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Abstract The use of network analysis has increased in various fields. In particular, a lot of attention
has been paid to centrality metrics using shortest paths, which require a comparatively smaller amount of
computation, and the global characteristic features within the network. While theoretical and experimental
progress has enabled greater control over networks, large amounts of computation required for dealing with
large-scale networks is a major hurdle. This research is on high-performance network analysis considering
the memory hierarchy in a computer; it targets extremely important kernel types called shortest paths and
centrality. Our implementation, called NETAL (NETwork Analysis Library), can achieve high efficiency
in parallel processing using many-core processors such as the AMD Opteron 6174, which has the NUMA
architecture. We demonstrated through tests on real-world networks that NETAL is faster than previous
implementations. In the all-pairs shortest paths for the weighted graph USA-road-d.NY.gr (n =264K,
m =734K), our implementation solved the shortest path distance labels in 44.4 seconds and the shortest

paths with multiple predecessors in 411.2 seconds. Compared with the 9th DIMACS benchmark solver, our
implementation is, respectively, 302.7 times and 32.7 times faster. NETAL succeeded in solving the shortest

path distance labels for the USA-road-d.USA.gr (n =24M, m =58M) without preprocessing in 7.75 days.
Numerical results showed that our implementation performance was 432.4 times that of the ∆-stepping
algorithm and 228.9 times that of the 9th DIMACS benchmark solver. Furthermore, while GraphCT took
18 hours to compute the betweenness of web-BerkStan, our implementation computed multiple centrality

metrics (closeness, graph, stress, and betweenness) simultaneously within 1 hour. A performance increase
of 2.4-3.7 times compared with R-MAT graph was confirmed for SSCA#2.

Keywords: Computer, graph theory, information technologies, optimization, shortest
paths

1. Introduction

Theoretical progress in mathematics and advances in information technology have enabled
us to control networks of a much larger scale than before. In particular, the extremely large
scale of current networks used in various fields (healthcare, social-networks, intelligence
gathering, systems biology, electric power grid, modeling, and simulation), has prompted
studies of centrality using shortest paths, to reduce the amount of computations involved in
controls. The well-known centrality metrics that use shortest paths are closeness [20], graph
[14], stress [21], and betweenness [12]. In particular, betweenness is often used for graph
analysis and clustering in networks that do not have coordinates (see, e.g., [6]). Although
centrality metrics using shortest paths use fewer computations than other centrality metrics
do, computation volumes similar to those of all-pairs shortest paths (APSP) are required to
guarantee precision and accuracy. Even in the case of the Brandes’ algorithm [1, 2], which
efficiently uses betweenness, the process of finding the shortest paths is a bottleneck in terms
of performance.
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1.1. Related work

To date, various methods for finding the shortest path, such as Dijkstra’s algorithm [10]
have been studied. During the 9th DIMACS Implementation Challenge, a lively debate was
conducted regarding high-performance point-to-point shortest path (P2PSP) computations,
in which both a source node s and a destination node t are known, for a US road network
with n=24M nodes and m=58M arcs. Because P2PSP computation requires several hours of
advance preprocessing, it is not easy to apply its results to a centrality computation. Imple-
mentations using GPGPU [15, 19] and the multi-source label-correcting algorithm (MSLC)
[22] (an extension of Dijkstra’s algorithm) have been proposed for APSP computations of
graphs at scales of several thousands to hundreds of thousands (n = [212, 217], Figure 1
(a)). These algorithms use parallel computation after dividing APSP into n single-source
shortest path (SSSP) parts and n/β multi-source shortest paths (MSSP) parts, where β is
the number of source nodes. The level-synchronized parallel breadth-first search (LS-BFS),
which does not consider a weighted graph, and the ∆-stepping algorithm (DS) [4, 17], which
considers a weighted graph, are distributed memory algorithms for large-scale graphs with
several billion nodes that are too big to handle on one computer (n = [226, 242], Figure 1
(a)). However, the relevant computing environment uses parallel computers with distributed
memory clusters and massively multithreaded computers with a shared memory. Further-
more, at Super Computing 2010, computer features and their evaluation were proposed
through a graph search function named Graph500 List [24]. The ranking of Graph500 List
is determined by the traversed edges per second (TEPS) ratio of the BFS in the Kronecker
graph, which possesses a scale-free feature generated by the Kronecker product.
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Figure 1: (a) scale of real-world/random graph, (b) scale of real-world graph. The x-axis is
the number of nodes on a log scale n, and y-axis is the number of arcs on a log scale m.

1.2. Our contributions

We propose an efficient multithreaded computation for general computing environments to
calculate the shortest paths on typically sized graphs (n = [218, 225], Figure 1 (b)). Our strat-
egy is to divide the APSP into BFS, SSSP, and MSSP components using certain constraints
(unweighted/weighted, distance labels/multiple predecessors) and to process these compo-
nents in parallel. We implemented three strategies, i.e., n-BFS, n-Dijkstra, and n/β-MSLC
for APSP, and two strategies, i.e., n-BFS, n-Dijkstra for centrality, and named the overall
implementation NETAL (NETwork Analysis Library). The n-BFS and n-Dijkstra parts
obtain all alternative shortest paths that are equal in length on the unweighted graph by
using BFS (multipathBFS) and Dijkstra’s algorithm with a binary heap (multipathSSSP),
and our n/β-MSLC part computes the shortest path distance labels by using the MSLC
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(distanceMSSP). Numerical experiments comparing ours with the previous implementations
show that NETAL is very powerful. A brief summary of our contributions is as follows;

• Efficient multithreaded computation of APSP (or many BFSs, SSSPs, MSSPs) consid-
ering the computer memory hierarchy

– Our strategy is to divide APSP into BFS, SSSP, and MSSP parts by using certain
constraints (unweighted/weighted, distance labels/multiple predecessors), and to
process these parts in parallel.

– Our affinity-setting that considers the NUMA architecture ties each process to each
processor core and each local memory.

• Performance evaluation

1. Several experiments were conducted on evaluations speedup, conflicts between threads
in parallel computation, affinity-setting, variances of execution times.

2. Performance evaluation of two important applications: APSP and centrality

– APSP computation use n-BFS, n-Dijkstra, and n/β-MSLC and was 17.9 times
faster than MLB (the 9th DIMACS reference solver) and 302.7 times faster than
the ∆-stepping algorithm. We obtained the shortest path distance labels of the
US road network by using n/β-MSLC without preprocessing in 7.75 days.

– The multiple centrality (closeness, graph, stress, and betweenness) computation
used n-BFS and n-Dijkstra and was 8.6-33.3 times and 2.4-3.8 times faster than
GraphCT and SSCA#2, respectively.

2. Shortest Paths

First, we will explain the shortest path problems and centrality using shortest paths. The
shortest path problems can have several different constraints, i.e., unweighted or weighted,
single/multiple predecessor(s), or distance labels only.

2.1. Shortest path problems

The foundational problems are the breadth-first search (BFS) and single-source shortest path
(SSSP) problem. These problems are to find shortest paths from a single source node to all
other nodes in given graph. In the SSSP problem, one is given a directed graph G = (V,E),
a non-negative arc weight function ℓ(e)(e ∈ E), and a source node s, and the goal is to find
shortest paths from s to all other nodes v ∈ V in the graph. The shortest paths so obtained
are represented by the distance labels dG(s, v) and predecessors πs(v) for each node v ∈ V .
If each predecessor has a single node πs(v) ∈ V ∪ ∅, we call this problem singlepathSSSP ;
otherwise, i.e., πs(v) = {u ∈ V : (u, v) ∈ E, dG(s, v) = dG(s, u) + ℓ(u, v)}, we call it
multipathSSSP. If the shortest paths do not include predecessors, we call it distanceSSSP.
In contrast, in the BFS, one is given only the directed graph G = (V,E) and source node s,
and the outputs are the distance labels (number of hops) dG(s, v) and predecessors πs(v) of
the shortest paths from s to all other nodes v ∈ V . Similarly for the SSSP, we classify BFS
into singlepathBFS, multipathBFS, and distanceBFS types. To compute SSSP several times
on a graph, these types can be expressed as a multi-source shortest paths (MSSP) problem.
In MSSP problem, one is given a directed graph G = (V,E), a non-negative arc weight
function ℓ(e)(e ∈ E), and a set of β source nodes VS = {s0, s1, ..., sβ−1}, and the goal is to
find the shortest paths for each source node. The so obtained shortest paths are represented
by the distance labels dG(s, v) and predecessors πs(v) from each source node s ∈ VS to
each node v ∈ V . Similarly to the SSSP and BFS, we classify MSSP into singlepathMSSP,
multipathMSSP, and distanceMSSP types. If source nodes are adjacent (or nearly so), we
can compute more efficiently by using the multi-source label-correcting algorithm (MSLC)
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instead of each independent SSSP. The all-pairs shortest paths (APSP) problem is equal
to n BFS, n SSSP problems, or n/β MSSP problems. In APSP problem, one is given a
directed graph G = (V,E), and a non-negative arc weight function ℓ(e)(e ∈ E), and the goal
is to find the shortest path distance labels dG(u, v) and predecessors πu(v) of the shortest
paths between all node pairs (u, v), u, v ∈ V . As is the case with SSSP and BFS, we can
classify APSP into singlepathAPSP, multipathAPSP, and distanceAPSP types.

2.2. Labeling algorithm for BFS, SSSP, and MSSP

It is possible to classify algorithms for solving the shortest path problems into label-setting or
label-correcting algorithms. Both these labeling algorithms update the temporary distance
labels d(s, v) initialized by d(s, v) =∞ from the source node s ∈ V to each node v ∈ V . The
search starts from the given source node s, and when inequality d(s, w) > d(s, v) + ℓ(v, w)
is satisfied for the distance labels for nodes w connected to the selected nodes v for each
iteration, the search is updated to d(s, w) ← d(s, v) + ℓ(v, w). The iteration continues
until there are no more candidate nodes. After the algorithm terminates, the temporary
distance label d(s, v) is equal to the shortest path distance label dG(s, v). Using label-setting
algorithms, the node selected in each iteration is the unexplored node with the minimum
distance label. As a result, each node is selected at most once. In contrast, in the case of
label-correcting algorithms, the selected node is not necessarily the minimum distance label.
As a result, the same node might be selected multiple times. Label-correcting algorithms
are easier to parallelize than label-setting algorithms. Table 1 summarizes the features
of label-setting and label-correcting algorithms in the case of the 256 × 256 grid graph
Square.16.0.gr (number of nodes n = 65536, number of arcs m = 261120) used in the
9th DIMACS challenge. The weight of each arc is a random number in the range [0, 1024]
(maximum arc weight C = 1024 and maximum degree of d = 4). The listed complexity is
the amount of computation required for each problem (BFS, SSSP, and MSSP), and the
CPU time is the time required for sequential execution of APSP on a Intel Xeon X5460
using a single thread.

Table 1: Sequential performance (CPU time in seconds) of APSP (Square.16.0.gr) com-
putation attained by each algorithm on Intel Xeon X5460

implementation algorithm complexity CPU time
BFS (breadth-first search)
BFS [25] naive BFS O(m) 530.99 s
LS-BFS [4] level-synchronized parallel BFS O(m) 117.10 s

Label-setting algorithm (Dijkstra’s algorithm) for SSSP
DIKQ [9] naive Dijkstra’s algorithm O(n2) 12610.28 s
DIKH [9] k-heap (k = 4) O(m logk n) 961.89 s
DIKB [9] Dial’s algorithm O(m + nC) 771.02 s

DIKBD [9] double buckets O(m + n
√

C) 875.69 s
DIKF [9] Fibonacci heaps O(m + n log n) 2310.56 s
MLB [13] multi-level buckets O(m + n log C) 869.23 s

Label-correcting algorithm for SSSP
BFM [9] naive Bellman-Ford-Moore O(nm) 3050.17 s
DS [17] ∆-stepping algorithm O(dn) 1244.08 s

Label-correcting algorithm for MSSP (β source nodes)
MSLC [22] multi-source label correcting algorithm (β = 128) O(βm log n) 118.02 s

Label-setting algorithm

The variations of Dijkstra’s algorithm, i.e., DIKQ and DIKH, DIKB, DIKBD, DIKF, and
MLB, that use a priority queue, are all label-setting algorithms (Table 1). Cherkassky, Gold-
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berg, and Radzik [9] performed theoretical and experimental evaluations of DIKQ, DIKH,
DIKB, DIKDB, and DIKF and showed DIKDB to be effective for most graph instances.
As shown in Table 1, it is not guaranteed that the computation volume is a good estimate
of the actual performance. Goldberg [13] devised MLB that is a simple high-performance
priority-queue based on a RAM model. This algorithm was chosen as the 9th DIMACS
reference implementation [25].

Label-correcting algorithm

BFM, DS, and MSLC are label-correcting algorithms. Madduri and Bader et al. [17]
devised DS, which is a parallel algorithm for large-scale sparse graphs with small diameters.
However, only shared memory-type special computing environments such as Cray XMT
and Cray MTA-2 support threaded parallel computations, and it is difficult to obtain this
functionality with in general computers. Yanagisawa [22] devised MSLC for MSSP. It is
based on Dijkstra’s algorithm, and it computes the MSSP for the set of β adjacent (or
somewhat close) source nodes VS = {s0, s1, ..., sβ−1}. With MSLC, because each node
v ∈ V has a distance label d(s, v) for each source node s ∈ VS, multiple distance labels
d(s, w) can be updated simultaneously for the nodes w ∈ V, (v, w) ∈ E connected to the
selected node v. In such cases, it is possible to apply a priority queue to the set of candidate
nodes in the same manner as that of the Dijkstra’s algorithm, and the priority key can use
the minimum distance label k(v) = min {d(s, v) : s ∈ VS} for the node v from the set of
source nodes VS in question. As it is a natural extension of Dijkstra’s algorithm, it has the
same computation volume as Dijkstra’s algorithm. Yanagisawa confirmed a performance
increase of 3.6-3.9 times in comparison with a single thread MSLC on an Intel Xeon X5460
executing a four-threaded parallel computation. Because the required memory volume is
large when β = 128 and there is a large set of source nodes, it is difficult to use MSLC on
large-scale graphs, as demonstrated by the fact that it uses a 32-bit floating number and
might result in an inaccurate solution.

2.3. All-pairs shortest paths

Applications such as computing centrality metrics are APSPs; however, an APSP is not
directly computable for the instance sizes that are the subject of this research as they
require large amounts of memory. From the results of single-thread computations shown
in Table 1, we can conjecture that turning APSP into BFS, SSSP, and MSSP threaded
parallel computations would be a simple and effective method. However, compared with
simple sequential computing, it is extremely likely that performance will deteriorate because
the computational resource conflicts between threads will be large. We propose a parallel
computation method that avoids such conflicts for the three sub-problems - multipathBFS
(Algorithm 1), multipathSSSP (Algorithm 2), and distanceMSSP (Algorithm 3). We call
the implementations of three sub problems as n-BFS, n-Dijkstra, or n/β-MSLC, where n
is the number of nodes and β is the number of source nodes. In n-Dijkstra, each SSSP is
solved by using Dijkstra’s algorithm with a binary heap. In n/β-MSLC, each MSSP with β
source nodes is solved by using the MSLC with a binary heap.

2.4. Centrality

The centrality of each node is defined by using shortest paths as follows: First, for the
directed graph G = (V,E) and s, t ∈ V , denote dG(s, t) as the shortest (s, t)-path distance
label. Let σst be the number of shortest (s, t)-paths, and let σst(v) be the number of
shortest (s, t)-paths on which v lies. If s = t, let σst = 1, and if v ∈ {s, t}, let σst(v) = 0.
The centrality metrics using shortest paths are called closeness CC , graph CG, stress CS,
and betweenness CB (Table 2). If a graph has an arc weight function ℓ(e), e ∈ E, the
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Algorithm 1 multipathBFS(G, s)

Input: directed graph G = (V, E), source node s
Output: shortest path distance labels dG(s, v), number of shortest paths σs(v), predecessors πs(v),

v ∈ V ; stack S
1: S ← empty stack
2: πs(w)← empty list, w ∈ V
3: σ(s, t)← 0, t ∈ V ; σ(s, t)← 1
4: d(s, t)← −1, t ∈ V ; d(s, s)← 0
5: Q← empty queue; enqueue s→ Q
6: while Q 6= ∅ do
7: dequeue v ← Q; push v → S
8: for all w : (v, w) ∈ E do
9: if d(s, w) < 0 then d(s, w)← d(s, v) + 1; enqueue w ← Q

10: if d(s, w) = d(s, v) + 1 then σ(s, w)← σ(s, w) + σ(s, v); append v → πs(w)
11: end for
12: end while
13: dG(s, t)← d(s, t), t ∈ V

Algorithm 2 multipathSSSP(G, ℓ, s) - Dijkstra’s algorithm with priority queue

Input: directed graph G = (V, E), non-negative arc weighted function ℓ(e) ∈ E, source node s
Output: shortest path distance labels dG(s, v), number of shortest paths σs(v), predecessors πs(v),

v ∈ V ; stack S
1: S ← empty stack
2: πs(w)← empty list, w ∈ V
3: σ(s, t)← 0, t ∈ V ; σ(s, s)← 1
4: d(s, t)←∞, t ∈ V ; d(s, s)← 0
5: Q← empty priority queue; insert s→ Q
6: while Q 6= ∅ do
7: extract v ← Q with minimum d(s, v); push v → S
8: for all w : (v, w) ∈ E do
9: if d(s, w) > d(s, v) + ℓ(v, w) then

10: d(s, w)← d(s, v) + ℓ(v, w); insert w → Q; πs(w)← empty list
11: end if
12: if d(s, w) = d(s, v) + ℓ(v, w) then σ(s, w)← σ(s, w) + σ(s, v); append v → πs(w)
13: end for
14: end while
15: dG(s, t)← d(s, t), t ∈ V

corresponding centrality metrics are called weighted.

Table 2: Centrality metrics using shortest paths

closeness [20] CC(v) =
1∑

t∈V dG(v, t)
graph [14] CG(v) =

1

maxt∈V dG(v, t)

stress [21] CS(v) =
∑

s 6=v 6=t∈V

σst(v) betweenness [12] CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
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Algorithm 3 distanceMSSP(G, ℓ, VS) - multi-source label correcting algorithm (MSLC)

Input: directed graph G = (V, E), non-negative arc weighted function ℓ(e) ∈ E, set of source
nodes VS = {s0, s1, ..., sβ−1}

Output: shortest path distance labels dG(s, v), s ∈ VS , t ∈ V
1: d(v, t)←∞, v ∈ V \VS , t ∈ V ; d(s, t)← 0, s ∈ VS , t ∈ V
2: Q← empty priority queue; insert VS → Q
3: while Q 6= ∅ do
4: extract v ← Q with minimum k(v)
5: for all w : (v, w) ∈ E do
6: updated← false
7: for all s ∈ VS do
8: if d(s, w) > d(s, v) + ℓ(v, w) then d(s, w) = d(s, v) + ℓ(v, w); updated← true
9: end for

10: if updated = true then k(w)← mins∈VS
d(s, w); insert w → Q with k(w)

11: end for
12: end while
13: dG(s, t)← d(s, t), s ∈ VS , t ∈ V

Brandes’ algorithm for betweenness

Brandes proposed in [1, 2] an efficient algorithm for betweenness (Algorithm 4). This
algorithm repeatedly computes a shortest path phase (line 2) and an update phase

(line 3-7) for each node. The shortest path phase computes the predecessor list πs(v) and
the number of shortest paths σ(s, v) for each node v ∈ V from the specified source s,
and the update phase updates the centrality index CB(v) for each node v in the order in
which nodes are separated from the source by using a FILO stack S of the selected node
history. The computational complexity of BFS in which the arc weight is not considered
is O(m), and whereas the complexity of Dijkstra’s algorithm with a binary heap in which
arc weight is considered is O(m log n). The computation volume of the update phase is
O(m). Therefore, as the computation volume is O(nm) for the centrality computation
when arc weight is not considered, and O(nm log n) when arc weight is considered, the
overall performance dependent on selected algorithm for the shortest path phase. Bader et
al. [3] proposed a simple random sampling method for this algorithm. This method only
computes the iterations for all nodes (line.1) for a subset V ′ randomly sampled from the set
of nodes V and obtains an approximate index C ′

B(v) for the gained betweenness index as

C ′
B(v)← |V |

|V ′|
· CB(v),∀v ∈ V .

Algorithm 4 Brandes’ algorithm for (weighted) betweenness CB

Input: directed graph G = (V, E), (non-negative arc weighted function ℓ(e) ∈ E)
Output: CB(v),∀v ∈ V (initialize to 0)
1: for s ∈ V do
2: σ, πs,S ← multipathBFS(G, s) (multipathSSSP(G, s, ℓ))
3: while S 6= ∅ do
4: pop w ← S
5: for v ∈ πs(w) do δB(v)← δB(v) + σ(s,v)

σ(s,w) · (1 + δB(w))

6: if w 6= s then CB(w)← CB(w) + δB(w)
7: end while
8: end for
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Multiple centrality metrics computation

Because the shortest path phase requires the most computation time, the obtained short-
est path should be used to calculate centrality metrics more. Here, we computes simultane-
ously CC , CG, CS, and CB.

Algorithm 5 Multiple centrality metrics computation for (weighted) CC , CG, CS, CB

Input: directed graph G = (V, E), (non-negative arc weighted function ℓ(e) ∈ E)
Output: CC(v), CG(v), CS(v), CB(v), ∀v ∈ V (initialize to 0)
1: for s ∈ V parallel do
2: dG, σ, πs,S ← multipathBFS(G, s) (multipathSSSP(G, s, ℓ))
3: CC(s)← 1

P

t∈V
dG(s,t) ; CG(s)← 1

maxt∈V dG(s,t)

4: while S 6= ∅ do
5: pop w ← S
6: for v ∈ πs(w) do δS(v)← (1 + δS(w)); δB(v)← δB(v) + σ(s,v)

σ(s,w) · (1 + δB(w))

7: if w 6= s then CS(w)← CS(w) + σ(s, w) · δS(w); CB(w)← CB(w) + δB(w)
8: end while
9: end for

3. Fast Implementation Based on Computer Memory Hierarchy

We devised a method of multithreaded computation based on the memory hierarchy. The
method consists of three algorithms: n-BFS, n-Dijkstra, and n/β-MSLC, for APSP in the
case of a directed graph. n-BFS and n-Dijkstra compute multipathBFS and multipathSSSP
n times each, and n/β-MSLC computes distanceMSSP n/β times. First, computational
resource requests were quantified for the labeling algorithm for the partitioned SSSP, and a
suitable algorithm was selected on the basis of the results. We [23] have already implemented
Dijkstra’s algorithm with a binary heap (2-HEAP) that considers memory hierarchy. It
was four times faster than the 9th DIMACS benchmark for the same number of memory
requests. We incorporated 2-HEAP in n-BFS, n-Dijkstra, and n/β-MSLC. Furthermore,
we improved memory referencing through a memory layout that considers the general CPU
architecture and succeeded in improving performance. These implementations operate with
64-bit integers.

3.1. Memory hierarchy of computer

Progress in information technology has made it difficult to separate theoretical and experi-
mental improvements to algorithms. First, we will discuss the memory hierarchy [16] shown
in Figure 2. In the higher layers of this hierarchy, the access speed is high and the memory
capacity is small, whereas in the lower layers, the access speed is low and the memory ca-
pacity is large. In particular, a CPU possesses extremely high-speed memory areas such as
registers, cache memory, and TLB (Translation Look-aside Buffer). Although programs can
be executed through the registers in order to obtain extremely high access speeds, the ca-
pacity of registers is extremely small. Conversely, at more than several gigabytes, the main
memory (RAM) has an extremely large, but its access speed is extremely low compared with
registers. Thus, it is extremely important to appropriately position data by considering the
computation volume and amount of data to be transferred and by effectively using cache
memory between registers and the main memory.
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Figure 2: Computer memory hierarchy

3.2. Bottleneck analysis using resource request collisions

Because of the complexity of the memory hierarchy, the distance between the processor
cores is not fixed. For a 2-way Intel Xeon X5460 (Figure 3), depending on the increasing
order of the distance between the two cores, the memory structure can be divided up into
“different processors,” “(same processor) different L2 caches,” “(same processor) same L2
cache” (Figure 4). The memory paths of the Intel Xeon X5460 are shared in the case
of “different processors,” and the relative bandwidth between the processor and RAM is
half that of a “sequential” processor. In the case of “different L2 caches,” the relative
bandwidth within the processor is half that of “different processors.” Furthermore, because
it shares the L2 cache, the “same L2 cache” uses only half the area and bandwidth of
“different L2 caches.” In other words, as the distance between the processors decreases and
the percentage of shared computational resources increases, performance may decrease as
a result of resource request collisions. This property enables us to specify the bottlenecks
in the memory hierarchy by computing the rate of performance reduction from collisions of
computational resource requests for the “sequential” processor (Table 3). As this bottleneck
analysis runs the same sequential program simultaneously, the data stored in the cache by
one processor cannot be used by another processor, and the number of resource requests is
simply double that of single processor. The numactl library is used to select the executing
processor and core.

Table 3: Bottleneck analysis of the memory hierarchy by considering the rate of performance
reduction due to simultaneous execution

bottleneck different processors different L2 caches same L2 cache

processor ↔ RAM bandwidth down down down
processor inside bandwidth - down down
L2 cache sharing - - down
Arithmetic performance - - -

Table 4 lists the results of the computational resource conflict tests for the labeling
algorithm in the 2-way Intel Xeon X5460. For comparison, we used the SSSP computation in
relation to USA-road-d.USA.gr (n =24M, m =58M), in terms of increase in the percentage
of shared computational resources, performance falls in the order “sequential,” “different
processors,” “different L2 caches,” and “same L2 cache” smallest reduction. DIKH and
DIKF, with the heap-based priority queue, show less of a low performance decline and
higher parallel efficiency in comparison with DIKB, DIKBD, and MLB, which use a bucket-

Copyright c© by ORSJ. Unauthorized reproduction of this article is prohibited.



268 Y. Yasui, K. Fujisawa, K. Goto, N. Kamiyama & M. Takamatsu

Figure 3: 2-way Intel Xeon X5460

RAM

same processor,

different L2 caches
same processor,

same L2 cache

different processors

Figure 4: Two-core combination on 2-way Intel Xeon
X5460

based priority queue. DS has characteristics similar to those of the bucket-based priority
queue. The 2-HEAP [23], which uses a binary heap, was a shorter execution time, which is
a measure of absolute performance, and fewer computational resource conflicts, which is a
measure of relative performance. The memory hierarchy is useful not only for calculating
the shortest path but also for other computations that require a large memory bandwidth.

Table 4: Computational results (CPU time in seconds and performance ratio %) for simul-
taneous tests using two processor cores on a 2-way Intel Xeon X5460

sequential different processors different L2 caches same L2 cache

2-HEAP[23] 5.34 s (± 0.00%) 5.44 s (- 1.93%) 5.62 s (- 5.05%) 6.63 s (-18.94%)
DIKH(k = 4) 7.23 s (± 0.00%) 7.26 s (- 0.41%) 7.59 s (- 4.74%) 8.79 s (-17.75%)
DIKF 15.95 s (± 0.00%) 16.09 s (- 0.87%) 16.56 s (- 3.68%) 18.17 s (-12.22%)
DIKB 4.38 s (± 0.00%) 4.54 s (- 3.52%) 5.01 s (-12.58%) 6.38 s (-31.35%)
DIKBD 4.65 s (± 0.00%) 4.88 s (- 4.71%) 5.25 s (-11.43%) 6.64 s (-29.97%)
MLB 5.69 s (± 0.00%) 5.85 s (- 2.74%) 6.17 s (- 7.78%) 7.73 s (-26.39%)
DS 11.74 s (± 0.00%) 12.06 s (- 2.66%) 12.55 s (- 6.41%) 16.49 s (-28.76%)

Table 5 summarizes the threaded parallel processing performance of SSSP for the road
networks USA-road-d.NY.gr (n =264K, m =734K) and USA-road-d.USA.gr (n =24M,
m =58M). For the sequential implementation, 2-HEAP is at approximately the same level
as MLB, i.e., the 9th DIMACS reference implementation. In contrast, the threaded pro-
cessing gives high efficiency. The four-threaded processing of 2-HEAP enables an ideal
parallelization by avoiding the “same L2 cache” level. In contrast, in eight-threaded pro-
cessing, a performance efficiency deteriorates owing to computational resource conflicts at
the “same L2 cache” level. These are consistent with the results listed in Table 4. As
these implementations output only one shortest path, they must be amended in order to list
multiple shortest paths necessary for the centrality computation and counting the number
of shortest paths.

3.3. Data referencing improvement based on CPU architecture

Processor architectures are transitioning from UMA (Uniform Memory Access), such as Intel
Xeon X5460 (Figure 3), to NUMA (Non-Uniform Memory Access). In case of the NUMA
architecture-based 12-core AMD Opteron 6174 (Figure 5), the each core has a separate
L2 cache, and six cores share an L3 cache. Each processor has a separate memory (local
memory) directly beneath it and is connected to a dedicated memory bus. To reference
memory located under other processors (remote memory), it is necessary to reference the
data via the processor. In this manner, the memory hierarchy becomes more complex in
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Table 5: Parallel performance (CPU time, speedup ratio, and memory requirement) of SSSP
on a 2-way Intel Xeon X5460

USA-road-d.NY.gr USA-road-d.USA.gr

CPU time (speedup ratio) MB CPU time (speedup ratio) MB

2-HEAP(1 threads) 35.69 ms (× 1.00) 10.70 5300.8 ms (× 1.00) 902
2-HEAP(2 threads) 18.02 ms (× 1.98) 14.80 2734.4 ms (× 1.94) 1267
2-HEAP(4 threads) 8.94 ms (× 3.99) 22.99 1451.3 ms (× 3.65) 1998
2-HEAP(8 threads) 4.85 ms (× 7.36) 39.38 1031.7 ms (× 5.14) 3460

MLB 41.53 ms 25.32 5873.0 ms 2169

the NUMA architecture, and as the distance varies between core memories, it is necessary
to consider how best to allocate processing resources to improve computing performance.
However, such an allocation will have to be left as a subject for future research because
current OSs have no functions to allocate the cores efficiently.

Figure 5: NUMA architecture 4-way AMD Opteron 6174

The graph data that is shared and referenced by multiple processor cores and graph data
that is required for the particular work area of each thread are treated differently when per-
forming threaded parallel processing to find the shortest path. For efficient threaded parallel
processing, it is vital to select a memory layout that considers both sorts of graph data.
For the former type, it is possible to reduce the distance to each processor core through
distributed allocation of memory. In the latter, the best arrangement is to consecutively
place the graph data in the core processor’s local memory. We compared the threaded par-
allel processing performance of consecutive placement in local memory, which is the default
objective, with that of memory locations (Figure 6) distributed using the numactl library.
Table 6 summarizes the execution times for 48-threaded parallel processing for APSP of
USA-road-d.NY.gr on a 4-way AMD Opteron 6174. n-Dijkstra yielded only a 4.64% per-
formance improvement, while n-BFS and n/β-MLSC decreased performance by 26.82% and
16.78%, respectively. If data need to be handled in different ways, the implementation tends
to fixate on one way, and this likely leads to a performance decrease.

Table 6: Default memory policy v.s. distribution of memory on a 4-way AMD Opteron 6174
default memory policy “numactl --interleave=all”

performance ratio
CPU time (TEPS ratio) CPU time (TEPS ratio)

n-BFS 346.2 s ( 560.3 MTEPS) 473.2 s ( 410.0 MTEPS) − 26.82 %
n-Dijkstra 517.2 s ( 375.0 MTEPS) 494.4 s ( 392.4 MTEPS) + 4.64 %
n/β-MSLC(β=32) 51.0 s (3805.6 MTEPS) 61.3 s (3167.0 MTEPS) − 16.78 %

We clarified the relationship between the memory location and the referenced processor
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Figure 6: Data layout with “numactl --interleave” on a 4-way AMD Opteron 6174

core. In this experiment, the settings for the memory location and the processor core are
referred to as “〈number of own cores〉×〈number of bindings〉-affinity.” Through this affinity,
the graph data is copied for each binding, and the copy is configured to refer to the bound
core. In other words, the number of bindings is the same as the number of graph data
elements. Figure 7 shows a 48×1-affinity in which one (number of bindings = 1) graph data
is shared by 48 cores. Figure 8 shows a 6×8-affinity in which eight (number of bindings
= 8) graph data are shared by six cores. Here, 6×8-affinity means that eight (number
of bindings = 8) graph data are shared by six cores. Note that the experiment used the
set sched affinity function for allocations the cores.

RAM RAM

G

CPU/Memory affinity

Graph Data

RAMRAM

Figure 7: 48×1-affinity on a 4-way AMD
Opteron 6174

Figure 8: 6×8-affinity on a 4-way AMD
Opteron 6174

Tables 7, 8, and 9 summarize the APSP execution time (speedup ratio; performance
improvement from single thread), TEPS ratio, and the amount of memory used for each
affinity and for each implementation of n-BFS, n-Dijkstra, and n/β-MSLC(β = 32) execut-
ing USA-road-d.NY.gr (n =264K, m =734K). 6×8-affinity, which binds the shared local
memory to a core, performed best for all implementations. 6×8-affinity outperformed 12×4-
affinity because the L3 cache of the AMD Opteron 6174 was shared between each of the six
cores and the cores were connected to a memory bus. On the other hand, 24×1-affinity and
48×1-affinity frequently accessed remote memory and this caused frequent computational
resource request conflicts, and performance decreased owing to affinity settings. Figure 9
summarizes the best and worst cases for the TEPS ratios in Tables 7, 8, and 9. The figure
shows that an appropriate affinity configuration can result in extremely high performance,
and it is necessary to pay attention to discrepancies in performance owing to an erroneous
configuration. With 48-threaded parallel processing, the performance difference between the
best and the worst is 40.93% for n-BFS, 20.50% for n-Dijkstra, and 13.10% for n/β-MSLC.
Figure 10 summarizes the parallel speedup ratios for the best case. Moreover, n-BFS, n-
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Dijkstra, and n/β-MSLC(β = 32) showed near-linear scaling of 35.7 times, 46.2 times, and
43.8 times compared with a single-thread implementation.

Table 7: Parallel performance (CPU time in seconds, TEPS ratio, and memory space in
Mbytes) of n-BFS for APSP (USA-road-d.NY.gr) on a 4-way AMD Opteron 6714

affinity CPU time (speedup ratio) MTEPS MB

sequential default 9449.8 s (× 1.0) 20.5 53.1

12 threads
worst default 821.4 s (×11.5) 236.2 292.2

12× 1 810.4 s (×11.7) 239.4 292.2
best {1, 2} × 8 648.1 s (×14.6) 299.3 398.8

24 threads
default 426.1 s (×22.2) 455.3 553.0

worst 24× 1 500.2 s (×18.9) 387.8 553.0
best 3× 8 353.1 s (×26.8) 549.4 659.6

48 threads
worst default 346.2 s (×27.3) 560.3 1074.6

48× 1 343.1 s (×27.5) 565.4 1074.6
best 6× 8 204.5 s (×46.2) 948.6 1181.2

Table 8: Parallel performance (CPU time in seconds, TEPS ratio, and memory space in
Mbytes) of n-Dijkstra for APSP (USA-road-d.NY.gr) on a 4-way AMD Opteron 6714

affinity CPU time (speedup ratio) MTEPS MB

sequential default 17915.8 s (× 1.0) 10.8 53.1

12 threads
worst default 1804.7 s (× 9.9) 107.5 292.2

12× 1 1613.8 s (×11.1) 120.2 292.2
best {1, 2} × 8 1444.5 s (×12.4) 134.3 398.8

24 threads
default 875.1 s (×20.5) 221.7 553.0

worst 24× 1 910.6 s (×19.7) 213.0 553.0
best 3× 8 776.7 s (×23.1) 249.8 659.6

48 threads
default 517.2 s (×34.6) 375.0 553.0

worst 48× 1 549.6 s (×32.6) 353.0 1074.6
best 6× 8 411.2 s (×43.6) 471.7 1181.2

Table 9: Parallel performance (CPU time in seconds, TEPS ratio, and memory space in
Mbytes) of n/β-MSLC(β = 32) for APSP (USA-road-d.NY.gr) on a 4-way AMD Opteron
6714

affinity CPU time (speedup ratio) MTEPS MB

sequential default 1584.4 s (× 1.0) 122.4 109.8

12 threads
default 159.2 s (×10.0) 1218.5 1036.6

worst 12× 1 170.7 s (× 9.2) 1136.6 1036.6
best {1, 2} × 8 135.6 s (×11.7) 1430.9 1143.2

24 threads
default 80.2 s (×19.8) 2418.6 2047.6

worst 24× 1 94.1 s (×16.8) 2060.8 2047.6
best 3× 8 73.6 s (×21.5) 2634.0 2154.2

48 threads
worst default 51.1 s (×31.0) 3799.9 4069.7

48× 1 51.0 s (×31.1) 3805.6 4069.7
best 6× 8 44.4 s (×35.7) 4372.5 4176.3

Let us now summarize the appropriate number of source nodes β for n/β-MSLC. The
results in Table 10 demonstrate that compared with Yanagisawa’s implementation in which
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Figure 10: Speedup ratio for APSP (USA-road-d.NY.gr) on a 4-way AMD Opteron 6174

the appropriate of β = |VS| is 128, the appropriate value of β in our implementation is
32. Thus, it should be able to handle large-scale graphs. One reason for this increase is
that Yanagisawa [22]’s implementation targets comparatively small graphs because of the
use of a 32-bit floating number, whereas our implementation uses the 64-bit integer data
type for large data. Moreover, Table 10 shows that Yanagisawa’s results, for the priority
queue strategy in the n/β-MSLC, PQ min, which uses the minimum value of the temporary
distances label d(s, v) for each node v ∈ V from each source node s ∈ VS, outperforms
PQ max, which uses the maximum value, or the average value PQ avg.

Now let us look at the variances of three implementations. Figure 11 and Table 11
effectively illustrate the computation variance. For 48-threaded parallel computation with
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Table 10: Parallel performance (CPU time in seconds) of priority queue strategy for the
n/β-MSLC multithreaded computation of APSP (USA-road-d.NY.gr) and the appropriate
value of the source parameter β for a 4-way AMD Opteron 6174

strategy priority queue key k(v) (v ∈ V ) β = 16 β = 32 β = 48

PQ min k(v) = min {d(s, v)|s ∈ VS} 53.4 s 44.4 s 44.6 s

PQ max k(v) = max {d(s, v)|d(s, v) 6=∞, s ∈ VS} 59.2 s 56.4 s 60.9 s

PQ avg k(v) =
∑

s∈VS ,d(s,v) 6=∞ d(s, v) 801.9 s 1241.1 s 1477.1 s

the best affinity, APSP is 100 times faster with affinity setting than without it. A poor
affinity causes resource conflicts and increases the variance.
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Figure 11: CPU time for APSP (USA-road-d.NY.gr) on a 4-way AMD Opteron 6174

Table 11: Variance of CPU time for APSP (USA-road-d.NY.gr) (48-threaded computation)
on a 4-way AMD Opteron 6174

best affinity default (w/o affinity) worst affinity

n-BFS 1.181 138.828 298.304
n-Dijkstra 0.939 287.916 711.513
n/β-MSLC 0.007 1.841 0.572

4. Numerical Experiments

We evaluated the performance of n/β-MSLC, n-Dijkstra, and n-BFS implementations by
conducting numerical tests on APSP and centrality by using a 64-bit integer data type and
the C language. The computer was a 4-way AMD Opteron 6174 with a 2.2 GHz frequency
(12 cores × 4) and 256 GB of RAM. The OS was Fedora 15 (64 bit), and the C compiler
was GCC 4.6.0. In Tables 14 and 15, the data marked with * are the estimated from the
experimental results on APSP, and the data marked with * in Table 17 estimated from
the centrality results. The graph instances used in this test were the road network that
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was the 9th DIMACS [25] target, web graph, communication network, citation network,
a social network which was published by the SNAP project [26], and a synthetic R-MAT
graph [8] which was generated by SSCA#2 [7] (Table 12). The results of the test succeeded
in discovering the exact diameter of web-BerkStan (669 → 714), web-Google (22 → 51),
wiki-Talk (9→ 11), and cit-Patents (22→ 24) (figures in brackets denote the published
estimated values and exact diameters).

Table 12: Graph Instances
instance n (SCALE(n)) m (SCALE(m)) edge factor (m/n) diameter

9th DIMACS instance (weighted)[25]
USA-road-d.NY.gr 264 346 (18.01) 733 846 (19.49) 2.78 720
USA-road-d.LKS.gr 2 758 119 (21.40) 6 885 658 (22.72) 2.50 4127
USA-road-d.USA.gr 23 947 347 (24.51) 58 333 344 (25.80) 2.44 8352*

SNAP instance (unweighted)[26]
web-BerkStan 685 230 (19.39) 7 600 595 (22.86) 11.09 714
web-Google 875 713 (19.74) 5 105 039 (22.28) 5.83 51
Wiki-Talk 2 394 385 (21.19) 5 021 410 (22.26) 2.10 11
cit-Patents 3 774 768 (21.85) 16 518 948 (23.98) 4.38 24
soc-LiveJournal1 4 847 571 (22.21) 68 993 773 (26.04) 14.23 18*

SSCA#2 instance (weighted)[8]
RMAT-SCALE24 16 777 216 (24.00) 134 217 728 (27.00) 8.00 21*

* estimated value

4.1. All-pairs shortest paths

Table 13 summarizes the implementations used for comparison with n-BFS, n-Dijkstra, and
n/β-MSLC for APSP. In addition to the shortest path distance labels, the table includes
the multiple shortest paths and number of shortest paths required for the centrality compu-
tation. n/β-MSLC only computes the distance labels. DS and LS-BFS are not compatible
with the threaded parallel processing of the general computing environments.

Table 13: Implementations for APSP (all-pairs shortest paths) evaluation
implementation algorithm shortest paths computation
NETAL (this paper)
n-BFS breadth-first search (BFS) multipathBFS ×n parallel
n-Dijkstra Dijkstra’s algorithm with binary heap multipathSSSP ×n parallel
n/β-MSLC multi-source label correcting algorithm distanceMSSP ×n/β parallel

other implementations
LS-BFS [4] level-synchronized parallel BFS singlepathBFS ×n sequential
MLB [13] Dijkstra’s algorithm with multi-level buckets singlepathSSSP ×n sequential
DS [17] ∆-stepping algorithm distanceSSSP ×n sequential

9th DIMACS instance

Figure 12 and Table 14 summarize the results for the road network with a large di-
ameter. Our implementation substantially outperforms existing implementations. For the
USA-road-d.NY.gr instance, n-Dijkstra was 32.7 (= 224/6.85) times faster than MLB and
n/β-MSLC(β = 32) was 302.7 (= 224/0.74) times faster. Similar results were obtained for
USA-road-d.LKS.gr. Furthermore, for the largest USA-road-d.USA.gr, it was possible to
get an shortest path distance labels in 7.75 days with n/β-MSLC. The result showed our im-
plementation performance was 432.4 (= 3351/7.75) times that of the ∆-stepping algorithm
and 228.9 (= 1774/7.75) times that of the 9th DIMACS benchmark solver.
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Figure 12: Computational results (CPU time in seconds (logscale)) of the APSP for the 9th
DIMACS instances on a 4-way AMD Opteron 6174

Table 14: Computational results (CPU time and TEPS ratio) of the APSP for the 9th
DIMACS instances on a 4-way AMD Opteron 6174

implementation USA-road-d.NY.gr USA-road-d.LKS.gr USA-road-d.USA.gr

n-BFS 3.41 min. (0.95 G) 10.54 hours (0.50 G) 70 days*
n-Dijkstra 6.85 min. (0.47 G) 15.45 hours (0.34 G) 99 days*
n/β-MSLC (β = 16) 0.89 min. (3.64 G) 1.69 hours (3.12 G) 7.75 days (2.09 G)
n/β-MSLC (β = 32) 0.74 min. (4.37 G) 1.43 hours (3.70 G) memory over
LS-BFS 59 min.* 155 hours* 555 days*
MLB 224 min.* 432 hours* 1774 days*
DS (∆ = 0.1) 359 min.* 693 hours* 3351 days*

* estimated value

SNAP instance

Figure 13 and Tables 15 summarize the results for a SNAP instance with a small diam-
eter. Our implementations were much faster and stabler than the existing methods. The
following results were obtained for cit-Patents, 17.72 GTEPS with n-BFS, 8.78 GTEPS
with n-Dijkstra, and 13.60 GTEPS with n/β-MSLC.

4.2. Centrality

Table 17 and Figure 14 summarize the performance of n-BFS and n-Dijkstra in which
the four types of centrality – closeness, graph, stress, and betweenness – are simultane-
ously computed. Table 16 summarizes the compared implementations. Also shown is, the
GraphCT [11] performance, which computes betweenness without considering the arc weight.
The execution time for GraphCT was estimated from the results of random sampling of 4096
sources. The upper rows of the table list the centrality measurement times and TEPS ratios,
while the lower rows list the ratios of the shortest path phase (sp) and update phase (up)
relative to the execution time. Our implementation of n-BFS and n-Dijkstra significantly
outperformed GraphCT. In the case of web-BerkStan, GraphCT took 18 hours, one hour
n-BFS and n-Dijkstra. The performance improvement was 27.3 (= 17.99/0.66) times that
of GraphCT for n-BFS and 17.1 (= 17.99/1.05) times for n-Dijkstra.
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Figure 13: Computational results (CPU time in seconds (logscale)) of the APSP for SNAP
instances on a 4-way AMD Opteron 6174

Table 15: Computational results (CPU time and TEPS ratio) of the APSP for SNAP
instances on a 4-way AMD Opteron 6174

implementation web-BerkStan web-Google

n-BFS 23.10 min. (3.76 G) 77.35 min. (0.96 G)
n-Dijkstra 44.83 min. (1.94 G) 108.23 min. (0.69 G)
n/β-MSLC (β = 32) 9.69 min. (8.96 G) 33.63 min. (2.22 G)
LS-BFS 613 min.* 1998 min.*
MLB 789 min.* 1946 min.*
DS (∆ = 10.0) 951 min.* 6904 min.*

implementation Wiki-Talk cit-Patents soc-LiveJournal1

n-BFS 53.74 min. (3.73 G) 93.38 min. (17.72 G) 7.5 days*
n-Dijkstra 76.61 min. (2.62 G) 188.44 min. ( 8.78 G) 9.6 days*
n/β-MSLC (β = 32) 37.88 min. (5.29 G) 121.65 min. (13.60 G) 2.78 days (1.39 G)
LS-BFS 621 min.* 569 min.* 113.1 days*
MLB 1847 min.* 1940 min.* 103.4 days*
DS (∆ = 10.0) 3500 min.* 15096 min.* 288.6 days*

* estimated value

Table 16: Implementations for centrality evaluation
implementation graph search algorithm centrality computation
NETAL (this paper)
n-BFS BFS CC , CG, CS , CB parallel
n-Dijkstra Dijkstra’s algorithm with binary heap CC , CG, CS , CB parallel

(weighted)
other implementations
GraphCT [4] Level-synchronized parallel BFS CB sequential
SSCA#2 [18] Level-synchronized parallel BFS CB parallel

Table 17 summarizes the results of tests on SSCA#2 [7], which is a performance bench-
mark using betweenness. The graph instance was the R-MAT graph (n = 2SCALE,m =
8n, SCALE = 24) generated by SSCA#2. To enable comparison under the same condi-
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Figure 14: Computational results (CPU time in seconds(logscale)) of centrality for 9th
DIMACS / SNAP instances on a 4-way AMD Opteron 6174

Table 17: Computational results (CPU time, TEPS ratio, and the ratio of the shortest path
phase (sp) and update phase (up)) of centrality for 9th DIMACS / SNAP instances on a
4-way AMD Opteron 6174

instance
n-BFS n-Dijkstra GraphCT

(CC , CG, CS , CB) (weighted CC , CG, CS , CB) (CB)

USA-road-d.NY.gr
0.11 hours (0.47 GTEPS) 0.17 hours (0.31 GTEPS) 3.66 hours*
sp: 49.50 %, up: 50.07 % sp: 67.66 %, up: 32.06 %

web-BerkStan
0.66 hours (2.21 GTEPS) 1.05 hours (1.38 GTEPS) 17.99 hours*
sp: 60.33 %, up: 39.51 % sp: 71.83 %, up: 28.07 %

web-Google
2.15 hours (0.58 GTEPS) 2.70 hours (0.46 GTEPS) 52.97 hours*
sp: 60.61 %, up: 39.34 % sp: 68.04 %, up: 31.92 %

Wiki-Talk
2.05 hours (1.63 GTEPS) 2.57 hours (1.30 GTEPS) 22.10 hours*
sp: 42.15 %, up: 57.75 % sp: 51.93 %, up: 47.98 %

USA-road-d.LKS.gr
19.35 hours (0.27 GTEPS) 22.84 hours (0.23 GTEPS) 493.77 hours*
sp: 54.52 %, up: 45.46 % sp: 69.48 %, up: 30.50 %

cit-Patents
1.87 hours (9.24 GTEPS) 2.52 hours (6.87 GTEPS) 23.61 hours*
sp: 27.11 %, up: 72.68 % sp: 39.65 %, up: 60.20 %

* estimated value

tions, this test used 256 sources (a randomly sampled number), as specified by SSCA#2.
GraphCT resulted in an error because the computation exceeded the range that could be
handled by the used data type (32-bit integer). In a typical computing environment, n-BFS
was 3.8 times faster than SSCA#2 and n-Dijkstra was 2.4 times faster (Note that SSCA#2
compatible with threaded parallel processing).

5. Conclusion and Future Work

Because of the increase in the number of cores and volume of memory requests in the current
computing environment, it is now possible to handle much bigger problems than those of the
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Table 18: AMD Opteron 6714 parallel performance (CPU time in seconds and TEPS ratio)
of our multiple centrality computation (256-random-sampling) on R-MAT graph (SCALE24)

instance
n-BFS n-Dijkstra GraphCT SSCA#2

(CC , CG, CS , CB) (weighted CC , CG, CS , CB) (CB) (CB)

R-MAT graph (SCALE24)
163.0 seconds 260.5 seconds

error
620.0 seconds

210.8 MTEPS 131.9 MTEPS 48.5 MTEPS

past. We believe that it is vital to make both theoretical and experimental improvements
because there will be multi-hierarchical or even more complex computer memory hierar-
chies in the future. In particular, there is an urgent need for systematizing implementa-
tion technologies for algorithms. This study assessed a multithreaded computation method
that efficiently uses computer resources for the shortest paths on a 4-way AMD Opteron
6174, a typical multicore environment. Our ultimate aim is to develop high-performance
kernels to handle the shortest path problems, which are basic combinatorial optimization
problems. Our multithreaded processing method configures the processor core and local
memory allocation (affinity), to avoid computational resource request conflicts by consid-
ering the difference in distances between processor cores and the RAM within the NUMA
architecture of the AMD Opteron 6174. n-BFS (unweighted) and n-Dijkstra (weighted),
which computes the shortest paths with multiple predecessors, and n/β-MSLC (weighted),
which computes the shortest path distance labels only, were all found to have exceptional
performance. In the all-pairs shortest paths for USA-road-d.NY.gr, the shortest paths for
which an arc weight was not considered were computed by n-BFS in 204.5 seconds, the all-
pairs shortest paths were computed by n-Dijkstra in 411.2 seconds, and the shortest path
distance labels were computed by n/β-MSLC in 44.4 seconds. In comparison with sequen-
tial computations, the parallel computations demonstrated a very high parallel speedup,
46.2 times,43.8 times, and 35.7 times, respectively for 48-thread processing. Furthermore,
we succeeded in finding the all-pairs shortest path distance labels for USA-road-d.USA.gr

by using n/β-MSLC in 7.75 days without pre-processing. For the centrality computation
using n-BFS (unweighted) and n-Dijkstra (weighted), the performance was at several fold
that of GraphCT and SSCA#2. In relation to web-BerkStan, n-BFS was 27.3 times faster
than GraphCT and n-Dijkstra was 17.1 times faster. Furthermore, in relation to SSCA#2,
n-BFS was 3.8 times faster and n-Dijkstra was 2.4 times faster. Our implementation si-
multaneously finds closeness CC , graph CG, stress CS, and betweenness CB and can select
the centrality index of the graph. The applications of this study are not limited to network
analysis tools using high-performance kernels; rather, our study’s results can be used in a
wide variety of high-performance computations with various algorithms.

Our aim is to go beyond simple graph analysis and to construct evacuation route search
and transport control systems that could be used in unforeseen circumstances such as large-
scale disasters. The results of this research will be useful for systems that require extremely
high-performance processing of data that is regularly updated.
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