ when the target starts from state (k, ξ, s). Now that the target is in state
(k, ξ, s) and then q(k, ξ, s) = 1, there occurs payoff

∑
t∈T ∗(ξ)

∑
i∈A∗(k,ξ) c(i, k, ξ)ϕ(i, t) at

the time ξ, as seen from Equation (22). If the target moves to cell j at next time ξ + 1,
the minimum payoff after the time is given by w(j, ξ + 1, Γ(k, ξ, s, j)). Now we have the
following dynamic programming formulation with regard to value w(k, ξ, s).

w(k, ξ, s) = min
j∈B(k,ξ,s)





∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)ϕ(i, t) + w(j, ξ + 1, Γ(k, ξ, s, j))




 ,

k ∈ Kξ, s ∈ Sξ, ξ = 1, · · · , T − 1. (23)

An initial value of w(k, ξ, s) is definitely determined by

w(k, T, s) =
∑

t∈T ∗(T )

∑

i∈A∗(k,T )

c(i, k, T )ϕ(i, t) (24)

at the last time t = T .
Because the minimum payoff over the whole search is min

k∈K1,s∈S1

w(k, 1, s), the
searcher distributes his searching resource so as to maximize the payoff. In consequence,
an optimal searcher strategy ϕ∗ is given by a solution of the following linear programming
problem. The problem also bears a maximin value of the expected payoff.

CS : max
ϕ, ρ

ρ

s.t. ρ ≤ w(k, 1, s), k ∈ K1, s ∈ S1

w(k, ξ, s) ≤
∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)ϕ(i, t) + w(j, ξ + 1, Γ(k, ξ, s, j)),

k ∈ Kξ, j ∈ B(k, ξ, s), s ∈ Sξ, ξ = 1, · · · , T − 1 (25)

w(k, T, s) =
∑

t∈T ∗(T )

∑

i∈A∗(k,T )

c(i, k, T )ϕ(i, t), k ∈ KT , s ∈ ST

∑

t∈T

∑

i∈Kt

al(i, t)ϕ(i, t) ≤ Φl, l ∈ L, ϕ(i, t) ≥ 0, i ∈ Kt, t ∈ T .
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Inequality (25) comes from Equation (23). What we have to do next is to verify the duality
between Problem (CT ) and (CS). The verification would make sure that the minimax value
of the expected payoff is equal to its maximin value and our game can be solved.

If we assign dual variables φ(i, t), y(i, t, s), z(i, t, s) and ζ(t) corresponding to condition
(17), (18), (19) and (20), respectively, in Problem (CT ), we can generate a dual problem as
follows.

CDS
1 : max

∑

t∈T

ζ(t)

s.t.
∑

t∈T

∑

i∈Kt

al(i, t)φ(i, t) ≤ Φl, l ∈ L

−
∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)φ(i, t) − (1 − δξT )y(k, ξ, s) + (1 − δξ1)z(k, ξ, s) + ζ(ξ) = 0,

k ∈ Kξ, s ∈ Sξ, ξ ∈ T (26)

y(k, ξ, s) − z(j, ξ + 1, Γ(k, ξ, s, j)) ≤ 0,

k ∈ Kξ, j ∈ B(k, ξ, s), s ∈ Sξ, ξ = 1, · · · , T − 1 (27)

φ(i, t) ≥ 0, i ∈ Kt, t ∈ T .

In Equation (26), δ·· is the Kronecker’s delta. Since z(·) has not been defined yet for index
ξ = 1, we use a definition z(k, 1, s) ≡ 0. From equation (26), we can replace variable y(·)
with

y(k, ξ, s) = z(k, ξ, s) + ζ(ξ) −
∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)φ(i, t),

k ∈ Kξ, s ∈ Sξ, ξ = 1, · · · , T − 1

and then delete variable y(·) from the formulation. Noting that Equation (26) gives z(k, ξ, s)
a constant value for ξ = T , we can make a new formulation as follows.

CDS
2 : max

∑

t∈T

ζ(t)

s.t. z(k, 1, s) = 0, k ∈ K1, s ∈ S1

z(k, ξ, s) + ζ(ξ) ≤
∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)φ(i, t) + z(j, ξ + 1, Γ(k, ξ, s, j)),

k ∈ Kξ, j ∈ B(k, ξ, s), s ∈ Sξ, ξ = 1, · · · , T − 1

z(k, T, s) + ζ(T ) =
∑

t∈T ∗(T )

∑

i∈A∗(k,T )

c(i, k, T )φ(i, t), k ∈ KT , s ∈ ST

∑

t∈T

∑

i∈Kt

al(i, t)φ(i, t) ≤ Φl, l ∈ L,

φ(i, t) ≥ 0, i ∈ Kt, t ∈ T .

After a substitution of w(k, ξ, s) ≡ z(k, ξ, s) +
∑T

t=ξ ζ(t) for z(·), a new formulation is
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12 R. Hohzaki

generated.

CDS
3 : max

∑

t∈T

ζ(t)

s.t. w(k, 1, s) =
∑

t∈T

ζ(t), k ∈ K1, s ∈ S1 (28)

w(k, ξ, s) ≤
∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)φ(i, t) + w(j, ξ + 1, Γ(k, ξ, s, j)),

k ∈ Kξ, j ∈ B(k, ξ, s), s ∈ Sξ, ξ = 1, · · · , T − 1 (29)

w(k, T, s) =
∑

t∈T ∗(T )

∑

i∈A∗(k,T )

c(i, k, T )φ(i, t), k ∈ KT , s ∈ ST (30)

∑

t∈T

∑

i∈Kt

al(i, t)φ(i, t) ≤ Φl, l ∈ L, φ(i, t) ≥ 0, i ∈ Kt, t ∈ T .

In this problem, the optimization process steps forward as follows. The last value of w(k, ξ, s)
for ξ = T is given by Equation (30). Inequality (29) is regarded as a difference equation
of w(·) between successive time points ξ and ξ + 1. While satisfying this inequality, the
problem is going to increase an initial value w(k, 1, s) for ξ = 1 as large as possible by
manipulating variable φ(·). An optimal value is evidently nonnegative. Really, variables
ζ(t) = 0, φ(i, t) = 0, w(k, ξ, s) = 0 are feasible and they give an objective value zero.
Judging from the optimization procedure, the value of the objective function is affected by
w(k, 1, s), k ∈ K1, s ∈ S1. Problem (CDS

3 ) has a form of {max ρ s.t. w(k, 1, s) = ρ, k ∈
K1, s ∈ S1, · · · }, but we can change it to {max ρ s.t. w(k, 1, s) ≥ ρ, k ∈ K1, s ∈ S1, · · · }
while keeping an optimal value unchanged by the following reason. Let ρ∗ be an optimal
value for the latter problem. For w(k, 1, s) > ρ∗, k ∈ K1, s ∈ S1, we can change the
variable to w(k, 1, s) = ρ∗ because changed variables are still feasible and the optimal value
of the problem still remains same, as seen from the optimization structure of the problem.
On the other hand, the latter problem has a larger optimal value than the former one. Now
we have verified that both problems have the same optimal value and then Problem (CDS

3 )
is equivalent to (CS) and a dual variable φ(i, t) is nothing but a searcher’s strategy ϕ(i, t).
At the same time, we have reached the proof of the duality between two problems (CT ) and
(CS).

5. Numerical Examples

Here we analyze two numerical examples. One is an example of Model A, stated in Section
2, with additional assumptions (C1)∼(C4) in Section 4. The other is taken to compare two
different formulations (GT ) and (CT ).

In the first example, a searcher distributes durable and long-distance reachable resource
to detect a target and the target expends its energy to move. A search space K consists of 37
equilateral hexagons, as Figure 1 shows, and a time space has 8 time points, T = {1, · · · , 8}.
A target starts from cell 1 at time 1 and therefore, in Assumption (C1), a geographic space
Kt is made as K1 = {1} for time 1 and Kt = K for any other time t.

Cells 8, 17, 21, 30, 31 are hazard cells and then the target cannot stay there. The hazard
cell also interrupts the effect of searching resource. Reachable area A(i) in Assumption
(A3) is set such that the effect of searching resource reaches up to 2nd-neighbored cells
from the point where the resources are allocated. “2nd-neighbored” means that a relevant
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cell is placed next to the neighborhood cell from the original point. For example, the
resource in cell 7 has some effects on neighborhood cells 2, 6, 12, 13, 3 and 2nd-neighbored
cells 1, 5, 11, 18, 19, 20, 14, 4, but no effect on cell 9 because the cell is just behind hazard
cell 8. The attenuation rate β(i, j) between cell i and j, supposed in Assumption (A3), is
an instance of parameter c(i, j, t) in Assumption (C4). β(i, j) is assumed to be 1 for just
the same cell j = i, 0.5 for the neighborhood cell and 0.3 for the 2nd-neighbored cell. But
there are some exceptions related to the hazard cell. As stated before, if two cells i and j

are placed just behind a hazard cell each other, searching resource in one cell has no effect
on the other or β(i, j) = 0. If a half part of one cell faces a half of the other cell having
a hazard cell between them, the attenuation rate becomes less than usual or β(i, j) = 0.1.
For example, for cell i = 7, neighborhood cell j = 2, 6, 12, 13, 3 has rate β(i, j) = 0.5 and
2nd-neighbored cell j = 1, 5, 11, 18, 19, 20 has β(i, j) = 0.3, but cell j = 14, 4 has a smaller
rate β(i, j) = 0.1. We also assume that the effect of searching resource lasts during two
time points or tc = 1 in Assumption (A3). We do not assume inequality (2) but assume
(1) as the constraints on the distribution of searching resource. The searcher can use unit
resource at most after time τ = 2, that is, Φ(1) = 0, Φ(2) = · · · = Φ(8) = 1.

11

6

23

17

18

12

29

24 19

13

30

25
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20

35
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7

10

16

2734

32

14
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5 2

15

22
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Figure 1: Search space

As an attribute of the target, mentioned in Assumption (C2), we think of energy. The
target is able to move from his current cell to the region within the distance of 2nd-
neighbored cell. He can go through hazard cells 8, 17, 21, 30, 31 but he cannot move into or
stay in the cells. When the target moves to a neighborhood cell, his energy e decreases by
one and changes to e− 1. After moving to a 2nd-neighbored cell, energy e changes to e− 4.
The motion with the expenditure of more energy than his current energy is not permitted
for the target. It does not require any energy to stay in the same cell so that the target is
forced to continue staying after he exhausts his energy. The target has his initial energy 9 at
time 1. Therefore the set of the target attribute St, stated in Assumption (C2), is S1 = {9}
for initial time t = 1 and St = {0, · · · , 9} for any other time t. The changing of the target
energy explained above prescribes the transition of the target attribute Γ(i, t, e, j).

Using the parameter setting above, we solve problem (CT ) or (CS) to obtain optimal
strategies of the searcher {ϕ(i, t), i ∈ K, t ∈ T } and the target {q(i, t, e), i ∈ K, t ∈ T , e ∈
St}. The optimal solution ϕ(i, t) is shown in Table 2, where a row indicates a cell and a
column a time point. For comprehensibility, we modify the optimal target strategy q(i, t, e)
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14 R. Hohzaki

by q(i, t) ≡
∑

e∈St
q(i, t, e), which means an optimal probability that the target is in cell i

at time t, and we illustrate the modified probabilities in Table 4.

Now let us transform the expression of the expected payoff (22) as follows.

Expected payoff =
∑

ξ∈T

∑

k∈Kξ




∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)ϕ(i, t)




∑

s∈Sξ

q(k, ξ, s)

=
∑

ξ∈T

∑

k∈Kξ




∑

t∈T ∗(ξ)

∑

i∈A∗(k,ξ)

c(i, k, ξ)ϕ(i, t)



 q(k, ξ). (31)

From the above, the accumulated amount of searching resources
∑

t∈T ∗(ξ)

∑
i∈A∗(k,ξ) c(i, k, ξ)

ϕ(i, t) is a weight on the target distribution q(k, ξ) in cell k at time ξ and therefore the
accumulated searching resource gives the target an important pointer about how he should
shape his distribution in the search space. The accumulated resources are shown in Table 3,
placed between Table 2 and 4. The target has too complex constraints on his movement and
his energy expenditure to generate a perfectly optimal formation of his existence probability
q(k, ξ) corresponding to the accumulated resources. We are interested in interpreting how
well the target acts to equilibrate an optimal response to the accumulated resources and
an optimal movement according to his constraints, as well as how optimal the searcher’s
strategy is.

Noting that the target starts from cell 1 with initial energy 9, we can see that the target
reaches every cell at time 6 at the earliest by jumping to a 2nd-neighbored cell once and
walking to a neighborhood cell four times. Taking into account this information, we can
itemize the following characteristics of the optimal strategy of the searcher in Table 2.

(1) Table 2 has a sparse structure, where there are many zeros. Just after some resources
are distributed once in a cell, there is no allocation of resource in the same cell. We
can see such a periodical distribution of searching resource for many cells in Table 2.
Even the sparse structure of Table 2 generates the distribution of accumulated effective
resources which widely covers the possible area of the target as time passes, as shown
in Table 3.

(2) Cell 6 is a key position that the target passes through at the early time. Therefore the
searcher should scatter a lot of resources there at time 2 but the importance of the cell
6 is lost after then.

(3) Cell 12 is a crucial position because the searching resource allocated there has a wide
effect over the central area through the whole time.

(4) In the right half area of the search space, there are two hazard cells 8 and 21. There
are some resources distributed in cell 9 and 15, which cover the right area of the hazard
cells. According to the expanding possible area of the target, the searcher regards cell
9 as an important cell to distribute resource at the early time near 3 and cell 15 as a
key cell at the late time after 5.

(5) Effects of resource in cell 12 cannot reach the lower right area of the search space around
hazard cell 21. Cell 22 and 27 becomes important after time 5 when the target possibly
arrives there.

(6) To cover the upper left area of the search space around hazard cell 17, cell 16 is the
most important, and two cells 10 and 23 play an auxiliary role.
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Table 2: Optimal distribution of searching resource

cells \ time 1 2 3 4 5 6 7 8

1 0 0 0.154 0 0.098 0 0.101
2 0 0 0.026 0 0.042 0 0.017
3 0.105 0 0 0.006 0.009 0 0.006
4 0 0.210 0.047 0.139 0 0.161 0
5 0 0 0.038 0 0.023 0.007 0.027
6 0.262 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0.216 0.019 0.072 0 0.038 0
10 0.105 0 0 0.015 0.006 0.003 0
11 0 0 0 0 0 0 0
12 0.529 0.146 0.405 0 0.320 0.040 0.320
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0.193 0 0.185 0
16 0 0.222 0 0.164 0 0.145 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0.065 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 0.112 0 0.088
23 0 0.206 0.079 0 0.003 0.097 0
24 0 0 0 0 0 0 0
25 0 0 0.050 0 0 0 0
26 0 0 0.117 0 0 0.002 0.041
27 0 0 0 0.128 0.172 0.050 0.157
28 0 0 0 0 0 0 0
29 0 0 0 0.282 0 0.116 0
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0
32 0 0 0 0 0.181 0 0.155
33 0 0 0 0 0 0 0
34 0 0 0 0 0.033 0 0.059
35 0 0 0 0 0 0.142 0.029
36 0 0 0 0 0 0 0
37 0 0 0 0 0 0.015 0

total 1 1 1 1 1 1 1
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Table 3: Distribution of accumulated effective searching resources

cells \ time 1 2 3 4 5 6 7 8

1 0.352 0.396 0.351 0.314 0.237 0.247 0.237
2 0.342 0.449 0.357 0.295 0.243 0.261 0.237
3 0.342 0.512 0.377 0.289 0.239 0.252 0.237
4 0.052 0.370 0.383 0.301 0.253 0.252 0.243
5 0.342 0.452 0.355 0.301 0.241 0.247 0.243
6 0.589 0.662 0.384 0.318 0.253 0.270 0.259
7 0.448 0.542 0.391 0.314 0.239 0.260 0.248
8 0 0 0 0 0 0 0
9 0.010 0.331 0.383 0.301 0.273 0.245 0.238
10 0.342 0.517 0.370 0.292 0.241 0.244 0.240
11 0.448 0.543 0.386 0.314 0.241 0.256 0.248
12 0.723 0.868 0.686 0.546 0.380 0.417 0.422
13 0.353 0.448 0.389 0.399 0.329 0.320 0.320
14 0.159 0.331 0.376 0.362 0.284 0.270 0.278
15 0 0.171 0.201 0.301 0.326 0.308 0.296
16 0.052 0.377 0.376 0.308 0.268 0.244 0.240
17 0 0 0 0 0 0 0
18 0.353 0.447 0.395 0.387 0.254 0.236 0.248
19 0.343 0.416 0.391 0.318 0.215 0.236 0.248
20 0.159 0.267 0.374 0.370 0.342 0.304 0.310
21 0 0 0 0 0 0 0
22 0 0.065 0.070 0.137 0.260 0.238 0.212
23 0.010 0.328 0.411 0.319 0.239 0.242 0.246
24 0.159 0.328 0.390 0.379 0.259 0.235 0.248
25 0.159 0.264 0.379 0.340 0.234 0.236 0.248
26 0.159 0.202 0.339 0.360 0.337 0.316 0.337
27 0 0 0.106 0.234 0.402 0.329 0.320
28 0 0 0.042 0.125 0.280 0.245 0.230
29 0 0.170 0.214 0.376 0.350 0.241 0.255
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0
32 0 0 0.083 0.147 0.331 0.315 0.305
33 0 0 0.055 0.119 0.274 0.243 0.228
34 0 0.062 0.086 0.165 0.175 0.192 0.231
35 0 0 0 0.028 0.063 0.192 0.231
36 0 0 0.012 0.050 0.191 0.245 0.254
37 0 0 0.035 0.074 0.181 0.215 0.218

total 5.895 9.519 9.145 8.881 8.4313 8.354 8.356
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Table 4: Optimal distribution of target

cells \ time 1 2 3 4 5 6 7 8

1 1 0.005 0.153 0.102 0 0.045 0.046 0.047
2 0 0.139 0 0.070 0.054 0.046 0.044 0.048
3 0 0.262 0 0.030 0.101 0.067 0.063 0.061
4 0 0 0.162 0.075 0.011 0.040 0.039 0.039
5 0 0.145 0 0.057 0.033 0.039 0.033 0.033
6 0 0.055 0 0 0.031 0 0 0
7 0 0.078 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0.070 0.053 0.089 0.046 0.051 0.050
10 0 0.282 0 0.054 0.094 0.057 0.060 0.060
11 0 0 0.032 0 0.010 0.020 0 0.001
12 0 0.034 0 0 0 0 0 0
13 0 0 0.022 0 0 0 0 0
14 0 0 0.062 0.046 0 0 0 0
15 0 0 0 0.047 0.111 0.047 0.047 0.047
16 0 0 0.167 0.048 0.048 0.048 0.054 0.055
17 0 0 0 0 0 0 0 0
18 0 0 0 0.032 0 0 0.028 0.021
19 0 0 0.055 0 0.016 0.057 0.040 0.042
20 0 0 0.078 0.037 0 0 0 0
21 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0.078 0.078 0.079
23 0 0 0.060 0.081 0.031 0.039 0.034 0.031
24 0 0 0.105 0.031 0 0 0 0.002
25 0 0 0 0.046 0.078 0.046 0.053 0.054
26 0 0 0.034 0.055 0 0 0 0
27 0 0 0 0.062 0.084 0.062 0.062 0.062
28 0 0 0 0 0 0 0 0
29 0 0 0 0.039 0.120 0.039 0.044 0.039
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0
32 0 0 0 0.034 0.089 0.034 0.034 0.034
33 0 0 0 0 0 0.022 0 0
34 0 0 0 0 0 0.081 0.054 0.062
35 0 0 0 0 0 0.032 0.068 0.065
36 0 0 0 0 0 0.009 0 0
37 0 0 0 0 0 0.046 0.068 0.068

total 1 1 1 1 1 1 1 1
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(7) The lower left area is difficult for the searcher to cover by his searching resource because
there are two hazard cells 30 and 31. The searcher uses three cells 32, 34, 35 for the
distribution of resource after time 6 when the target can arrive the area.

The above way that the searcher distributes his searching resource generates the map of
accumulated searching resources, as seen in Table 3. We pick up some characteristics from
the table.

(1) Because the searcher constantly allocates his searching resource to cell 12, a lot of
accumulated resources are stacked there and they bear the accumulation of effective
resources in neighborhood cells 7 and 11.

(2) At the early time 2, more effective resources are accumulated in the upper area near a
starting point of the target, but at time 3 ∼ 5, the amount of the accumulated resources
is getting larger in cell 9, 14, 16, 23, 24 around hazard cell 8 and 17. In other cells, we
can see that some resources are accumulated, which is caused by the characteristic dis-
tribution of resource featured by Item (4) and (6) described above for Table 2, although
the target has not arrived there yet, as seen from Table 4.

(3) After the target reaches all the search space at time 6, the accumulated resources spread
evenly all over the space. The distribution of the accumulated resources is getting much
even because the minimum amount of accumulated resources becomes larger such as
0.063, 0.192 and 0.212 at time 6, 7 and 8, respectively.

The following characteristics appear in Table 4, as concerns an optimal distribution of the
target.

(1) After the target can reach all over the search space at time 6, the distribution of the
target spreads widely and the probability of the target existence is less than 0.08 every-
where. However the distribution cannot be perfectly uniform because the target that
arrives at the bottom area does not have energy enough to move further and rearrange
his distribution more uniformly.

(2) Cell 12 is a key position that the target goes through at the early time to attain a
wide diffusion over the search space. That is why there are a little probabilities of
target existence in the cell at time 2. At other time, the target always avoids the cell
because a lot of searching resources are always effective there. For cell 6, we can find
similar characteristics at the early time. In these cells 6, 12 and their neighborhood
cells 7, 13, 18, there is almost no probability of target existence because the resource
allocated there has wide effects all over the upper central area without any interruption
by the hazard cells.

(3) After the searcher begins to distribute searching resource in cell 15, 22 and 27 at time
5, their neighbor cells 28, 14, 20, 26 are assigned no probability of the target existence
because effects of the resource distributed in cell 6 and 12 are overlapped.

(4) As mentioned in characteristic (6) and (7) about Table 2, in the left half area of the
search space, the searcher distributes some searching resources in cell 10, 16, 23 at the
early time and in 32, 34, 35 at the late time. In their neighbor cells 24, 36, additional
effects of the resource allocated to cell 12, 27 make the probability of the target existence
zero.

(5) In cells 15, 22, 27, 10, 16, 23, 32, 34 and 35 that we mentioned in Item (3) and (4) above,
there are a little probabilities of the target. Wide effects of resources distributed in those
cells are interrupted by hazard cells and cannot be accumulated there enough to make
the probability of target existence zero. Additionally, if the target avoids those cells
completely, the probability of target existence is biased in smaller area, which would
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help the searcher do more effective search.

We have itemized some characteristics about the optimal strategies of players. As a result,
we can see that attributes of searching resource, such as durability and long-distance reach-
ability, and the constraints on the target motion complexly affect the optimal strategies of
players in the characteristic search space with some hazard cells.

We propose two types of formulations in Section 3 and 4. The most general formulation
is (GT ) corresponding to Model G. From applying the concrete parameter setting to (GT ),
we generate other formulations (P T

B ) and (P T
A ), which correspond to Model Basic and Model

A, respectively. That is why there is no essential difference between those three formulations
(GT ), (P T

B ) and (P T
A ). As stated at the beginning of Section 4, we devise another formulation

(CT ) by using target distribution q(i, t, s) and transition probability v(i, j, t, s) to break the
shortcoming of the formulation (GT ) in terms of the sensitivity for the size of time space.
To figure out the efficiency of (CT ), now let us compare two formulations (GT ) and (CT )
by a numerical example, which is carried out by varying the upper limit of time T in the
example of Figure 1 while keeping any other parameter unchanged such as τ = 2, tc =
1, Φ(t) = 1, t ∈ T̂ and so on.

The example by Figure 1 is made by adding energy constraints on target motion to
Model A. Then we have two methods by formulation (P T

A ) and (CT ) to solve the problem.
For the formulation (P T

A ), we have to prepare an input data file of parameters Ω and Ωjξ,
which we make after enumerating all target paths in Figure 1 by specifying possible cells of
the target at every time t = 1, · · · , T under energy constraints. The number of all target
paths or the cardinality of Ω would respond sensitively to the increase of T to become larger,
as we point out at the beginning of Section 4. In formulation (P T

A ), we use the probability
of selecting paths, {π(ω), ω ∈ Ω}, as variable and then the number of the variables is almost
the same as the cardinality |Ω|. Considering that the constraints of (P T

A ) are simpler than
(CT ), we could easily solve the problem with small Ω by (P T

A ) in the case of small T but
not easily in the case of large T . On the other hand, formulation (CT ) has variables with an
index s indicating energy state beside indices of cell i and time t. The number of variables
increases as T becomes larger but we can imagine that the increasing ratio would be linearly
unlike the variables of (P T

A ).

Table 5 shows the value of the game, abbreviated to ‘val.‘, the number of variables (‘#
of var.’), the number of constraints (‘# of func.’), computational time (‘CPU(second)’), the
size of prepared input data file (‘IDF (Kilobyte)’) and the cardinality |Ω| when we solve each
problem with varying T = 3, · · · , 10 by two formulations. Figures in the upper position are
for (P T

A ) and those in the lower position are for (CT ). We use a personal computer SOTEC
G4170R with Pentium 4 of 1.7 GHz and a mathematical programming software NUOPT
Ver.5.0 (Mathematical Systems Inc.) for the computation. For equal to or larger than T = 6,
the number of target paths becomes too large for NUOPT to expand the formulation (P T

A )
in the concrete, as seen in the column of ‘IDF(Kb)’ or ‘|Ω|. That is why there is no data for
(P T

A ) in the case of T = 6 ∼ 10. We can see that the computational time of (P T
A ) increases

in an exponential ratio for T = 3, 4 and 5 even though (P T
A ) has smaller computational time

for those T s. On the other hand, the numbers of variables and constraints of (CT ) increase
approximately linearly to T and its computational time becomes larger in a little stronger
ratio than linear one. By the sensitivity analysis on T , we can verify that formulation (CT )
is superior to (P T

A ) for the problem with large time space. However, we might note that
(P T

A ) takes a very little time to solve the problem with the small size of path set, as in the
case of T = 3, 4.
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Table 5: Comparison of two formulations

T val. # of var. # of func. CPU(sec) IDF (Kb) |Ω|

3 0.72 110 76 0.7 16 108
42183 1558 19.0 32

4 1.00 1070 113 2.7 32 1067
56244 2336 58.4 32

5 1.31 5535 150 30.5 146 5531
70305 3114 85.6 32

6 – – – 956 28593
1.60 84366 3892 150.2 32

7 – – – – 166232
1.86 98427 4670 235.0 32

8 – – – – 749799
2.11 112488 5448 290.9 32

9 – – – – 2746986
2.35 126549 6226 362.0 32

10 – – – – 9323260
2.60 140610 7004 425.1 32

6. Conclusion

This paper deals with a two-person zero-sum game called search allocation game (SAG),
where a searcher distributes his searching resource to detect a target and the target moves
around to evade the searcher. Practical searching resource has a variety of properties on
its effects and constraints. We take several examples of search games, called Model A and
Model Basic, to illustrate properties of searching resource and distill linear expressions of
resource for the payoff and the constraints. There have been few researches on the SAG
with complex attributes of searching resource. By this reason, we formulate a general model
of the SAG with a linear payoff and linear constraints of searching resource. In result, we
verify that there exists an equilibrium with a pure strategy of the searcher and a mixed
strategy of the target and we give a pair of linear programming formulations, which are
dual to each other, for the solution of the game. The proposed method has flexibility and
generality to be applied to many specialized instances.

We additionally developed another linear programming formulation to handle a large
size of the problem in practical computational time by embedding specific conditions of
the target movement. For the additional formulation, we devise a recursive equation by
a dynamic programming. I could say again that proposed methods are useful for many
applications to practical problems.
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