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Abstract This paper proposes the Maximum Flow-Covering Location and service Start Time Problem
(MFCLSTP). The problem seeks to determine locations and service start time of p facilities which provide
a service for a given duration, so as to maximally cover flows. Each flow is specified by a pair of origin-
destination (OD) nodes and the departure time of the origin node. We assume that a given commuter flow
is covered when commuters can stop at a facility, fully consume that facility’s service, and arrive at the
destination node by a given time. Two models are considered for MFCLSTP: MFCLSTP1, in which the
service start time of each facility can be independently determined; and MFCLSTP2, in which all facilities
have the same service start time. We provide integer programming formulations and propose heuristic
solution algorithms. The proposed models are applied to a case study of the Tokyo metropolitan railway
network using census data for commuter traffic. The solutions obtained by the heuristic algorithms for both
models are compared. Solutions of MFCLSTP2 show that selected locations are spatially dispersed to cover
different types of flows, whereas solutions of MFCLSTP1 closely locates some facilities having different start
times in the central area of Tokyo.

Keywords: Facility planning, maximal covering objective, dynamic location model,
service start time, railway network, commuter traffic flow

1. Introduction

Facility location decisions are an important element in strategic planning in both private
and public organizations. Various models dealing with optimal location of facilities have
been proposed in operations research and management science. Examples include the p-
median problem and the maximal covering location problem. The p-median problem seeks
the locations of p facilities among a given set of candidate locations, such that the total
demand-weighted distance to the nearest facility is minimized, while the maximal covering
location problem finds a given number of facilities so as to maximize the total demands that
have a facility within a given distance threshold. There are a number of ways to classify
location models, and Daskin [8] gives a taxonomy of the types of location models.

Many of the location models developed thus far have focused on static and deterministic
problem formulations. However, facility location decisions are often long-term in nature,
during which time the environment may change considerably. Focusing on this aspect,
researchers have attempted to incorporate the temporal dimension into facility location
problems. For instance, models have been formulated that consider the timing of the loca-
tion and relocation of facilities based on the temporal variation of future demands. These
dynamic location models describe time as a long-term planning horizon, and various im-
portant models have been proposed (e.g., see the review article of Owen and Daskin [20]).
Another possible approach to dynamic location problems is to concentrate on the daily
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movement of people, and to consider the provision of services at facilities in spatio-temporal
dimensions. The latter approach has yet to be seriously employed in the existing dynamic
location literature.

In this paper, we propose a dynamic facility location model that seeks to determine the
optimal provision of services on a daily basis. Consider, for example, how to provide after-
work lectures to commuters who wish to study at graduate school. To fully capture the
opportunity for attending school, the start time of lectures must be sufficiently late to allow
many commuters access to the graduate school after work, but sufficiently early in order for
commuters to get back home early enough. To deal with this type of problem, we assume
that facilities provide fixed hours of service, and consider the problem of optimizing both
the locations and service start times of the facilities so as to maximally cover flows. We call
this the Maximum Flow-Covering Location and service Start Time Problem (MFCLSTP).
Two different situations regarding the service start times of facilities are considered for
MFCLSTP. The independent start time model (MFCLSTP1) assumes that the service start
time of each facility can be determined independently, whereas the common start time
model (MFCLSTP2) assumes that all facilities have the same service start time. The latter
situation is analogous to a lecture being delivered at a number of locations simultaneously
in real-time.

The remainder of this paper is organized as follows. In the next section, literature related
to the MFCLSTP is reviewed, including the maximal covering location problem and its
variants, dynamic facility location problems, topics concerned with space-time accessibility
in time geography, and the single-facility model that determines the location and service
start time of a facility in spatio-temporal dimensions. Then, in Section 3, we describe the
general situation assumed in MFCLSTP, and formulate the proposed models as integer
programming problems. As the size of the problems can easily become very large even for
small-sized networks, obtaining exact optimal solutions for the proposed problems is not
easy. Therefore, we propose a heuristic solution algorithm in Section 4, which is based on
the well-known node-exchange algorithms for static location problems.

The latter part of this paper is devoted to a case study of the Tokyo metropolitan
railway network. In modeling the case study, we assume commuters on their way home
from work as potential demands for facility service. We obtain an OD matrix for the
commuter traffic flow from census data, and construct dynamic flow data by introducing
a departure time for the origin station of each flow. First, a case that locates a single
facility at each station is examined in Section 5. The number of covered flows at each
station for various service start times is evaluated, and the desirable site and start time for
service provision in Tokyo metropolitan railway network is analyzed. Then, in Section 6, we
explore multi-facility problems in which both the locations and service start times of several
facilities are simultaneously determined for the target network. Applying the proposed
heuristic solution algorithms, the solutions obtained for the independent and common start
time models are compared. Solutions of the common start-time model show that selected
locations are spatially dispersed to cover different types of flows, whereas solutions of the
independent start time model closely locates facilities having different service start times in
the central area of Tokyo. Finally, in Section 7, we conclude the paper and discuss future
research directions.

In summary, the proposed model focuses on spatio-temporal movement of people and
the provision of services on a daily basis, a topic not fully explored in the existing dynamic
facility location literature. This modeling approach is the main contribution of this paper,
by which several variants and extended models can also be constructed. Application of the
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model to the Tokyo metropolitan railway network is also a fundamental goal of this paper,
from which interesting properties of the target network are discovered. As for the heuristic
algorithm, simple local search method proposed in this paper can be extended by employing
metaheuristic approaches.

2. Literature Review

We now review four classes of model that are related to the present study. The first class
of models is the maximal covering location problem (MCLP) and it variants, which locate
facilities in order to maximize the number of demands within a predefined distance of the
nearest facility. In particular, the flow-capturing location problem (FCLP), an extension of
MCLP, is closely related to the proposed problem, and MFCLSTP can be seen as a dynamic
extended version of FCLP. The second class is dynamic facility location problems, which
incorporate temporal aspects in facility location problems. For the third class, we briefly
review accessibility models in time geography. These models explicitly measure accessibility
in spatio-temporal dimensions, although the aim is not on optimizing facility service. Finally,
we review the single facility model that was the first to investigate a similar situation to
that considered here, but was limited to only the single facility case.

The objective of MFCLSTP is to maximize the number of potential demands for services
(i.e., the covered flows). This type of objective first appeared in Church and ReVelle [5], and
has been one of the most employed objectives in location literature. MCLP seeks the optimal
locations of facilities such that the number of demands is maximized within a pre-specified
distance (time) of the nearest facility. Extensions to the basic MCLP include models that
consider a demand to be covered when two or more facilities are located within a distance
threshold [9], and models that consider different levels of coverage [6]. Berman et al. [3] has
recently reviewed current developments of a number of generalized coverage models. These
extended MCLP approaches can also be applied when constructing extensions of MFCLSTP.

An important generalization of MCLP is the FCLP introduced by Hodgson [14], in
which the demands for services are represented as flows traveling along paths between origin-
destination pairs over a network. FCLP attempts to locate a given number of facilities on the
network in order to maximize the total flows having a facility along their pre-planned route.
The flow capturing approach is suitable for many services, such as automatic teller machines,
convenience stores, advertising billboards, and vehicle inspection stations. Because of the
wide applicability of FCLP, different modified versions have been proposed, including a
model in which different coverage levels are introduced, according to the location captured
[31]; and the multi-counting model [1], in which consumers can be captured more than once
when there are several facilities on their route. The deviation situation assumed in Berman
et al. [2] is particularly relevant to the present work. They considered that flows having
a facility near the pre-planned route (in terms of the deviation distance) can access the
facility, and hence those flows can be considered as captured flows. MFCLSTP assumes
that commuter flows stop at a facility to consume service. Hence, deviation to access a
facility is also allowed within the present framework. Details on FCLP variants can be
found in a recent article by Zeng et al. [31]. Although, various generalized FCLP models
have been proposed, all the existing models assume that flows are static and do not account
for temporal factors. Thus, MFCLSTP can be considered as the first dynamic version of
FCLP where each flow is identified not only by a pair of origin-destination nodes but also
by the departure time of the origin node. In addition, MFCLSTP dynamically determines
the service start times of facilities, as well as their locations.
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In general, research on location theory has been devoted to static and deterministic
models. These model formulations take constant quantities as inputs, such as demands and
travel times, and output a single solution at a point in time. In reality, however, facilities
(e.g., schools, distribution centers, plants, and retail outlets) typically exist for decades,
during which time the environment in which they operate may change substantially. As
a result, demands, travel times, land acquisition costs, and other inputs to classical static
facility location models can be highly uncertain, and hence the need for dynamic facility
location models arises. Current et al. [7] classifies dynamic models into two categories:
implicitly and explicitly dynamic models. In implicitly dynamic models, facility location
decisions are considered “static”, in the sense that all facilities are opened at the same
time and remain open over the planning horizon. However, they are dynamic models since
they still recognize that problem parameters may vary over time. Examples of implicitly
dynamic models include those developed by Mirchandani and Odoni [19], and Weaver and
Church [30], who both consider problems where the demands and travel times change over
time. Explicitly dynamic models assume a situation in which facilities will be opened (and
possibly closed) over time. Typically, explicitly dynamic models extend known static models
by introducing temporal subscripts to both the facility location and the assignment variables
and constraints, thus adding a temporal dimension to these parameters. Explicitly dynamic
model examples include those from Daskin et al. [10], Drezner andWesolowsky [11], Schilling
[21], and Gunawardane [12]. The latter two of these employ multi-objective approaches to
explicitly dynamic problems. Several authors dealt with deployment problems of ambulances
in a dynamic setting (e.g., [22]). The potential demand for emergency services and the travel
times between points in a city can change throughout the day. By focusing on this issue,
models that allow ambulance vehicles to change their locations, so as to cover potential
demand at any point in time, have been explored. In this type of study, instead of modeling
the movement of people to be serviced by a facility in spatio-temporal dimensions, the
number of potential demands at each location and time is given as an input. For more
detailed reviews of dynamic location problems, see Current et al. [7], Owen and Daskin [20],
and Snyder [23].

Hägerstrand [13], who laid the foundation of time geography, stressed the temporal factor
in spatial human activities. He introduced the space-time framework to evaluate individuals’
accessibility to the environment, recognizing that activity participation has both spatial and
temporal dimensions. Authors who have devised accessibility measures in spatial-temporal
environments include Kwan [17] and Miller [18]. However, while efforts to develop space-
time accessibility measures from an individual viewpoint have been actively made, attempts
to optimize facility service from the viewpoint of a decision maker have not been seriously
treated in this area.

The earlier model that first focused on a similar situation to the current study appeared
in Tanaka [26]. This model assumed a one-dimensional linear city over which origins (work-
places) and destinations (homes) are continuously distributed, and the distribution of the
departure time at an origin location was given by a continuous mathematical function.
Tanaka [26] considered the location and service start time of a single facility that maximizes
the number of commuters who can stop at the facility after work and can still get back home
by a given time after consuming a service. The goal of the study was to describe the tradeoff
structure of the service start time and to investigate the relation among the covered volume,
optimal service provision and input parameters, such as the trip distributions and the du-
ration of the facility service. The same problem was later examined for a two-dimensional
circular city [27]. A variation of the model was analyzed by Honda [15], who assumed a
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point-based demand for facility service (home–facility–home movement), and introduced a
joint distribution for possible departure and home times as input data. Honda’s model used
Web-based questionnaires to estimate these joint distributions, according to several classes
of users attributes, and analyzed the desirable service provision for each attribute. However,
all of these studies considered only the single facility case, and MFCLSTP can be regarded
as the multi-facility, discrete version of these models.

3. Model Description and Formulation

To describe the movement of people and the provision of services in spatio-temporal dimen-
sions, we consider the situation as shown in Figure 1 (a) in which the temporal dimension
is introduced into a network. Each point in Figure 1 (a) corresponds to a specified location
and time. A two-dimensional version of the model (one dimensional city, plus temporal
dimension) is also presented in Figure 1 (b) to facilitate explanation. Let us consider the
situation in which a decision maker is planning to introduce p facilities that provide fixed
service hours c, as illustrated by the line segments in Figure 1 (a). We assume that the
service provided at a facility must be fully consumed. Examples of this type of service are
cinema, baseball games, and lectures, where partial consumption does not make sense.

We assume that after-work commuters access a facility, consume c hours of service, and
desire to get back home sufficiently early. To describe this situation, the arrival time limit,
th, is introduced and represents the latest allowable arrival time at a destination node (the
commuter’s home location). Thus, commuters can access a given facility’s service when
they can arrive at the facility before the service start time, consume c hours of service, and
return home by th. In addition, a commuter flow is defined as being covered when there is
at least one accessible facility among the p facilities.

Let us illustrate a covered customer in space-time dimensions by using Figure 1 (b). A
commuter flow is identified by an origin node, i, a destination node, j, and a departure time
from the origin node, t. We refer to this commuter flow by (i, j, t). Each facility’s service
is specified by a location, k, and a service start time, s, and thus can be referred to (k, s).
Flow (i, j, t) in Figure 1 (b) is covered by facility service (k, s) since this flow can:

(i) arrive at location, k, before s; and

(ii) arrive at destination node, j, by th after fully consuming c hours of service at (k, s).

The first condition can be written as t+ uik ≤ s, while the second condition can be written
as s + c + ukj ≤ th. Here, uij is the travel time between node i and node j and we assume
that t and s take only discrete values.

Covered flows can be considered as potential demands in the sense that, if they wish to
consume a facility’s service, they can access the service at a facility. The notion of coverage
here is similar to that of the classical maximal covering location problem [5], in which
customers are considered covered when they have at least one facility within an acceptable
distance.

The decision maker wants to determine the provision of the p facilities’ services such
that the number of covered flows is maximized, the problem we have termed MFCLSTP.
In MFCLSTP, two different situations can be considered. The first model (MFCLSTP1)
assumes that the service start time of each facility can be determined independently. Con-
versely, the second model (MFCLSTP2) supposes that all facilities have the same service
start time. To maximize opportunities for consuming service, service start times must be
sufficiently late to allow many commuters access to a facility after work, but early enough
for commuters to get back home by th. This tradeoff in the service start time of facilities
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has not been sufficiently focused on in the existing facility location literature.

(a)

time
time

(b)

Figure 1: Covered flow in the spatio-temporal dimensions: (a) general network case, (b)
linear city case

To formulate MFCLPSTP as an integer programming problem, we introduce the follow-
ing notation.

Sets

N : set of nodes (used for both origin and destination nodes)
T : set of departure times for an origin node
K: set of potential facility locations
S: set of potential service start times

Parameters

p: number of facilities to be located
c: duration of facility service
fijt: volume of flow (i, j, t)
uij: travel time between node i and node j
th: the arrival time limit which describes the latest allowable arrival time to a destination

node in order for a commuter flow to be covered

Moreover, we introduce the coverage index aijtks that indicates whether flow (i, j, t) can
access facility service (k, s):

aijtks =

{
1 if flow (i, j, t) can access facility service (k, s),

0 otherwise.

To calculate aijtks , all combinations of (i, j, t) and (k, s) must be correctly assigned 0 or 1.
Finally, two further binary variables are introduced:

xks =

{
1 if a facility is to be located at node k and starts its service at time s,

0 otherwise,

yijt =

{
1 if commuter flow (i, j, t) is covered,

0 otherwise.
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Using the above definitions, MFCLSTP1, with independent service start time for each
facility, is formulated as

MFCLSTP1

maximize
∑
i∈N

∑
j∈N

∑
t∈T

fijtyijt, (3.1)

subject to
∑
k∈K

∑
s∈S

xks = p, (3.2)

yijt ≤
∑
k∈K

∑
s∈S

aijtks xks ∀i ∈ N, ∀j ∈ N, ∀t ∈ T, (3.3)

xks ∈ {0, 1} ∀k ∈ K, ∀s ∈ S, (3.4)

yijt ∈ {0, 1} ∀i ∈ N, ∀j ∈ N, ∀t ∈ T. (3.5)

The objective function (3.1) is the total number of covered flows, that is, the number of
commuters with access to at least one of the p facilities. It should be noted that maximizing
this function is equivalent to minimizing the number of commuters who cannot access a
service at any of the facilities. Constraint (3.2) stipulates that exactly p facility services
are provided. Notice that this constraint does not prohibit placing multiple facilities at
the same node, and two or more co-located facilities with different service start times may
cover different flows. Constraints (3.3) require that at least one facility service, (k, s), be
accessible by commuter flow, (i, j, t), for this flow to be covered. Finally, constraints (3.4)
and (3.5) are the standard binary constraints on the decision variables.

In certain situations, it is difficult or may be impossible to independently decide service
start time of each facility. For example, delivery of a lecture at a number of locations
simultaneously in real time requires all facilities to start their service at the same time.
In other situations, it may be desirable to start services at the same time because doing
so makes the operating cost of facilities lower than in the independent case. To formulate
MFCLSTP2, the variables zs that determine service start times are introduced:

zs =

{
1 if all facilities start service at time s,

0 otherwise.

With this definition of zs, MFCLSTP2 can be formulated similarly to MFCLSTP1 with
the addition of two extra constraints:

MFCLSTP2

maximize (3.1),

subject to (3.2), (3.3), (3.4), (3.5),

p zs =
∑
k∈K

xks ∀s ∈ S, (3.6)

zs ∈ {0, 1} ∀s ∈ S. (3.7)

Combining constraints (3.6) and (3.2) implies that all facilities start their service at the
same time, and constraints (3.7) denote standard binary constraints placed on the decision
variables.
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4. Heuristic Algorithm

The number of variables and parameters in MFCLSTP can become large even for a network
of moderate size. Therefore, we develop a heuristic algorithm for MFCLSTP, that iteratively
updates each facility’s service. The basic idea of the proposed heuristic is that if spatial and
temporal variables are separated, we can update one set of variables, while the other is fixed.
This separation of variables reduces computational burden to a great extent. The algorithms
outlined in this section are implemented under a multi-start local search framework, and are
applied to the location analysis for the example of the Tokyo metropolitan railway network
in the next section.

The proposed algorithm can be seen as an extension of the well-known node-exchange
algorithm that was originally developed by Teitz and Bart [28] for solving the p-median
problem. This procedure has been successfully applied to several static facility location
models and several modified versions have been proposed ([4]). Here, to reduce the compu-
tational load, the number of locations selected as potential exchange candidates is restricted
to the Q nearest locations to the current facility location, as shown in Figure 2.

facility

present location

possible relocation node

inaccessible node

Figure 2: Relocation candidates of a facility during the location improvement procedure for
a facility

Local search algorithm for MFCLSTP1

In MFCLSTP1, facility service decisions are described by 2p variables (p facility locations
and p service start times). We separate the p spatial variables and p temporal variables,
and attempt to improve the objective value by varying one set of variables, while the other
set is fixed. The proposed algorithm for MFCLSTP1 is described as follows.

Step 1: Initialization
Randomly select p facility locations and p service start times.

Step 2: Update procedure for facility locations

Step 2-1: For facilities l = 1, · · · , p, by fixing the locations of the remaining p − 1
facilities, perform the following procedure:

(1) Evaluate the objective value obtained from relocating the lth facility
to each of the candidate locations selected in the neighborhood of the
present location of the lth facility;

(2) If the best relocation of lth facility among Q nodes improves the
objective value, relocate the lth facility to the best node.

Step 2-2: If at least one relocation is performed among the p facilities in Step 2-1,
go to Step 3; otherwise go to Step 2-3.
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Step 2-3: If no exchange was made in the last execution of Step 3-1, output the
current solution and terminate the algorithm; otherwise go to Step 3.

Step 3: Update procedure for service start times

Step 3-1: For facilities l = 1, · · · , p, perform the following procedure while fixing
the service start times of remaining p− 1 facilities:

(1) Evaluate the objective value obtained from changing the service start
time of the lth facility to each element in S;

(2) If the best service start time for the lth facility improves the objective
value, select the best start time for the lth facility.

Step 3-2: If at least one change is performed among the p facilities in Step 3-1, go
to Step 2; otherwise go to Step 3-3.

Step 3-3: If no exchange was made in the last execution of Step 2-1, output the
current solution and terminate the algorithm; otherwise go to Step 2.

Termination of the algorithm thus occurs when both the facility locations and service
start times remain unaltered in the update procedures.

Local search algorithm for MFCLSTP2

Similarly, the algorithm for MFCLSTP2 is given as follows.

Step 1: Initialization
Randomly select p facility locations and one service start time.

Step 2: Update procedure for facility locations

Step 2-1: For facilities l = 1, · · · , p, by fixing the locations of the remaining p − 1
facilities, perform the following procedure:

(1) Evaluate the objective value obtained from relocating the lth facility
to each of the candidate locations selected in the neighborhood of the
present location of the lth facility;

(2) If the best relocation of lth facility among Q nodes improves the
objective value, relocate the lth facility to the best node.

Step 2-2: If at least one relocation is performed among the p facilities in Step 2-1,
go to Step 3; otherwise output the current solution and terminate the
algorithm.

Step 3: Update procedure for service start time

Step 3-1: Evaluate the objective value obtained from changing the service start time
of all facilities to each element in S. If the objective value is improved,
change the service start time of all facilities to that producing the best
value.

Step 3-2: If a change has occurred, go to Step 2; otherwise go to Step 3-3.

Step 3-3: If no exchange occurred in the last execution of Step 2-1, output the
current solution and terminate the algorithm; otherwise go to Step 2.

Owing to the common service start time for the facilities in MFCLSTP2, Step 2 and
Step 3 are simpler than those for MFCLSTP1. Note that a single execution of Step 3 returns
the optimal service start time for fixed facility locations. Therefore, when Step 2 does not
relocate any of the facilities, further execution of Step 3 cannot improve the objective value,
and the algorithm can be terminated in Step 2-2.
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Figure 3: Tokyo metropolitan railway network used in the analysis

5. Analysis of Covered Flows for Each Station in the Tokyo Metropolitan Rail-
way Network

First, single facility MFCLSTP (i.e., when p = 1) is applied to our example case study
of the Tokyo metropolitan railway network by using commuter traffic flow data extracted
from census data. The purpose of this section is to analyze the number of covered flows
that can be observed and at what time service should start for each station. We start
by explaining how to construct data used in the analysis. Then, the single facility case is
analyzed by placing one facility at each location and varying the service start times. Cases
of multiple-facilities are investigated in the subsequent section.

5.1. Data description

We construct the railway network covered by census data for the Tokyo metropolitan area
[16]. The target network is shown in Figure 3 (Tokyo station is at the origin and each unit
represents 1 km). The network is composed of 1,804 stations along 125 lines, from a total of
1,815 stations along 128 lines in the census data; here we exclude three Shinkansen (bullet
train) lines. This number of 1,804 includes stations possessing the same name on different
lines; for example, both JR Chuo and Yamanote lines have a station at Shinjuku. In the
census data, these two Shinjuku stations are treated separately. However, for the purposes
of the present analysis, transfer stations bearing the same name and stations so close to each
other are treated as a single station. This aggregation of stations is conducted by referring
to the Station Database [24], which contains information on groups of stations between
which transfers are possible. For example, although there are nine Shinjuku stations and
eight Tokyo stations, we consider them as single “Shinjuku station” and “Tokyo station”.
Among the targeted 1,804 stations, 663 stations have at least one transfer station, and these
can be aggregated into a total of 252 stations. Thus, the number of target stations becomes
1,393 (= 1,804 − 663 + 252) after aggregation, and we use all 1,393 stations as candidate
locations for facilities.

The model and corresponding heuristic algorithm use the times required to travel be-
tween station pairs (the travel time matrix) as an input. Construction of the travel time
matrix that is to be used in the following analysis is next explained. The cost (time) be-
tween adjacent stations is calculated as the length of the link (Euclidean distance) between
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the stations divided by the speed of the trains. We use an identical speed of 50 km/h for all
trains when calculating link costs. Then, the travel time matrix is obtained by calculating
the shortest paths for all station pairs by using the Dijkstra’s algorithm.

By using the census data, we construct an origin-destination (OD) traffic flow matrix,
in which each entry represents the number of commuters traveling from an origin station,
i, to a destination station, j. In total, 113,591 out of 1,940,449 (1,393 by 1,393) entries
in the OD matrix have non-zero flow volumes, and the total number of flows is 8,529,216.
To generate the input data for MFCLSTP, this static flow data is divided and assigned to
departure times t such that dynamic flow data, fijt, is created for each flow, (i, j, t).

5.2. Covered flows for each station

We now analyze the case in which only one facility is located at a station within the network
for various service start times. To conduct the analysis, values for parameters are set to
c = 3 h, th = 23:00. Moreover, we assume that departure from the origin station for each
commuter flow, (i, j), occurs at a uniform rate between 17:00 and 21:00 at 10 min intervals;
specifically, for each (i, j), the flow volume is multiplied by 0.04 and assigned to 25 equally
spaced departure times. Under these assumptions, the latest service start time is 20:00,
since a service starting after 20:00 has a finish time later than 23:00, and commuters cannot
reach their destination station by th. Service start times are chosen at 19 candidates times
every 10 min from 17:00 to 20:00, i.e., 17:00, 17:10, ..., 19:50, 20:00.

Before proceeding to the numerical results, let us calculate the objective value when we
can locate a facility at all stations; this value is an upper bound for the objective value when
constraint (3.2) is relaxed. The resulting value provides useful information for evaluating
the quality of a given solution (the services for the p facilities). This upper bound for the
objective value can be computed by summing up the covered flows for all (i, j, t) when each
of the 1,393 stations has a facility providing a service from 20:00 to 23:00. In this situation,
all flows are at the destination node at exactly 23:00, the arrival time limit th. For each
origin-destination node pair (i, j), commuter flows departing from their origin station before
t = th−c−uij are covered, since the commuters can be at the facility before the service start
time. For the case presented here, 5,441,794 (63.80%) flows among a total 8,529,216 flows
are covered. The remaining flows cannot be covered by any solution under this parameter
setting. Hence, in the following, the flows covered by a given solution are evaluated as a
percentage of the upper bound of this objective value, 5,441,794.

We built a program in the C++ programming language that computes the covered flows.
By using the program, covered flows are calculated for each station at the 19 service start
times. Figures 4 (a) to (e) show the percentage of covered flows at each station by the
area of circle centered at the station for five service start times: 17:30, 18:00, 18:30, 19:00,
and 19:30. In general, stations located in the central part of the Tokyo metropolitan area
can cover a large percentage of commuters, and stations located in suburban areas have
smaller coverage. We see that the service start time strongly affects the number of covered
flows. When service starts at 17:30, many commuters are unable to arrive before the service
start time, whereas starting service at 19:30 makes many commuters unable to reach their
destination station by th. Therefore, both cases are unattractive when planning service at
a facility. In this example, starting service at 19:00 captures a large number of commuters.

To study the effect of service start time on the objective value in more detail, we concen-
trate on three stations on the JR Chuo line: Shinjuku, Musashisakai, and Hachioji. Figure 5
shows the objective values for the three stations at each service start time. Shinjuku, which
is located in the center of Tokyo, has the highest values, followed by Musashisakai, and
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finally Hachioji, which is located in a suburban area. Furthermore, the form of the graphs is
different, especially between Shinjuku and Hachioji. At early start times, the covered flow
for the facility at Hachioji is small, while the facility at Shinjuku can capture larger vol-
umes of flows. This difference is due to workplaces being densely located around Shinjuku,
allowing commuters access to the facility at Shinjuku earlier. In contrast, the population
during the day near Hachioji is not so large, and few commuters can be in time for early
facility services, especially those commuters working in the central area of Tokyo. Another
interesting characteristic in Figure 5 is that the optimal service start time that maximizes
the covered flow is 20 min later for Shinjuku than for Hachioji. This late start time is a
result of the high accessibility of Shinjuku. After consuming a service at Shinjuku, a large
number of destination stations can be reached within a short time, permitting commuters
to return home by th. Therefore, a later start for the facility’s service is advantageous, since
a large number of commuters who are able to arrive at Shinjuku before the service start
time can be captured.

We next analyze the distribution of the maximum value across the network, and also
when the optimal service start time occurs for a facility at each station. Figure 6 denotes
the maximum objective value at each station by the area of its associated circle, and those
colored black correspond to the 20 stations with the highest objective values. In addition,
Figure 7 illustrates the start time at which the objective value is maximized. In Table 1,
the names are listed of the 40 stations having the highest percentage of coverage and their
optimal service start time. From the table, the optimal solution of the MFCLSTP when
p = 1 is to start a service at 19:10 at a facility located in Shinjuku. The second best location
is Shibuya. Both Shinjuku and Shibuya are vast terminal stations having numerous railway
lines such that a considerable number of stations are accessible within a reasonable amount
of time, and both have large daytime populations in and around them. Furthermore, many
of the highest performing stations are those nearby Shinjuku and Shibuya. Tokyo, which
has the second largest number of transfer stations after Shinjuku, also performs well. As
can be seen from Figure 6 and Table 1, stations located between Shinjuku and Tokyo,
and their environs, attain large objective values. Figure 7 and Table 1 indicate that in all
cases the optimal service start time for the 40 stations is later than for only having smaller
maximum objective values: 19:00 or 19:10. As already discussed for Shinjuku, stations with
high accessibility overall can be reached from a large number of stations in a relatively
short time. Thus, starting the facility’s service at these stations later is advantageous in
maximizing the number of commuters able to access the facility before the service start
time.

6. Multi-facility Analysis on the Tokyo Metropolitan Railway Network

Having analyzed the single facility case, we now turn our attention to locating two or
more facilities. When multiple facilities are located, depending on whether the service start
times are independent or equal for all facilities, we can consider the two models outlined in
Section 3: MFCLSTP1 and MFCLSTP2. To obtain solutions for these two cases, we apply
the heuristic algorithms introduced in Section 4 to MFCLSTP1 and MFCLSTP2 to cases
where the numbers of facilities to be located were p = 2 to 7. With the exception of p, all
parameter values are set to those for the single-facility case.

All 1,393 stations are considered as candidate locations for facilities, and we implement
the heuristic algorithms as a multi-start local search (MLS), with the number of candidate
relocation nodes set as Q = 20. For each trial of the local search algorithm, the initial
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Figure 4: Covered flows for each station at five service start times

solution is created randomly by selecting p locations and p service start times for MFCLSTP1
(and a single start time for MFCLSTP2). For each problem instance, the best solution
obtained among the local optimal solutions starting from 500 initial solutions is chosen as
an output by the algorithm. The proposed method was implemented in Microsoft Visual
C++ 2008 Professional Edition and experiments were performed on a PC with an Intel
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Table 2: Computing time for MLS (s)

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

MFCLSTP1 219 416 641 886 1,214 2,025
MFCLSTP2 137 264 429 585 780 1,292

Core i7-2620M processor and 8 GB of RAM. Table 2 shows the computational time in
seconds required for each problem instance (the total time for obtaining 500 local optimal
solutions), and can be seen to be within acceptable limits. Less computational time is
required for MFCLSTP2 than MFCLSTP1, since Step 3 must find only one service start
time.
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Table 1: The 40 stations with highest covered flows

rank station name start time obj [%] rank station name start time obj [%]

1 Shinjuku 19:10 62.640 21 Hibiya 19:00 61.858

2 Shibuya 19:10 62.521 22 Nijubashimae 19:00 61.856

3 Omote-sando 19:10 62.518 23 Nihombashi 19:00 61.819

4 Harajuku 19:10 62.514 24 Ginza 19:00 61.787

5 Yoyogi 19:10 62.336 25 Takaracho 19:00 61.786

6 Shinjuku-sanchome 19:10 62.237 26 Ochanomizu 19:00 61.785

7 Gaienmae 19:10 62.207 27 Tameike-sanno 19:00 61.784

8 Akasaka-mitsuke 19:10 62.135 28 Shinjuku-gyoemmae 19:10 61.783

9 Tokyo 19:00 62.049 29 Kudanshita 19:00 61.773

10 Yotsuya 19:00 62.027 30 Shin-nihombashi 19:00 61.732

11 Otemachi 19:00 61.997 31 Ogawamachi 19:00 61.728

12 Ichigaya 19:00 61.976 32 Uchisaiwaicho 19:00 61.721

13 Aoyama-itchome 19:00 61.966 33 Nogizaka 19:00 61.718

14 Kojimachi 19:00 61.960 34 Shinanomachi 19:00 61.709

15 Jimbocho 19:00 61.944 35 Tochomae 19:10 61.704

16 Shimbashi 19:00 61.934 36 Takadanobaba 19:10 61.696

17 Sendagaya 19:10 61.929 37 Takebashi 19:00 61.686

18 Hanzomon 19:00 61.877 38 Sakuradamon 19:00 61.658

19 Yurakucho 19:00 61.875 39 Yotsuya-sanchome 19:00 61.653

20 Kokkai-gijidomae 19:00 61.860 40 Kanda 19:00 61.641

Results for common service start time model (MFCLSTP2)

Let us begin by analyzing the results obtained for MFCLSTP2, the simpler of the two
models. Table 3 summarizes the solutions and associated objective values obtained for p = 2
to p = 7. Moreover, in Figure 8, the locations selected for each case are shown, where the
number in each circle corresponds to the number in the leftmost column of Table 3.

Facilities are spatially dispersed across the railway network so as to capture different
flows. All solutions contain one facility in the central area of Tokyo, with other facilities
located at a distance from the central area. As the number of facilities increases, a star-
shaped pattern for facility locations is formed, with points in various directions from the
center. For p = 2, Kikuna is selected in addition to the central location, Jimbocho. The
facility at Kikuna can provide a service for those working near Yokohama and having a
home in the southern half of the network. Yokohama is selected in all solutions except when
p = 2.

Note that, as the number of facilities grows, the selected service start time tends to
become later. This can be interpreted as follows. Recall that a late service start time
increases the accessibility to commuters, while the number of destination stations reachable
from the facility by th decreases. However, when a number of facilities provide services at
spatially dispersed locations, a wide area of destination stations reachable by th are easily
covered. This allows facilities to start services later.

Results for independent service start time model (MFCLSTP1)

We next analyze the results obtained for MFCLSTP1, in which service start times are
determined independently. Table 4 summarizes the best solutions obtained and correspond-
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Figure 8: Comparison of the best solutions obtained for MFCLSTP2

ing objective values for p = 2 to p = 7, and in Figure 9 the selected locations for each case
are shown.
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Table 3: The best solutions obtained and corresponding objective values for MFCLSTP2

Jimbocho Takadanobaba Shinjuku Ichigaya Ichigaya Ichigaya

Kikuna Yokohama Yokohama Yokohama Yokohama Yokohama

Higashi-matsudo Daijingushita Daijingushita Funabashi Makuhari

Omiya Omiya Omiya Omiya

Nishi-kokubunji Kokubunji Kokubunji

Ebina Ebina

Minami-kashiwa

19:10 19:20 19:20 19:20 19:30 19:30

69.054 72.821 76.092 78.855 80.742 82.124% % % % % %

1
2
3
4
5
6
7

start time

obj [%]

The location patterns obtained for MFCLSTP1 are different from those for MFCLSTP2.
For MFCLSTP1, we observe facilities located close to each other at the center of Tokyo.
For example, for the case p = 2, Shinjuku and Aoyama-itchome are selected, both of which
are in the central area of Tokyo. Conversely, the service start time for the facilities at the
two stations differs considerably: 19:30 for Shinjuku and 19:00 for Aoyama-itchome. When
focusing on capturing flows only “spatially”, two nearby locations are not simultaneously
selected, since they capture similar flows. However, when temporal factors are also accounted
for, facilities at close locations can capture different types of flows when their service start
times are widely separated. Note that in MFCLSTP1, two facilities at close locations can
capture over 3% more flows than when compared with the two facilities in MFCLSTP2.
Furthermore, the objective value for MFCLSTP1 in p = 2 case is only about 0.5% less than
that for MFCLSTP2 in p = 3 case. Therefore, when considering the cost of each facility,
this result may lead a decision maker to prefer two facilities having separated service start
times above three facilities with the same service start time.

For p = 3, two stations in central Tokyo (Shinjuku and Ochanomizu) plus Yokohama
are selected. We again observe that the service start times of the two nearby facilities are
separated by 30 min. Yokohama is the largest station in the southern half of the network
and captures commuter flows that cannot easily access either of the other two facilities.
When p = 4, the pattern is similar to that for p = 3; three stations located in central
Tokyo (Shinjuku, Sugamo, and Iidabashi) plus Yokohama. All three facilities in the central
area start their services at different times to capture different flows. Solutions, such as
those shown in Figure 9, with clustered facilities having different service start times can be
obtained only when we describe the movement of people in spatio-temporal dimensions and
consider the service hours for the facilities, in addition to their locations, which cannot be
analyzed by using classical static location models.

For the cases of p = 5, p = 6, and p = 7, two or three stations from the central area of
Tokyo plus Yokohama (or near Yokohama for p = 7) are selected. Other facilities are chosen
in regions to the west and north; facility locations in the solutions for MFCLSTP2, such
as Omiya, Funabashi, and Nishikokubunji, are also selected in MFCLSTP1. These large
stations are located at a distance away from the center and capture flows that may not be
able to access facilities in the central area.

Comparison between objective values of MFCLSTP1 and MFCLSTP2

Finally, we compare between the objective values obtained for MFCLSTP1 and MF-
CLSTP2. Figure 10 shows trends in the percentage of covered flows obtained for the so-
lutions of the two models as the number of facilities increases from p = 2 to p = 7. Note
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Figure 9: Comparison of the best solutions obtained for MFCLSTP1

that both curves generally exhibit a decreasing marginal coverage with the addition of each
facility. This tendency is often encountered in the maximal covering location problem and
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Table 4: The best solutions obtained and corresponding objective values for MFCLSTP1

Shinjuku Shinjuku Shinjuku Ichigaya Ichigaya Ichigaya

19:30 19:30 19:40 19:40 19:40 19:40

Aoyama-itchome Ochanomizu Sugamo Ochanomizu Ochanomizu Ochanomizu

19:00 19:00 19:00 19:20 19:20 19:20

Yokohama Iidabashi Nippori Yokohama Myorenji

19:20 19:20 18:50 19:20 19:30

Yokohama Yokohama Nishi-kokubunji Nishi-kokubunji

19:20 19:20 19:30 19:30

Nishi-kokubunji Omiya Omiya

19:30 19:10 19:10

Funabashi Funabashi

19:10 19:10

Fujisawa

19:10

72.318 76.975 79.715 81.428 82.885 84.083% % % % % %
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Figure 10: Covered flows for the number of facilities

its variants. The effect of independently determining service start times can be seen from
the vertical separation of the two curves. For small p, a difference greater than 3% can
be observed. This difference may provide important information when choosing between a
common or independent timing strategy.

7. Summary and Future Work

This paper focused on facilities providing fixed hours of service and proposed Maximum
Flow-Covering Location and service Start Time Problem (MFCLSTP). MFCLSTP seeks to
find both locations and service start times, so as to maximize the number of covered flows.
Each flow is specified by an origin-destination node pair and the departure time at the origin
node, thus modeling flows in spatio-temporal dimensions. In determining the service start
time of each facility, two models were considered: MFCLSTP1, in which service start time
of each facility can be independently determined, and MFCLSTP2, in which all services
start at the same time. Integer programming formulations of these models are presented as
natural extensions of the static facility location problem.

We proposed heuristic algorithms for the two models, which are generalized versions
of the Teitz and Bart vertex-exchange algorithm for the p-median problem. The models

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



256 K. Tanaka

were applied to a case study of the Tokyo metropolitan railway network composed of 1,804
stations on 125 lines. We built an OD matrix for the commuter traffic flow from census
data, and generated input data for MFCLSTP, by dividing this static flow data between each
departure time to create dynamic data for each flow. Solutions obtained by the heuristic
algorithms can be summarized as follows. When all facilities have to start their service at
the same time, the facilities are spatially dispersed and exhibit a star-shaped pattern in
order to capture flows that move out from the center in various directions. When the start
time for each facility can be determined independently, clustered facilities having different
start times appear in central Tokyo. A dynamic facility location model of this type has
not been fully developed in previous literature, and the results from the case study revealed
characteristics that cannot be obtained using existing location models.

There are a number of important directions for future research. The definition of coverage
may change according to the types of services considered. We have considered a service
where full consumption is desirable or required, such as cinema, baseball games, and lectures.
However, many types of services may be consumed where people stop at a facility for a fixed
length of time (e.g., 2 h for dinner at a restaurant). This type of extension can be included
in the model by changing the definition of the coverage index, but may require development
of different solution algorithms.

A case where we might improve an existing service that is already provided in spatio-
temporal dimensions is also of interest. Changing the present location of facilities or service
start times requires costs in terms of time and money, but can result in capturing larger
demands. This modeling approach is found in classical static location models (e.g., Wang
et al. [29]), and therefore this topic can be considered as a spatio-temporal extension of the
existing framework. Many variants of the maximal covering location problem have been
proposed. Similarly, various generalized models of MFCLSTP can also be constructed. For
example, coverage can be redefined when there are two or more accessible facilities for a
given flow.

An important research direction is to analyze the problem under more realistic settings.
Taguchi [25] constructed a space-time network for modeling the detailed movement of trains
in the Tokyo metropolitan area and thereby analyzed interesting real-world problems. By
using this approach, detailed analysis can be conducted to evaluate existing facility services
or service alternatives. In the present analysis, we build a (static) travel time matrix and use
this matrix as an input for the proposed heuristic, allowing us to develop a simple algorithm.
Developing more complex solution algorithms is required for solving MFCLSTP when using
the approach employed by Taguchi [25].

Finally, the solution algorithms proposed in this paper are straightforward and easy to
implement. Extensions under a metaheuristic framework are practically important. Evalu-
ating the quality of solutions obtained for several algorithms is also important.
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