Journal of the Operations Research Society of Japan (© The Operations Research Society of Japan
Vol. 54, No. 4, December 2011, pp. 219-236

LAGRANGIAN-BASED COLUMN GENERATION
FOR THE NODE CAPACITATED IN-TREE PACKING PROBLEM

Yuma Tanaka Shinji Imahori Mutsunori Yagiura
Nagoya University

(Received August 1, 2011; Revised September 30, 2011)

Abstract In this paper, we deal with the node capacitated in-tree packing problem. The input consists of
a directed graph, a root node, a node capacity function and edge consumption functions for heads and tails.
The problem is to find a subset of rooted spanning in-trees and their packing numbers, where the packing
number of an in-tree is the number of times it is packed, so as to maximize the sum of packing numbers
under the constraint that the total consumption of the packed in-trees at each node does not exceed the
capacity of the node. This problem is known to be NP-hard.

Previously, we proposed a two-phase heuristic algorithm for this problem. The algorithm generates
promising candidate in-trees to be packed in the first phase and computes the packing number of each in-
tree in the second phase. In this paper, we improve the first phase algorithm by using Lagrangian relaxation
instead of LP (linear programming) relaxation.

We conducted computational experiments on graphs used in related papers and on randomly generated
instances. The results indicate that our new algorithm generates in-trees faster than our previous algorithm
and obtains better solutions than existing algorithms without generating many in-trees.

Keywords: Combinatorial optimization, Lagrangian relaxation, LP relaxation, column
generation, sensor network

1. Introduction

In this paper, we consider the node capacitated in-tree packing problem (NCIPP). The input
consists of a directed graph, a root node, a node capacity function and edge consumption
functions for heads and tails. The problem is to find a subset of rooted spanning in-trees
and their packing numbers, where the packing number of an in-tree is the number of times
it is packed, so as to maximize the sum of packing numbers under the constraint that the
total consumption of the packed in-trees at each node does not exceed the capacity of the
node.

Let G = (V,E) be a directed graph, r € V be a root node and R; be the set of
nonnegative real numbers. In addition, let t : £ — R, and h : E — R, be tail and head
consumption functions on directed edges, respectively, and b; € R, be the capacity of a
node 7 € V. For convenience, we define T}; as the set of all spanning in-trees rooted at the
given root 7 € V in the graph G. Let 6 (i) (resp., 0; (i)) be the set of edges in an in-tree
J € Ton leaving (resp., entering) a node ¢ € V. The consumption a;; of an in-tree j € Ty at

a node ¢ € V is defined as
a;= Y tle)+ > hle). (1.1)

e (i) e€d; (i)

We call the first term of this equation (1.1) tail consumption, and the second term head
consumption. The node capacitated in-tree packing problem is to find a subset T C Ty

219

220 Y. Tanaka, S. Imahori, & M. Yagiura

of spanning in-trees and the packing number z; of each in-tree j € T" subject to the node
capacity restriction

Zaijﬂfj < bi, Vi € ‘/, (12)
JET
so as to maximize the total number of packed in-trees > jer T Throughout this paper, an
in-tree means a spanning in-tree even if we do not clearly state spanning.

This problem is known to be NP-hard [12]. Furthermore, it is still NP-hard even if
instances are restricted to complete graphs embedded in a space with tail consumptions
depending only on the distance between end nodes.

This problem is studied in the context of sensor networks. Recently, several kinds of
graph packing problems are studied in the context of ad hoc wireless networks and sensor
networks. These problems are called network lifetime problems. The important problems
included among this category are the node capacitated spanning subgraph packing prob-
lems [3,10,17]. For sensor networks, for example, a spanning subgraph corresponds to a
communication network topology for collecting information from all nodes (sensors) to the
root (base station) or for sending information from the root to all other nodes. Sending a
message along an edge consumes energy at end nodes, usually depending on the distance
between them. The use of energy for each sensor is severely limited because the sensors
use batteries. It is therefore important to design the topologies for communication in order
to save energy consumption and make sensors operate as long as possible. For this prob-
lem, Heinzelman et al. [10] proposed an algorithm, called LEACH-C (low energy adaptive
clustering hierarchy centralized), that uses arborescences with limited height for communi-
cation topologies. For more energy efficient communication networks, a multiround topology
construction problem was formulated as an integer programming problem, and a heuristic
solution method was proposed in [17]. In the formulation of [3], head consumptions are not
considered, and the consumption at each node is the maximum tail consumption among
the edges leaving the node. There are variations of the problem with respect to additional
conditions on the spanning subgraph such as strong connectivity, symmetric connectivity,
and directed out-tree rooted at a given node. Calinescu et al. [3] discussed the hardness of
the problem and proposed several approximation algorithms.

These network lifetime problems are similar to the well-known edge-disjoint spanning
arborescence packing problem: Given a directed graph G = (V, E) and a root r € V| find
the maximum number of edge-disjoint spanning arborescences rooted at r. The edge-disjoint
spanning arborescence packing problem has been investigated from long ago [6], and it is
known that the problem is solvable in polynomial time [14]. Its capacitated version is also
solvable in polynomial time [9, 15, 16]. Furthermore, a fundamental result in [6] was recently
generalized in [13].

For the node capacitated in-tree packing problem, we proposed a two-phase algorithm
[18]. In the first phase, it generates candidate in-trees to be packed. The node capacitated
in-tree packing problem can be formulated as an IP (integer programming) problem, and the
proposed algorithm employs the column generation method for the LP (linear programming)
relaxation of the problem to generate promising candidate in-trees. In the second phase, the
algorithm computes the packing number of each in-tree. Our algorithm solves this second-
phase problem by first modifying feasible solutions of the LP relaxation problem and then
improving them with a greedy algorithm.

In this paper, we propose a new first-phase algorithm. The new algorithm employs the
Lagrangian relaxation instead of the LP relaxation, and it uses the subgradient method to

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 221

obtain a good Lagrangian multiplier vector. One of the merits of the classical subgradient
method is that it is simple and easy to implement; however, it was rather slow and took
long time to generate sufficient number of in-trees. To alleviate this, we incorporate various
ideas to speed up the algorithm, e.g., rules to decrease the number of in-trees used by the
subgradient method, and to reduce the practical computation time for each iteration of the
subgradient method.

We conducted computational experiments on graphs used in related papers and on ran-
domly generated instances with up to 200 nodes. The results show that the new algorithm
obtains solutions whose gaps to the upper bounds are quite small, and comparisons with
existing algorithms show that our new method works more efficiently than them.

2. Formulation

The node capacitated in-tree packing problem (NCIPP) can be formulated as the following
IP problem:

maximize Z xj,
J€Tan

subject to Z a;jr; <b, VieV, (2.1)
J€Tan
Z; >0, T; € 7, Vj e Tu.

The notations are summarized as follows:
V' the set of nodes,
T.u: the set of all in-trees rooted at the given root r € V,
a;j: the consumption (defined by equation (1.1)) of an in-tree j € Ty, at a node i € V/,
b;: the capacity of a node i € V,
x;: the packing number of an in-tree j € Ty,
Z: the set of all integers.

We defined Ty, as the set of all in-trees rooted at the given root r € V. However, the
number of in-trees in T, can be exponentially large, and it is difficult in practice to handle
all of them. We therefore consider a subset T" C T,y of in-trees and deal with the following
problem:

P(T) maximize Z T,

jET
subject to Zaijxj <b, VieV,
JET
x; >0, x; €L, VjeT.

If T'= T,y the problem P(T,y) is equivalent to the original problem (2.1). We denote the
optimal value of P(T) by OPT p(r).

To consider the Lagrangian relaxation problem of P(7'), the maximum packing number
u; of each in-tree j € T' is defined as u; = miney. 4,,50|bi/ai;] (where |y] stands for the

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

222 Y. Tanaka, S. Imahori, & M. Yagiura

floor function of y). The Lagrangian relaxation problem is formally described as follows:

LR(T, \) maximize Z xj+ Z i (bi - Z aijxj) (2.2)

jeT €V JeET
JjeT eV
subject to 0 < z; < uy, Ve,

where \; > 0 is the Lagrangian multiplier for a node i € V., A = (\; | i € V) is the vector of
Lagrangian multipliers, and ¢;j(A\) =1 — .\, a;;\; is the relative cost of an in-tree j € T'.
We denote the optimal value of LR(T, A\) by OPTr(r,x) and an optimal solution of LR(T', \)
by x(\). For any A > 0, an optimal solution z(\) can be calculated easily as follows:

_) (6N >0),

In general, OPT (7) gives an upper bound of OPTp(7) for any A > 0.

3. New In-Trees Generating Algorithm

In this section, we explain the new algorithm to generate in-trees. Our algorithm prepares
an initial set of in-trees by a simple algorithm in Section 3.1. It then generates in-trees by
using the information from Lagrangian relaxation, whose details are explained in Sections
3.2-3.4. To obtain a good upper bound and a Lagrangian multiplier vector, it applies the
subgradient method to a current in-tree set, and then it tries to add a new in-tree to the
current in-tree set by solving a pricing problem. After adding a new in-tree, it applies the
subgradient method to the new in-tree set, and the above steps are repeated until a stopping
criterion is satisfied. We also explain a method that obtains good feasible solutions of P(T,y)
(i.e., this method corresponds to the second-phase algorithm in our previous paper [18]).
3.1. Initial set of in-trees

The column generation method can be executed even with only one initial in-tree. How-
ever, we observed through preliminary experiments that the computation time was usually
reduced if an initial set with more in-trees was given. We also observed that, for randomly
generated in-trees, the computation time did not decrease much when we increased the
number of in-trees in the initial set beyond |V|. Based on these observations, we use |V|
randomly generated in-trees as the initial set of in-trees.

Remark. Tmahori at el. [12] proved that finding one packed in-tree that satisfies the node
capacity restriction (1.2) is NP-hard. Consequently, it is not always easy to create an initial
set of in-trees for it, and hence we only deal with problem instances for which this part is
easy, e.g., those such that any in-tree can be packed at least once, in other words, instances
for which a;; < b; holds for all ¢ € V' and j € T,y. This condition is satisfied, for example, if
maXees+ (i) t(€) + D es- () P(e) < b; holds for all i € V', where 67 (i) (vesp., 7 (4)) signifies the
set of edges in E leaving (resp., entering) each node i € V. This intuitively means that head
and tail consumptions are sufficiently small compared to node capacities. Even with this
restriction, the problem remains NP-hard as proved by Theorem 7 in [12]. There are many
applications in which it is natural to assume that head and tail consumptions are sufficiently
small compared to node capacities. For example, in sensor network applications [10,17],
head consumption corresponds to energy consumption for processing received messages,

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 223

and it is much smaller than tail consumption that corresponds to energy consumption for
transmitting messages. Node capacity corresponds to the battery capacity of a sensor, which
is usually sufficiently large for transmitting messages thousands of times.

3.2. Subgradient method

We employ the subgradient method to obtain Lagrangian multiplier vectors A that give good
upper bounds of P(T) (i.e., OPTg(ry)) for the current set of in-trees 7. The subgradient
method is a well-known heuristic approach to find a near optimal Lagrangian multiplier
vector [1,7,11]. Tt uses the subgradient s(\) = (s; | i € V), associated with a given A,
defined by si(A) = bj — >_cpaijz;(A) for all i € V. This method repeatedly updates a
Lagrangian multiplier vector, starting from a given initial vector, by the following formula:

UB(\) — LB
Ziev{si (A)}2

where UB(A) = OPTg(r,\ is an upper bound of P(T'), LB is a lower bound of P(T), and

7 > 0is a parameter to adjust the step size. We denote 0()) := m(UB(X\)—LB)/(>,c-{s: (M) }?),
which is called the step size in general. The parameter 7 is initially set to the value given to
the subgradient method. It is then updated after every N iterations by the following rule:
The parameter 7 is halved whenever the best upper bound has not been changed during
the last N iterations, where N is a parameter that we set N = 30 in our computational
experiments. The iteration of the subgradient method is stopped when 7 becomes less than
0.005. In our algorithm, the above rule to update X is slightly modified as follows: In the
execution of (3.1), we use s;(\) instead of s;(A), where si(A) = 0 if A; = 0 and s;(\) < 0
hold immediately before the execution of (3.1), and s;(\) = s;(\) otherwise.

Let SUBOPT(T, LB, A\, 7) be the subgradient method using a lower bound LB, starting
from an initial vector A\ and a parameter 7 for an in-tree set 7. The procedure SUBOPT
returns p pairs (A1), 7)) .. (A 7)) of Lagrangian multiplier vectors A and parameters
7 such that for k = 1,..., p, the multiplier vector A*) attains the kth best upper bound
UB()) among those generated during the search, and the parameter 7*) is the value of 7
when A*) is found, where the parameter p specifies the number of pairs output by SUBOPT.
These pairs are used in the column generation method whose details are explained in the
next section. Refer to the pseudo code for the details of SUBOPT, in which UBy,. indicates
the best (i.e., minimum) upper bound found during the iteration of SUBOPT.

We set \; = 1/ minjer) oy ao; for all i € V' as the initial Lagrangian multiplier vector
and m = 2 as the initial parameter to adjust the step size if SUBOPT is applied to the
initial set of in-trees. This simple initial setting of parameters is adopted because it is used
only for the first call to SUBOPT and does not have much effect on the performance of the
algorithm. For the second call or later (i.e., when SUBOPT is applied to an in-tree set after
adding a new in-tree by the column generation method), the algorithm uses the information
of the last execution of SUBOPT as follows: The initial values of A and 7 are set to A = A\(*®)
and m = 7 for the k such that the pair (A\®), 7(®)) was used to generate the latest new
in-tree by the column generation method. With this approach, SUBOPT is able to decrease
the number of iterations until a good Lagrangian multiplier vector is obtained.

We employ the greedy algorithm PACKINTREES proposed in our previous work [18] as a
method for producing a lower bound LB (feasible solution) of P(7). This algorithm uses the
maximum packing number, calculated based on the available capacity in each node, as the
evaluation criterion of each in-tree. The proposed algorithm does not frequently update LB;
PACKINTREES is applied to an initial in-tree set, and then it is applied whenever a hundred

Ai 1= max (O, Ai—T si()\)> , VieV, (3.1)

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

224 Y. Tanaka, S. Imahori, & M. Yagiura

Algorithm SUBOPT(T,LB, A, 7)
Input: a set of in-trees 7', a lower bound LB of P(T), an initial Lagrangian multiplier
vector A and an initial parameter .
Output: p pairs (AM, 7MY, .. (MA@ 7)) such that for k = 1,...,p, A¥) attains the kth
best upper bound among those generated during the iteration, and 7(*) is the value of
7 when A is found.
1: Let UBpest := +00 and A := ().
2: Repeat Line 3 to Line 10 N times.
3: Calculate the optimal value OPT g7\ and an optimal solution x(\) of LR(T, A), and
set UB = OPTLR(T,)\)~
4: If |A| < p, then let A := AN (A, 7) and go to Line 6.
If UB is less than the pth best upper bound attained by (A%, 7)) in A, then let
A=A\ (AP 7))y (A).
If UBpest > UB, then update the best upper bound by UBye: := UB.
Calculate the subgradient by s; :=b; — > . aiz;(A) for all i € V.
For every i € V if \; =0 and s; < 0, then let s; := 0.
Calculate the step size 6 :== 7(UB — LB)/(> ",y 57).
10: Update the Lagrangian multiplier vector by A; := max(0, \; — 0s;) for all i € V.
11: If UBypess is not updated during the last N iterations, then let 7 := 7 /2.
12: If 7 < 0.005, then output p pairs (A, 7). (A®@ 7)) in A and stop.
13: Return to Line 2.

o

new in-trees are added, because we confirmed through preliminary experiments that the
performance of our algorithm was not affected much by the quality of lower bounds.

The above explanation of the algorithm describes only basic parts, but we also incorpo-
rated various ideas to speed up the algorithm, e.g., rules to decrease the number of in-trees
used by the subgradient method, and to reduce the practical computation time for each
iteration of the subgradient method. The details of these ideas are explained in Section 3.6.

Remark: Without loss of generality, we can assume b; = b for all ¢ € V', where b is an
arbitrary positive constant, e.g., we can normalize the capacities by setting b; := 1 for all
i € V and h(vw) = h(vw)/by, t(vw) := t(vw)/b, for all vw € E. Such normalization
is known to be preferable to make the subgradient method stable, and we adopted this
technique.

3.3. Column generation method
We employ the column generation method to generate candidate in-trees. It starts from an
initial in-tree set T' C T, and repeatedly augments 7" until a stopping criterion is satisfied.

Let T7(X) be the set of all in-trees having positive relative costs ¢;j(A) > 0 for a La-
grangian multiplier vector A (i.e., TT(X) = {j € Tan | ¢;(A) > 0}). It is clear from
the method of solving LR(T,) (see Section 2) that if a set of in-trees T' C Ty satis-
fies TT(\) C T, then an optimal solution to LR(T,\) is also optimal to LR(Tuy, A). On
the other hand, if there is an in-tree 7 € T}, which is not included in T and has a positive
relative cost ¢.(A) > 0, then an optimal solution xz(\) to LR(T,\) cannot be optimal for
LR(T,, A). It is therefore necessary to find a new in-tree 7 € T \ T that satisfies

Za”)\i < 1. (32)

2%

The problem of finding such an in-tree (column) is generally called the pricing problem.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 225

We showed in [18] that this pricing problem can be efficiently solved if A is a feasible
solution to the dual of the LP relaxation problem of P(T'). To solve the pricing problem,
the algorithm in our previous paper solves the problem of finding a new in-tree 7 € Ty \ T’
that satisfies

ai7—>\7;: min al)\z . 3.3
Z JETa\T (; !) (3:3)

A nice feature of a dual feasible solution A is that c¢;(A) = 1 —>",_, a;;A; < 0 holds for
all j € T, and hence if an in-tree 7 € T, satisfying (3.2) is found, then we can conclude
that 7 is new, i.e., 7 € T. Then the problem of finding a new in-tree 7 that satisfies (3.3)
is equivalent to the problem of finding an in-tree 7 that minimizes the left-hand side of
(3.2) among all in-trees in T,y;. This problem is equivalent to the minimum weight rooted
arborescence problem as shown in [18].

This problem takes as inputs a directed graph G = (V, E), a root node r € V and an
edge cost function ¢ : E — R. The problem consists of finding a rooted arborescence with
the minimum total edge cost. The problem can be solved in O(|E||V]) time by Edmonds’
algorithm [5]. Bock [2] and Chu and Liu [4] obtained similar results. Gabow et al. [§]
presented the best results so far with an algorithm of time complexity O(|E| + |V]log|V]),
which uses Fibonacci heap. We employed Edmonds’ algorithm to solve this problem from
the easiness of implementation.

When the pricing problem is solved for a Lagrangian multiplier vector, the nice feature
of dual feasible solutions is not always satisfied, and the column generation method may
not work; it may generate in-trees that are already in 7. However, we observed through
preliminary experiments that such duplicate generation is not frequent if good Lagrangian
multiplier vectors are used. Based on this observation, we use Lagrangian multiplier vectors
obtained by SUBOPT.

To have higher probability of generating an in-tree not in 7', our algorithm solves the
pricing problem for more than one Lagrangian multiplier vector, and for this reason, we
let the procedure SUBOPT output p Lagrangian multiplier vectors that attain the best p
upper bounds. Our column generation method solves the pricing problem for a Lagrangian
multiplier vector A*) in the ascending order of k starting from k& = 1 until a new in-tree
7 & T is found or all AV, ... A are checked. If a new in-tree is found, then it is added
into the current set of in-trees T'. On the other hand, if no new in-trees are found even after
applying the column generation method to the p Lagrangian multiplier vectors, the entire
procedure of generating in-trees stops.

3.4. Stopping criteria of the column generation method

In this subsection, we consider the stopping criteria of the column generation method. We
introduce two stopping criteria and stop the algorithm when one of these criteria is satisfied.

The first one uses upper bounds of OPTp(r,,). In our previous paper [18], we proposed
a method that calculates an upper bound of OPTp(r,) from a given set of in-trees T and
a nonnegative vector A > 0. More precisely, this method creates a dual feasible solution of
the LP relaxation problem of P(T,;). We observed through computational experiments that
the method gives a tight upper bound if a good in-tree set T" and an appropriate vector A
are given. We use this property as a stopping criterion of the algorithm. For the candidates
of A\, we employed Lagrangian multiplier vectors obtained by SUBOPT, and upper bounds
of P(T.n) are calculated in each iteration of the column generation method. Let UB* be the
best upper bound found by then during the iteration of our column generation algorithm.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

226 Y. Tanaka, S. Imahori, & M. Yagiura

If T is not yet a good set of in-trees, UB* is often updated in the following iterations. On
the other hand, when T becomes a good set of in-trees (i.e, it includes most of valuable
in-trees), UB* is updated infrequently. Hence we stop the algorithm if UB* is not updated
in |V| consecutive iterations.

The second stopping criterion is based on the overlapping of generated in-trees. When no
new in-trees are found even after applying the column generation method to all p Lagrangian
multiplier vectors obtained by SUBOPT, we stop the algorithm (as stated in Section 3.3).

In the computational experiments in Section 4, we set the value of parameter p to 10.
The value of parameter p has little influence on the performance of the algorithm as long
as it is sufficiently large. Indeed, this value p = 10 was large enough in our experiments
because with this value of p, the proposed algorithm never stopped with the second stopping
criterion.

3.5. Proposed algorithm to generate in-trees

The new algorithm to generate in-trees based on the column generation approach with the
Lagrangian relaxation is formally described as Algorithm LRGENINTREES.

Algorithm LRGENINTREES
Input: a graph G = (V, E), a root node r € V, tail and head consumption functions on edges
t: EF— R4, h: E— Ry, node capacities b; € Ry for all ¢ € V| and a parameter p.
Output: a set of in-trees T'.
1: Create the initial set Ty of |V| in-trees randomly. Set T := Ty, UB* := +o0, £ := 0, \; :=
1/minjer > ey Gvj for all i € V and 7 := 2.

2: Invoke PACKINTREES and let LB be the obtained lower bound of P(T").

3: Invoke SUBOPT(T,LB, A,) to obtain AV, ... A®) and 7, ... 7(P) and set £ := ¢ +1.

4: for k=1to p do

5: Calculate an upper bound UB of OPTp(r,) using the current in-tree set 7" and a vector
A) (by the method described in Section 3.4), and let UB* := UB and ¢ := 0 if UB < UB®*.

6: Solve the pricing problem for a vector M%) and let 7 be the generated in-tree.

7. If 7 €T holds, then set T :=TN{7}, A := A®) and 7 := 47®*) and go to Line 10.

8: end for

9: OQutput the set of in-trees T and stop.

10: If £ = |V| holds, then go to Line 9.

11: If a hundred new in-trees are added into T after the last call to PackInTrees, then invoke
PACKINTREES and update LB.

12: Return to Line 3.

3.6. Speed-up techniques

We propose two speed-up techniques for the subgradient method. The first is to decrease
the number of in-trees used by the subgradient method. We observed through preliminary
experiments that in-trees generated during an early period of the algorithm were not useful
in executing the subgradient method. For example, even when about |V| in-trees are added
into the initial in-tree set, almost all in-trees in the initial in-tree set are never used in any
optimal solution of LR(T, \) during the execution of SUBOPT (i.e., z;(A) = 0 for almost
all in-trees j € Tj in all iterations of SUBOPT). Note that if x;(A\) = 0 holds for all
multipliers A generated during the execution of SUBOPT, the removal of the in-tree 5 does
not affect the behavior of SUBOPT. Based on this observation, we incorporate a mechanism
to remove such “unnecessary” in-trees. Because it is not possible to detect unnecessary
in-trees before executing SUBOPT, we adopt a simple estimate based on the search history:

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 227

The algorithm removes in-trees that have been used very rarely during the recent calls
to SUBOPT. More precisely, LRGENINTREES invokes SUBOPT(7”, LB, A, 7) instead of
SuBOprT(T, LB, A, 7), where 7" is the in-tree set obtained by removing unnecessary in-
trees from 7' through the following rule. Whenever SUBOPT is invoked, after its execution
is terminated, the algorithm marks every in-tree whose number of times used as optimal
solutions of LR(T, A) during this invocation of SUBOPT is less than «, where « is a parameter
for adjusting the number of in-trees to be judged unnecessary. We define 7" as the in-tree
set obtained from 7" by removing all in-trees that are marked in (a parameter) successive
calls to SUBOPT during the execution of LRGENINTREES. We set a =5 and § = |V/| in
our computational experiments.

The second is to reduce the practical computation time for each iteration of the subgradi-
ent method. One iteration of SUBOPT is shown from Line 3 to Line 10 of algorithm SUBOPT.
If we implement SUBOPT in a straightforward manner, Lines 3 and 7 take ©(|V||T|) time,
which are the bottlenecks, and other lines take O(|V]) time. Below we explain the ideas to
speed up Lines 3 and 7 of SUBOPT.

The optimal value OPTg(r) and an optimal solution z(A) of LR(T,) are calculated
in Line 3. First, we discuss the method to compute an optimal solution x()). Recalling
the equation (2.4), to calculate an optimal solution z(\) from scratch when the Lagrangian
multiplier vector A is updated, relative costs ¢; () for all j € T must be determined. Because
the computation of ¢;(\) takes O(|V]) time for each j € T, the calculation of an optimal
solution z(\) takes ©(|V||T|) time if naively implemented. However, we note that if (') is
available for the multiplier A" of the previous iteration, it is only necessary to update x;(\)
for those in-trees j whose relative cost changes from ¢;(\) > 0 to ¢;(A) < 0, or vice versa.
Moreover, because the change in the values of \; is small in every iteration (except for the
early stage of SUBOPT), the value of z;(\) tends to stay the same (i.e., z;(A\) = z;(\)) for
most of the in-trees j. Based on this observation, we introduce upper and lower bounds of
relative costs ¢;(A), and the algorithm skips the computation of the exact value ¢;(\) for
every in-tree j such that the value of z;(\) is easily determined from the upper or lower
bound. Assume that we have an upper bound ¢j®(A) and a lower bound ¢} ()) of relative
cost ¢;(A) for all in-trees j € T. We can decide 2;(\) = 0 when ¢/®(X) < 0 and x;(\) = u;
when ¢;?(X) > 0 for each in-tree j € T even if we do not have the exact value of ¢;(A). The
algorithm then calculates the exact value of ¢;(A) only if neither is satisfied (i.e., ¢f®(X) > 0
and ¢;®(A) < 0). If good upper bounds ¢/P()) and good lower bounds ¢;?(\) are given,
we can reduce the actual computation time, though the worst case time complexity does
not change from O(|V||T|). Before explaining the method we adopted to compute upper
and lower bounds, we confirm that the omission of computing c;(A\) does not affect the
computation of other parts of SUBOPT.

Let us discuss the method of computing the optimal value OPT g,). Because we omit
the calculation of the exact values of ¢;(\) for some in-trees when obtaining an optimal
solution (), it is no longer possible to calculate OPT g7,z by the equation (2.3). Instead,
we calculate OPT g1y by the equation (2.2). The equation (2.2) can be rewritten as
follows:

>N+ N (bi -y aijxj(x)> =3 2N+ Aisi(A).
jET eV jeT jET eV

If the subgradient s(\) is given, we can calculate OPT pg(ry) in O(|V| + |T|) time by this

equation. In the pseudocode of Algorithm SUBOPT, the subgradient s(\) is computed

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

228 Y. Tanaka, S. Imahori, & M. Yagiura

after calculating the optimal value OPT (7 \). However, it is easy to see that there is no
problem in computing the subgradient s(\) before obtaining OPT gz, i.e., the order of
computation in Lines 3-7 is modified as follows: The optimal solution z(\) is first computed,
and the subgradient s()) is obtained next. The optimal value OPT, R(T,\) is then calculated,
and the set A and the best upper bound UBy, are updated if necessary.

We next focus on Line 7 in which the subgradient s(\) is calculated. As in the case of
Line 3, it takes ©(|V||T]) time if naively implemented. The equation (2.4) indicates that
x;(A) takes either 0 or u; for all j € T, and only those in-trees j with x;(\) = u; contribute
to the calculation of the subgradient s(\), i.e., we can calculate s(\) as follows:

Sz(>\) = bz — Z (lijIj<>\).
JET
zj ()=,

In our preliminary experiments, we observed that most of the variables in an optimal so-
lution have z;(A) = 0 for many iterations of SUBOPT. We can therefore reduce the actual
computation time though the worst case time complexity does not change from O(|V||T).

We then explain how our algorithm computes an upper bound ¢j/®()) and a lower bound
¢ZB(X). In the first iteration of SUBOPT, it calculates the exact value of relative cost c;(\)
and sets ¢j®(A) == ¢;(A) and ¢/P()) := ¢;(A) for all in-trees j € T. In the subsequent

iterations, the algorithm updates ¢j®(X) and ¢j®()) as follows. For the consumptions a;; of

in-tree j at node 4 defined by the equation (1.1), a® and a™™ are defined as
= i A4
a; I?Ea,Tx a;j, (3.4)
P = min a;;. 3.5
a;"" = min a;; (3.5)

Assume that we have the Lagrangian multiplier vector X of the previous iteration, and
consider the moment when)\ is updated to A by the equation (3.1). We define A\ as the
difference between the values of the Lagrangian multiplier vectors A" and A, i.e., A = X'+ A\.
The relative cost ¢;(A) of the updated Lagrangian multiplier vector A is as follows:

G(A) = (N + AN =1=) a;(X + A\)
eV
=Cj (>\/> — Z aijA)\i.

%

By equations (3.4) and (3.5), if ¢fB(N) < ¢;(N) < ¢fP(X) is satisfied, the following inequal-
ities hold:

eV

Gi(A) = ¢ (N + AN <PV = D7 AN =) a™mAN,
AZ/\EZZO AN >0

G(A) = (N + AN = BN = > a™ AN = Y aM™AN,

Using these results, we can obtain an upper bound ¢j®()) and a lower bound ¢;®()) of the

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 229

relative cost ¢;(\) as follows:

PN =P N) = Y aM AN = Y amAN, (3.6)
eV eV
AN <0 AX;>0

(V) = B(N) = D a™ AN =) am AN (3.7)
% eV
AN >0 AN;<0

By using (3.6) and (3.7), we have upper and lower bounds ¢JP()) and ¢}®()) for each
iteration of SUBOPT except for the first iteration even if the computation of ¢;(\) is omitted.
Note that whenever the exact value of ¢;(A) is computed, the values of ¢/P()) and ¢/®(X)
are set to ¢j(A). The computation time of the update by equations (3.6) and (3.7) for all
j € Tis O(|[V]| +|T]) and is small. The computation time of obtaining a** and @™ for
all i € V is O(|V||T]), but we need to calculate a?** and a™® for all i € V only once at
the beginning of SUBOPT whenever it is invoked. This time complexity is the same as the
time to compute the exact values of ¢;(\) for all j € T in the first iteration of SUBOPT
and hence is sufficiently small, but we can further reduce the computation time of obtaining
a® and a™® for all 7 € V by using heaps, i.e., if we use two heaps to maintain a> and
a™™ for all ¢ € V, which are updated whenever a new in-tree is added or an unnecessary in-
tree is removed, the computation time throughout the execution of the proposed algorithm
becomes O(|V||T'|log|T|) time independent of the number of calls to SUBOPT. We adopted
this method in our implementation. Note that the calculation of ¢J®()) and ¢}®(\) for all
J € T never becomes the bottleneck in the iterations of SUBOPT. The above rule to compute
the upper bound c¢VB()\) and the lower bound c¢*B()\) is very simple, but we observed that
this technique is quite effective in reducing the computation time of SUBOPT.

According to our comparison between the basic algorithm and the one incorporated with
all above speed-up techniques, the execution time per call to SUBOPT became about 2—4

times faster.
3.7. Method to obtain feasible solutions

We proposed an algorithm to generate a set of in-trees in the previous sections. To evaluate
the performance of the proposed algorithm on the node capacitated in-tree packing problem,
a method to obtain a feasible solution of P(T,y) is necessary. Based on the second-phase
algorithm proposed in [18], we devise a heuristic method called PACKINTREES*.

Let Ty be the initial set of in-trees and T}, be the set of in-trees T after the kth iter-
ation of LRGENINTREES for £k = 1,..., f, where f is the number of in-trees generated
by LRGENINTREES. The procedure PACKINTREES* solves the LP relaxation problems of
P(Ty_,),..., P(Ty) and obtains an optimal solution for each problem, where 7 is a param-
eter that we set v = 10 in our computational experiments. For each optimal solution x*
of the LP relaxation problems, a feasible solution of P(T,y) is generated by rounding down
every variable x} of the solution, and then it is improved by applying PACKINTREES, which
is the greedy algorithm proposed in [18]. Among the 7 feasible solutions obtained by this
procedure, PACKINTREES* outputs the best one.

4. Computational Experiments
4.1. Instances and experimental environment

We use two types of instances in our experiments. The first one is based on sensor location
data used by Heinzelman et al. [10] and Sasaki et al. [17] in their papers about sensor

Copyright (© by ORSJ. Unauthorized reproduction of this articleis prohibited.

230 Y. Tanaka, S. Imahori, & M. Yagiura

networks. From their data, we generated complete graphs with symmetric tail and head
consumption functions and node capacities, where the consumption functions are equivalent
to the amount of energy consumed to transmit and receive packets, and node capacities are
equivalent to the capacities of sensor batteries in their papers. To be more precise, as in [10]
and [17], we use parameters Fee. = 50 nJ/bit, eg = 10 pJ/bit/m?, ,,, = 0.0013 pJ/bit/m?*,
Epa = 5nJ/bit/signal, [= 4200 bit and dy = 87 m. Defining d(vw),vw € E as the
Euclidean distance from a vertex v to a vertex w, we use the following consumption functions

t() lEelec + lgfs{d(UUJ)}Q, if d(vw) < d(],
W) =
[Eeec + lemp{d(vw)}, if d(vw) > do,

h(vw) = lEelec + {Epa

and capacities b; = 0.5 J for all i« € V. We call the instances hcb100, sfis100-1, sfis100-2 and
sfis100-3, where hcb100 is the instance generated using the sensor location data in [10], and
sfis100-1, 2 and 3 are the instances generated using the sensor location data called datal, 2
and 3, respectively, in [17].

The second type consists of randomly generated instances. We named them “rndn-9-b-
(h, t or none),” where n is the number of nodes, ¢ is the edge density, b is the capacity of all
i€V~ (where V- =V \ {r}) and h, t or none shows which of head and tail consumptions
is bigger (i.e., “h” implies that head consumptions are bigger than tail consumptions, “t”
implies that tail consumptions are bigger than head consumptions, and no sign implies
head and tail consumptions are chosen from the same range). We generated instances with
n = 100,200, 6 = 5%,50% and b = 10000, 100000 (+oc for the root node r). Instances of
d = 5% (50%) are generated so that the out-degree of each node ranges from 4% (40%)
to 6% (60%) of the number of nodes. Tail and head consumptions for “h” instances were
randomly chosen from the integers in the intervals [3,5] and [30,50], respectively, for all
edges not connected to the root. Similarly, those for “t” instances were randomly chosen
from [30, 50] and [3, 5], and those for instances without “h” or “t” sign were randomly chosen
from [30,50] and [30,50]. The tail consumption of edges entering the root node r for all
instances were randomly chosen from the integers in the interval [300,500] so that these
edges cannot be used frequently.

The algorithms were coded in the C++ language and ran on a Dell PowerEdge T300
(Xeon X3363 2.83GHz, 6MB cache, 24GB memory), where the computation was executed
on a single core. We used the primal simplex method in GLPK4.43* as LP solver.

4.2. Experimental results

Figure 1 represents the behavior of the proposed algorithm LRGENINTREES and the previ-
ous algorithm GENINTREES applied to rnd200-50-100000-h. The horizontal and the vertical
axes represent the number of in-trees generated by algorithms and the objective value, re-
spectively. (Note that to draw this figure, Algorithm LRGENINTREES was not terminated
with its standard stopping criterion even though the stopping criterion was satisfied before
3000 in-trees were generated.) The figure shows the improvement of the best upper bounds
of the original problem P(T,;) and the upper bounds of the subproblem P(T") as in-trees
are added into T at each iteration. For LRGENINTREES, the upper bound of P(7T) means
the best optimal value OPT g7) for all A generated by the latest call to SUBOPT before
T is updated, and for GENINTREES, the upper bound of P(T) is the optimal value of the

*GLPK — GNU Project — Free Software Foundation (FSF), http://www.gnu.org/software/glpk/, 20 July
2011.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 231

5000 — .

T
upper bound of P(T’)
| L upper bound of P(T,y;)
4500 L ‘ upper bound of P(T
| upper bound of P(Tyy

000 | 3 i
3500 | N Iy g

3000 | e N

objective value

2500

2000

1500 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

number of generated trees

Figure 1: Behavior of the proposed and the previous first-phase algorithms
LRGENINTREES and GENINTREES applied to rnd200-50-100000-h (“Lag.” and “LP” rep-
resent LRGENINTREES and GENINTREES, respectively)

LP relaxation problem for 7. Along with their improvement, the difference between two
upper bounds becomes smaller and the ratio of improvement decreases. In general, this
tendency is often observed when applying the column generation method. We can observe
that two upper bounds of LRGENINTREES converge much faster than GENINTREES, i.e.,
LRGENINTREES generates in-trees necessary to obtain good upper bounds of P(T,;) much
earlier than GENINTREES. Such a set of in-trees tends to be useful to obtain good feasible
solutions of P(T,;). We also observed a similar behavior for the other instances.

Table 1 shows the results of the proposed algorithm for the problem instances explained
in Section 4.1. It also shows the results of existing algorithms [17, 18] for comparison pur-
poses. The first three columns represent instance names, the number of nodes |V ~| (without
the root node), and the number of edges |E|. Column UBy,) shows the best-known upper
bounds of OPTp(r,,) computed by the algorithm in [18] allowing long computation time.
The next columns include the experimental results of the proposed algorithm and the pre-
vious algorithm [18]. Column |T'| shows the number of in-trees generated by the algorithm
LRGENINTREES, and column UB* shows the best upper bound of OPTp(r,,) obtained by
LRGENINTREES. The next three columns represent objective values, denoted “Obj.,” the
gaps in % between UBy . and Obj., i.e., (UBpx — Obj.)/UByx.) x 100, and computation
times in seconds. The last column SFIS shows the results obtained by our implementation
of the algorithm in [17]. Because their program code was specialized to Euclidean instances
and was not applicable to randomly generated instances, we implemented their algorithm
to apply it to our instances. To make the comparison fair, the previous algorithm [18] was
stopped when it generated the same number of in-trees as the new algorithm, and we set
the time limit of SFIS to 10 seconds for instances with |VV~| = 100 and 100 seconds for
instances with |V ~| = 200.

The results presented in Table 1 show that the proposed algorithm obtains better results
than the previous algorithm and SFIS. The proposed algorithm attains better objective
values than the previous algorithm even though its computation time is shorter (except for
some instances with |V ~| = 100) and the number of generated in-trees is the same. The
computation time of the proposed algorithm is about one minute on average for instances
with |V ~| = 200, and the number of in-trees generated by the proposed algorithm is about
7|V 7| on average. The gaps between upper bounds and objective values are quite small;

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

232 Y. Tanaka, S. Imahori, & M. Yagiura
Table 1: Computational results of three algorithms
Instance name V-] |E| UByux. Proposed Algorithm Prev. Algorithm [18] SFIS
| UB* Obj. Gap Time Obj. Gap Time

hcb100 100 10100 1124 684 1125 1119 0.44 6.2 1092 2.85 6.0 930
sfis100-1 100 10100 1097 695 1098 1089 0.73 8.4 1081 1.46 6.1 1032
sfis100-2 100 10100 1097 556 1098 1090 0.64 5.8 1059 3.46 3.9 1032
sfis100-3 100 10100 1101 696 1102 1095 0.54 8.8 1089 1.09 6.6 1021
rnd100-5-10000-h 100 473 225 627 225 216 4.00 4.1 181 19.56 5.7 159
rnd100-5-10000-t 100 473 217 788 229 217 0.00 7.1 191 11.98 7.5 209
rnd100-5-10000 100 473 128 608 128 123 3.91 3.8 108 15.63 5.4 99
rnd100-5-100000-h 100 473 2251 605 2252 2243 0.36 5.3 1874 16.75 5.2 1611
rnd100-5-100000-t 100 473 2173 869 2302 2173 0.00 12.0 2046 5.84 9.2 2108
rnd100-5-100000 100 473 1283 691 1283 1276 0.55 5.4 1160 9.59 7.1 1003
rnd100-50-10000-h 100 4938 272 931 272 263 3.31 104 261 4.04 109 211
rnd100-50-10000-t 100 4938 270 656 270 257 4.81 7.1 186 31.11 6.3 238
rnd100-50-10000 100 4938 149 542 149 143 4.03 4.2 132 1141 3.8 119
rnd100-50-100000-h 100 4938 2726 784 2726 2717 0.33 9.9 2673 1.94 7.8 2292
rnd100-50-100000-t 100 4938 2701 628 2701 2688 0.48 9.2 1945 27.99 6.0 2413
rnd100-50-100000 100 4938 1498 597 1499 1490 0.53 5.1 1430 4.54 4.6 1295
rnd200-5-10000-h 200 1970 260 1065 260 247 5.00 20.4 185 28.85 70.9 172
rnd200-5-10000-t 200 1970 250 1323 261 249 0.40 39.1 183 26.80 104.0 229
rnd200-5-10000 200 1970 141 898 141 131 7.09 154 104 26.24 55.6 106
rnd200-5-100000-h 200 1970 2602 1451 2603 2583 0.73 56.7 2152 17.29 149.8 1755
rnd200-5-100000-t 200 1970 2500 1291 2622 2500 0.00 52.8 1943 22.28 101.0 2302
rnd200-5-100000 200 1970 1411 1005 1412 1401 0.71 22.7 1173 16.87 70.3 1091
rnd200-50-10000-h 200 20030 287 1652 287 273 4.88 73.3 265 7.67 153.6 200
rnd200-50-10000-t 200 20030 286 1329 286 273 4.55 58.9 179 37.41 109.0 250
rnd200-50-10000 200 20030 156 987 157 146 6.41 29.0 107 3141 51.8 111
rnd200-50-100000-h 200 20030 2874 1525 2876 2857 0.59 76.5 2779 3.31 123.9 2374
rnd200-50-100000-t 200 20030 2867 1270 2868 2855 0.42 78.1 1920 33.03 100.9 2542
rnd200-50-100000 200 20030 1569 929 1570 1552 1.08 28.8 1299 17.21 48.2 1332

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 233

they are especially small for instances with b = 100000 and are less than 1% except for the
last instance. Moreover, the proposed algorithm found exact optimal solutions for three
instances.

Table 2 shows the computation time and the number of generated in-trees required by
the previous algorithm to attain the solution value of the proposed algorithm. Columns in
Table 2 have the same meaning as columns in Table 1 except for column Time, and the
first five columns are taken from Table 1. Column Time shows the computation time spent
for the first phase of generating in-trees, i.e., it does not include the time spent for the
greedy algorithm of the second phase (the reason for reporting such computation time is
explained in the remark below). The next three columns show the results of the previous
algorithm when it attained the solution value of the proposed algorithm (except for those
it failed in obtaining such a solution). For the instances with a symbol “x” in column Obj.,
the previous algorithm was not able to attain the solution value of the proposed algorithm
before its stopping criterion was satisfied. For such instances, the table shows the results
of the previous algorithm when it stopped with its original stopping criterion. The results
indicate that to obtain a solution value similar to the proposed algorithm, the previous
algorithm needs to generate a larger number of in-trees and this takes a long computation
time. This tendency is clearer for instances with [V ~| = 200.

Remark. To take the data in Table 2, we needed to modify the previous algorithm
for the following reason. The previous algorithm generates a set of in-trees 7" in the first
phase and then applies the greedy method PACKINTREES to the whole T" starting from a
small number of good feasible solutions. That is, no feasible solutions are generated in the
intermediate stage of the first phase. Our objective here, however, is to observe how the
quality of the in-tree set improves with the number of iterations of the previous first-phase
algorithm GENINTREES. For this purpose, we slightly modified the previous algorithm so
that it generates a feasible solution whenever a new in-tree is added. For this reason, the
results of the previous algorithm in Table 2 are not necessarily the same as those reported
in [18] even when the algorithm stopped with its original stopping criterion. Because the
modified version of the previous algorithm applies the greedy method PACKINTREES to
more feasible solutions than the original one, it spends much longer computation time than
the original. The proposed algorithm, on the other hand, applies the greedy method to a
limited number of feasible solutions as in the case of the original version of the previous
algorithm, and hence it spends much less computation time for the second phase than the
modified version of the previous algorithm. We thus reported the computation time without
the execution time of the greedy method to make the comparison fair.

5. Conclusions

In this paper, we proposed an algorithm to generate promising candidate in-trees for the
node capacitated in-tree packing problem. This new algorithm generates a set of in-trees
employing the subgradient method and the column generation method for the Lagrangian
relaxation of the problem. We incorporated various ideas to speed up the algorithm, e.g.,
rules to decrease the number of in-trees used by the subgradient method, and to reduce the
practical computation time for each iteration of the subgradient method.

The proposed algorithm obtained solutions whose gaps to the upper bounds are quite
small, and was proved to be more efficient than existing algorithms.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

234 Y. Tanaka, S. Imahori, & M. Yagiura

Table 2: The computation time and the number of generated in-trees required by the
previous algorithm to attain the solution value of the proposed algorithm

Instance name v || Proposed Algorithm Prev. Algorithm [18]
|T| Obj. Timef T Obj. Time!
hcb100 100 10100 684 1119 5.9 1501 1119 27.4
sfis100-1 100 10100 695 1089 8.0 944 1089 10.8
sfis100-2 100 10100 556 1090 5.5 952 1090 11.1
sfis100-3 100 10100 696 1095 8.3 1036 1095 13.8
rnd100-5-10000-h 100 473 627 216 3.7 1492 216 23.8
rnd100-5-10000-t 100 473 788 217 7.0 1227 206* 14.7
rnd100-5-10000 100 473 608 123 34 1520 123 25.2
rnd100-5-100000-h 100 473 605 2243 4.9 2007 2243 40.3
rnd100-5-100000-t 100 473 869 2173 11.9 1227 2162* 14.7
rnd100-5-100000 100 473 691 1276 4.9 1963 1276 39.1
rnd100-50-10000-h 100 4938 931 263 9.7 1120 263 14.7
rnd100-50-10000-t 100 4938 656 257 6.6 1688 256%* 23.7
rnd100-50-10000 100 4938 542 143 3.9 1096 143 14.2
rnd100-50-100000-h 100 4938 784 2717 9.5 1916 2717 40.8
rnd100-50-100000-t 100 4938 628 2688 8.7 1705 2688 24.4
rnd100-50-100000 100 4938 597 1490 4.7 1645 1490 30.6
rnd200-5-10000-h 200 1970 1065 247 17.5 4408 247 1474.9
rnd200-5-10000-t 200 1970 1323 249 38.3 5422 237* 1584.1
rnd200-5-10000 200 1970 898 131 13.2 3591 131 984.2
rnd200-5-100000-h 200 1970 1451 2583 52.3 6799 2583 3547.5
rnd200-5-100000-t 200 1970 1291 2500 52.6 5422 2485* 1583.3
rnd200-5-100000 200 1970 1005 1401 20.0 7224 1401 4105.4
rnd200-50-10000-h 200 20030 1652 273 68.3 2563 273 441.1
rnd200-50-10000-t 200 20030 1329 273 54.6 6062 273 1912.2
rnd200-50-10000 200 20030 987 146 26.7 2522 146 431.0
rnd200-50-100000-h 200 20030 1525 2857 71.9 4448 2857 1563.1
rnd200-50-100000-t 200 20030 1270 2855 73.7 7438 2855 2752.1
rnd200-50-100000 200 20030 929 1552 26.8 3699 1552 1073.5

1 The computation time in these columns is the time spent for the first phase of generating
in-trees, i.e., it does not include the time spent for the greedy algorithm of the second phase.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

Lagrangian-Based Column Generation for NCIPP 235

References

1]

2]

3]

[4]

[9]

[10]

[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]

E. Balas and A. Ho: Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: A computational study. Mathematical Programming Study,
12 (1980), 37-60.

F.C. Bock: An algorithm to construct a minimum directed spanning tree in a directed
network. In B. Avi-Itzak (ed.): Developments in Operations Research (Gordon and
Breach, New York, 1971), 29-44.

G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky: Network lifetime and power
assignment in ad-hoc wireless networks. In G.D. Battista and U. Zwick (eds.): Pro-
ceedings of the 11th Furopean Symposium on Algorithms, Lecture Notes in Computer
Science, 2832 (Springer, 2003), 114-126.

Y. Chu and T. Liu: On the shortest arborescence of a directed graph. Science Sinica,
14 (1965), 1396-1400.

J. Edmonds: Optimum branchings. Journal of Research of the National Bureau of
Standards, T1B (1967), 233-240.

J. Edmonds: Edge-disjoint branchings. In B. Rustin (ed.): Combinatorial Algorithms
(Academic Press, 1973), 91-96.

M.L. Fisher: The Lagrangian relaxation method for solving integer programming prob-
lems. Management Science, 27 (1981), 1-18.

H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan: Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica Archive, 6
(1986), 109-122.

H.N. Gabow and K.S. Manu: Packing algorithms for arborescences (and spanning trees)
in capacitated graphs. Mathematical Programming, 82 (1998), 83-109.

W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan: An application-specific
protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless
Communications, 1 (2002), 660-670.

M. Held and R.M. Karp: The traveling salesman problem and minimum spanning trees:
Part II. Mathematical Programming, 1 (1971), 6-25.

S. Imahori, Y. Miyamoto, H. Hashimoto, Y. Kobayashi, M. Sasaki, and M. Yagiura:
The complexity of the node capacitated in-tree packing problem. Networks, to appear.

N. Kamiyama, N. Katoh, and A. Takizawa: Arc-disjoint in-trees in directed graphs.
Combinatorica, 29 (2009), 197-214.

B. Korte and J. Vygen: Combinatorial Optimization: Theory and Algorithms, 4th
edition (Springer-Verlag, 2007).

W. Mader: On n-edge-connected digraphs. Combinatorica, 1 (1981), 385-386.

P.A. Pevzner: Branching packing in weighted graphs. American Mathematical Society
Translations, 158 (2) (1994), 185-200.

M. Sasaki, T. Furuta, F. Ishizaki, and A. Suzuki: Multi-round topology construction
in wireless sensor networks. Proceedings of the Asia-Pacific Symposium on Queueing
Theory and Network Applications, (2007), 377-384.

Y. Tanaka, S. Imahori, M. Sasaki, and M. Yagiura: An LP-based heuristic algorithm
for the node capacitated in-tree packing problem. Computers & Operations Research,
39 (2012), 637-646.

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

236 Y. Tanaka, S. Imahori, & M. Yagiura

Yuma Tanaka

Department of Computer Science and Math-
ematical Informatics

Graduate School of Information Science
Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
E-mail: tanaka®@al.cm.is.nagoya-u.ac.jp

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.

