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Abstract We build a computational framework for determining an optimal dynamic asset allocation over
multiple periods. To do this, we use a nonlinear control policy, which is a function of past returns of
investable assets. By employing a kernel method, the problem of selecting the best control policy from
among nonlinear functions can be formulated as a convex quadratic optimization problem. Furthermore,
we reduce the problem to a linear optimization problem by employing L1-norm regularization. A numerical
experiment was conducted wherein scenarios of the rate of return of investable assets were generated by
using a one-period autoregressive model, and the results showed that our investment strategy improves an
investment performance more than other strategies from previous studies do.
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1. Introduction

In this paper, we investigate an optimal policy for investing in financial assets over multiple
periods. The importance of the multi-period model for making long-term investments has
become widely recognized (e.g., Mulvey et al. [17]). A motivation for using multi-period
models rather than single-period models can be found in a fact that the rate of return
on an asset is dependent on its time series. For example, DeMiguel et al. [6] recently
used a vector autoregressive (VAR) model to capture the time-series dependence of stock
returns and found that good out-of-sample performance could be achieved on the basis of
the VAR model. Their results encouraged us to use multi-period portfolio optimization
models together with an appropriate uncertainty modeling.

The multi-period model was first framed as a stochastic control problem [15, 16, 22] (see
Infanger [10] for detailed references). Stochastic control aims to design the optimal control
policy (or controller) for managing dynamical systems subject to uncertainty. Although
the optimal decision rules for portfolio selection and consumption were established at an
early stage in [15, 16, 22], it is very difficult to handle stochastic control problems of a
practical size because they are computationally burdensome. Consequently, a number of
studies have focused on stochastic programming models in which the optimal portfolios
are determined instead of optimizing the control policy for managing a portfolio (see, e.g.,
[4, 5, 7, 12, 14, 18, 27]). Most of the stochastic programming models employ either a simulated
path structure or a scenario tree structure for representing the uncertainty of asset returns
(see, e.g., [8, 26]), and these models can be integrated into a hybrid model by Hibiki [9].

The simulated path model describes multi-period scenarios of asset returns using a num-
ber of simulated paths. It can be easily calibrated to actual market behavior, but a “non-
anticipativity condition” is required in the optimization so as to prevent investment decisions
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from depending on future observations on simulated paths. Without this condition, different
investment decisions could be made from one scenario to another and, accordingly, could be
meaningless.

By contrast, the scenario tree model enables one to make conditional investment decisions
in each future state in response to the observations of the history until that state. It has
been demonstrated, e.g., in [11, 13], that stock returns are serially dependent; therefore,
it is probably effective to dynamically rebalance the portfolio on the basis of the observed
realization at the time of the decision. The scenario tree model, however, is disadvantageous
in that the size of the optimization problem grows exponentially as the number of time
periods increases.

In view of these facts, we shall use a control policy, which is represented as a function
of portfolio adjustments, in the simulated path model. Although this policy enables us to
make conditional investment decisions in the simulated path model as well as in the scenario
tree model, its use generally leads to infinite-dimensional and nonconvex optimization.

One remedy for this drawback is to employ a “sub-optimal” solution, namely, to restrict
possible decision rules to the class of control policies that are affine functions of the past
outcomes (see, e.g., [1–3, 20, 25]). Although this sub-optimal solution is computationally
effective, it is clear that this approach may not make the best control policy.

The purpose of this paper is to build a computational framework for determining an
optimal control policy among nonlinear functions for dynamic asset allocation over multiple
periods. To the best of our knowledge, no studies have ever tried to find an optimal nonlinear
control policy by solving a computationally tractable optimization problem. The multi-
period portfolio optimization model we consider has been devised by making reference to
[1–3]. However, our model differs from what is presented in those papers in that

▷ our model is a scenario-based stochastic programming model, and thus, we can optimize
the nonlinear control policy by utilizing the kernel method;

▷ we employ the conditional value-at-risk (CVaR), which has desirable properties as a risk
measure (see, e.g., [19, 21]), whereas [1–3] employ the variance as a risk measure.

The kernel method is an engine for dealing with the strong nonlinearity of statistical
models in machine learning (see, e.g., [23]). By utilizing the kernel method, we can formulate
the simulated path model for finding an optimal control policy among nonlinear functions as
a convex quadratic optimization problem. Further, by employing an L1-norm regularization,
we can reduce the problem to a linear optimization. In the computational experiments, we
first generated scenarios of the rate of return of investable assets by using a one-period
autoregressive model along the lines of [6] to take into account the serial dependence of
stock returns. We then compared the investment performance of our nonlinear control
policy with those of other commonly-used models, i.e., a basic simulated path model and a
model using linear control policies.

The rest of the paper is organized as follows: In Section 2, we describe the portfolio
dynamics and present the basic simulated path model. In Section 3, we formulate the
problem of optimizing a nonlinear control policy by utilizing the kernel method. Numerical
results are given in Section 4, and conclusions are drawn in Section 5.

2. Portfolio Dynamics and Basic Optimization Model

After giving a mathematical description of portfolio dynamics, we formulate the basic multi-
period portfolio optimization model with a simulated path structure.
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Figure 1: Portfolio dynamics in scenario s

2.1. Preliminaries and portfolio dynamics

The terminology and notation used in this paper are as follows:
Index Sets
I := {1, 2, ..., I} : index set of investable financial assets (where asset 1 is cash)
S := {1, 2, ..., S} : index set of given scenarios (or simulated paths)
T := {1, 2, ..., T} : index set of planning time periods

Decision Variables
ui(t) : adjustment of asset i at the beginning of period t (i ∈ I, t ∈ T )
ui,s(t) : adjustment of asset i at the beginning of period t under scenario s

(i ∈ I, s ∈ S, t ∈ T \ {1})
xi,s(t) : investment amount in asset i at the end of period t under scenario s

(i ∈ I, s ∈ S, t ∈ T )
x+
i (0) : investment amount in asset i at the beginning of the first period (i ∈ I)

x+
i,s(t) : investment amount in asset i at the beginning of period t+ 1 under scenario s

(i ∈ I, s ∈ S, t ∈ T \ {T})
vs(t) : portfolio value at the end of period t under scenario s (s ∈ S, t ∈ T )

Given Constants
x̄i(0) : the initial holdings of asset i (i ∈ I)
C(t) : net cash flow at the beginning of period t (t ∈ T )
Ri,s(t) : total return of asset i in period t under scenario s (i ∈ I, s ∈ S, t ∈ T )
Ps : occurrence probability of scenario s (s ∈ S)
Figure 1 illustrates portfolio dynamics in a scenario s. We assume that there are no

transaction costs and that one has an initial portfolio x̄i(0), i ∈ I. If the investor has no
initial endowments, x̄i(0) are set to 0 for all i ∈ I.

One starts investing by adjusting the portfolio as follows:

x+
i (0) = x̄i(0) + ui(1). (2.1)

From the definition of the total return of each asset, the investment amount changes
over the first period as

xi,s(1) = Ri,s(1)x
+
i (0). (2.2)
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Similarly to the first period, we rebalance the portfolio at the beginning of period t ∈
T \ {1}:

x+
i,s(t− 1) = xi,s(t− 1) + ui,s(t), (2.3)

and the investment amount at the end of period t ∈ T \ {1} is as follows:

xi,s(t) = Ri,s(t) x
+
i,s(t− 1). (2.4)

Consequently, the following portfolio dynamics equations are derived from (2.1) through
(2.4):

xi,s(1) = Ri,s(1) (x̄i(0) + ui(1)) ,
xi,s(t) = Ri,s(t) (xi,s(t− 1) + ui,s(t)) , t ∈ T \ {1}. (2.5)

The portfolio value at the end of period t ∈ T in scenario s is the sum of investments:

vs(t) =
∑
i∈I

xi,s(t),

and the expected portfolio value at the end of period t ∈ T is
∑

s∈S Psvs(t).
In addition, the adjustments must satisfy the following cash flow balance equations in

each period: ∑
i∈I

ui(1) = C(1),

∑
i∈I

ui,s(t) = C(t), t ∈ T \ {1}.

When a self-financing portfolio is considered, the net cash flow C(t) is set to 0 for all t ∈ T .

2.2. Basic optimization model

The investment performance of portfolio selection models is usually assessed by using mea-
sures of profitability and risk. In this paper, we use the expected portfolio value as a measure
of profitability and the conditional value-at-risk (CVaR) as a measure of risk. CVaR has
desirable computational and theoretical properties (see, e.g., [19, 21] for the details).

Let β ∈ (0, 1) denote a confidence level. β-CVaR can then be explained as the conditional
expectation of a random loss exceeding the β-value-at-risk (β-VaR), which is the β-quantile
of the random loss (see Figure 2). Now the random loss is defined as the negative of the
portfolio value at the end of period t, i.e., −vs(t), and the corresponding CVaR in each
period is the optimal value of the following linear optimization problem (see [21]):

min

{
a(t) +

1

1− β

∑
s∈S

Pszs(t)

∣∣∣∣∣ zs(t) ≥ −vs(t)− a(t), zs(t) ≥ 0, s ∈ S

}
,

where a(t) and zs(t) are decision variables for calculating the CVaR in period t ∈ T .
To take into account the investment performance in all periods, the following weighted

sum of the expected portfolio value is employed as a measure of profitability:∑
t∈T

η(t)
∑
s∈S

Psvs(t), (2.6)

the following weighted sum of CVaR is employed as a measure of risk:

∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
, (2.7)
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Figure 2: Value-at-risk and conditional value-at-risk

and the objective function to be minimized is given by the following weighted sum of the
measures of profitability and risk:

(1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t),

where
η(t) : given nonnegative weight of the expected portfolio value at the end of period t

(t ∈ T ),
θ(t) : given nonnegative weight of the CVaR at the end of period t (t ∈ T ),
α : the trade-off parameter between profitability and risk, α ∈ (0, 1).

Moreover, we impose constraints on the investment proportion right after rebalancing:

Li (V + C(1)) ≤ x̄i(0) + ui(1) ≤ Ui (V + C(1)) ,
Li (vs(t− 1) + C(t)) ≤ xi,s(t− 1) + ui,s(t) ≤ Ui (vs(t− 1) + C(t)) , t ∈ T \ {1},

where V (:=
∑

i∈I x̄i(0)) is the initial wealth, and Li and Ui are lower and upper limits,
respectively, of the investment proportion in asset i ∈ I. For instance, Li are set to 0 when
short-sales are not allowed.

The basic multi-period portfolio optimization model is formulated as a linear optimiza-
tion problem:

minimize (1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t) · · · (2.8.a)

subject to zs(t) ≥ −vs(t)− a(t), zs(t) ≥ 0, s ∈ S, t ∈ T · · · (2.8.b)

xi,s(1) = Ri,s(1) (x̄i(0) + ui(1)) , i ∈ I, s ∈ S · · · (2.8.c)

xi,s(t) = Ri,s(t) (xi,s(t− 1) + ui(t)) , i ∈ I, s ∈ S, t ∈ T \ {1} · · · (2.8.d)

vs(t) =
∑
i∈I

xi,s(t), s ∈ S, t ∈ T · · · (2.8.e)∑
i∈I

ui(t) = C(t), t ∈ T · · · (2.8.f)

Li (V + C(1)) ≤ x̄i(0) + ui(1) ≤ Ui (V + C(1)) , i ∈ I · · · (2.8.g)

Li (vs(t− 1) + C(t)) ≤ xi,s(t− 1) + ui(t) ≤ Ui (vs(t− 1) + C(t)) ,

i ∈ I, s ∈ S, t ∈ T \ {1} · · · (2.8.h)
(2.8)
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with decision variables a(t), ui(t), vs(t), xi,s(t) and zs(t). It should be noted that ui(t) are
used in place of ui,s(t) in problem (2.8) in order to satisfy the non-anticipativity condition,
which makes the adjustments, ui,s(t), independent of the future total returns, Ri,s(k), k ≥ t.

3. Optimization of Control Policy

3.1. Control policy for making investment decisions

The basic optimization model (2.8) determines the value of adjustments ui(t) for “all”
periods t ∈ T at the beginning of the planning horizon. This is clearly disadvantageous
because only ui(1) are here-and-now decisions and ui(t), t ∈ T \ {1}, are wait-and-see
decisions in the multi-stage stochastic programming model (see, e.g., [24]). That is, only
ui(1) must be fixed at the beginning of the planning horizon, and it is possible to determine
ui(t), t ∈ T \ {1}, on the basis of information available at the end of period t − 1, i.e., on
the basis of the actual values of the investment amounts xi,s(k) and the total returns Ri,s(k)
for 1 ≤ k ≤ t − 1 (see also Figure 1). By taking advantage of such available information
and exploiting the serial dependence of stock returns, we have a chance of improving the
investment performance.

We employ a control policy to make conditional investment decisions. The control policy
is defined as a function of the past investment amount and the past total return. Specifically,
with a control policy Fi,t, the adjustments ui,s(t) are determined as follows:

ui,s(t) = Fi,t (xs(t− 1),Rs(t− 1)) , t ∈ T \ {1}, (3.1)

where

xs(t) := (xi,s(k); i ∈ I, 1 ≤ k ≤ t) ,

Rs(t) := (Ri,s(k); i ∈ I, 1 ≤ k ≤ t) .

Note that the control policies Fi,t are independent of the scenario s; therefore, using the
control policy does not violate the non-anticipativity condition. Additionally, the adjust-
ments ui,s(t) depend on the past outcomes xs(t − 1) and Rs(t − 1), and consequently, we
can make conditional investment decisions about each scenario.

Next, we show that the past investment amounts, xs(t − 1), can be omitted from the
control policy (3.1) by following Calafiore and Campi [3]. To begin with, we derive the
following expression by successively using the portfolio dynamics equations (2.5):

xi,s(t) = Ri,s(t) (xi,s(t− 1) + ui,s(t))

= Ri,s(t)xi,s(t− 1) +Ri,s(t)ui,s(t)

= Ri,s(t)Ri,s(t− 1) (xi,s(t− 2) + ui,s(t− 1)) +Ri,s(t)ui,s(t)

= Ri,s(t)Ri,s(t− 1)xi,s(t− 2) +Ri,s(t)Ri,s(t− 1)ui,s(t− 1) +Ri,s(t)ui,s(t)
...

= Gi,s(1, t) (x̄i(0) + ui(1)) +
t∑

k=2

Gi,s(k, t)ui,s(k),

(3.2)

where
Gi,s(t1, t2) := Ri,s(t1)Ri,s(t1 + 1) · · · Ri,s(t2 − 1)Ri,s(t2), t1 ≤ t2.

It follows from (3.1) and (3.2) that

xi,s(t) = Gi,s(1, t) (x̄i(0) + ui(1)) +
t∑

k=2

Gi,s(k, t)Fi,k (xs(k − 1),Rs(k − 1)) .
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We can see from this that xi,s(t) can be expressed by xj,s(k), j ∈ I, 1 ≤ k ≤ t − 1, and
Rj,s(k), j ∈ I, 1 ≤ k ≤ t. By performing a similar procedure for xi,s(t− 1), xi,s(t− 2), . . . ,
we can see that xi,s(t) can be expressed as a function of Rj,s(k), j ∈ I, 1 ≤ k ≤ t, of the
form xs(t) = Ht (Rs(t)). It follows that

ui,s(t) = Fi,t (Ht−1 (Rs(t− 1)) ,Rs(t− 1)) , i ∈ I, s ∈ S, t ∈ T \ {1}.

Since ui,s(t) can be expressed by a function only of Rs(t−1), it is clear that the following
control policies have the same ability as the control policies (3.1) to design investment
strategies:

ui,s(t) = Fi,t (Rs(t− 1)) , t = T \ {1}.

More specifically, we shall consider a control policy of the form,

ui,s(t) = ui(t) +wi(t)
⊤ϕi,t (Rs(t− 1)) , t = T \ {1}, (3.3)

where ui(t) represent the adjustment actions which are independent of scenarios, and ϕi,t

are nonlinear mappings from RI×(t−1) to RNi,t . After the fashion of machine learning, we call
the image of the mapping a feature vector. Note that wi(t) ∈ RNi,t are parameter vectors
to be determined and that each element of wi(t) represents the weight of the corresponding
feature. A simple example of features would be the following polynomials of degree two:

ϕi,t (Rs(t− 1)) = (Rj,s(k)Rm,s(k) ; j,m ∈ I, j ≥ m, 1 ≤ k ≤ t− 1) ,

and Ni,t = I(I + 1)(t− 1)/2. It is clear that high-dimensional feature vector enables one to
ensure a greater variety of investment strategies.

3.2. Control policy optimization using the kernel method

We could solve a problem of optimizing the control policy (3.3) after the feature vector
functions ϕi,t are properly defined. However, the problem to be solved is intractable if
high-dimensional or infinite-dimensional feature vectors are employed.

A reasonable option to overcome this difficulty is restricting the class of control policies
to a linear one as is done in [1–3]. The following control policies are linear mappings of the
past total returns of µ periods:

ui,s(t) = ui(t)+
t−1∑

k=max{t−µ, 1}

∑
j∈I

ri,j(k, t)
(
Rj,s(k)− R̄j(k)

)
, i ∈ I, s ∈ S, t ∈ T \{1}, (3.4)

where R̄i(t) :=
∑

s∈S PsRi,s(t). ui(t) represent the nominal adjustment actions, and ri,j(k, t)
represent control actions against the past total returns. Both ui(t) and ri,j(k, t) are decision
variables for optimizing the control policy.

Note that the control policy (3.4) is not exactly the same as those used in [1–3] because
their models are not scenario-based. Although the linear control policy (3.4) leads to a
tractable linear optimization problem, nonlinear adjustment actions cannot be implemented.

Thus, in this paper, we utilize the kernel method in order to take into account highly
nonlinear adjustment actions. The kernel method is a class of algorithm for analyzing
nonlinear and complex data in machine learning (see, e.g., [23]). Its greatest merit is that
it enables us to estimate an optimal function (3.3) without explicitly computing in a high-
dimensional or infinite-dimensional feature space. This technique is referred to as the kernel
trick in the context of machine learning.
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We begin by introducing the regularization terms, ∥wi(t)∥2, i.e., the square of the Eu-
clidean norm of wi(t), to our problem. By suppressing the rise in ∥wi(t)∥2, we prevent
the control policy from overfitting the total returns Ri,s(t) used in the problem. This is a
commonly used approach for enhancing the generalization capability of kernel methods (see,
e.g., [23]). By adding regularization terms to the objective, we can consider the following
problem of optimizing the control policy (3.3):

minimize (1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t)

+ λ
∑

i∈I\{1}

∑
t∈T \{1}

∥wi(t)∥2 · · · (3.5.a)

subject to zs(t) ≥ −vs(t)− a(t), zs(t) ≥ 0, s ∈ S, t ∈ T , · · · (3.5.b)

xi,s(1) = Ri,s(1) (x̄i(0) + ui(1)) , i ∈ I, s ∈ S, · · · (3.5.c)

xi,s(t) = Ri,s(t) (xi,s(t− 1) + ui,s(t)) , i ∈ I, s ∈ S, t ∈ T \ {1}, · · · (3.5.d)

vs(t) =
∑
i∈I

xi,s(t), s ∈ S, t ∈ T , · · · (3.5.e)∑
i∈I

ui(1) = C(1);
∑
i∈I

ui,s(t) = C(t), s ∈ S, t ∈ T \ {1}, · · · (3.5.f)

Li (V + C(1)) ≤ x̄i(0) + ui(1) ≤ Ui (V + C(1)) , i ∈ I, · · · (3.5.g)

Li (vs(t− 1) + C(t)) ≤ xi,s(t− 1) + ui,s(t) ≤ Ui (vs(t− 1) + C(t)) ,

i ∈ I, s ∈ S, t ∈ T \ {1}, · · · (3.5.h)

ui,s(t) = ui(t) +wi(t)
⊤ϕi,t (Rs(t− 1)) , i ∈ I \ {1}, s ∈ S, t ∈ T \ {1},

· · · (3.5.i)
(3.5)

with decision variables a(t), ui(t), ui,s(t), vs(t), wi(t), xi,s(t) and zs(t), where λ > 0 is a regu-
larization parameter. Note from the constraints (3.5.i) that the control policy is not applied
to cash (i = 1). This is because the adjustments of cash, u1,s(t), are uniquely determined
from the adjustments of other assets through the cash flow balance equations (3.5.f).

Let
Ki,ℓ,s(t) := ϕi,t (Rℓ(t− 1))⊤ ϕi,t (Rs(t− 1)) (3.6)

be the kernel function. We prove the following theorem in order to apply the kernel method
to the problem (3.5):

Theorem 3.1 (Representer theorem [23]). Let w∗
i (t) be optimal solutions to the prob-

lem (3.5). Then there are ei,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1} such that

w∗
i (t)

⊤ϕi,t (Rs(t− 1)) =
∑
ℓ∈S

ei,ℓ(t)Ki,ℓ,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1}.

Proof. Let w0
i (t) be a linear combination of feature vectors, ϕi,t (Rℓ(t− 1)), as follows:

w0
i (t) :=

∑
ℓ∈S

ei,ℓ(t)ϕi,t (Rℓ(t− 1)) .
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Then, by selecting ξi(t) from orthogonal complement of the feature vectors, wi(t) can gen-
erally be expressed as follows:

wi(t) = w0
i (t) + ξi(t). (3.7)

Since all the feature vectors are orthogonal to ξi(t), it follows from (3.7) that

wi(t)
⊤ϕi,t (Rs(t− 1)) = w0

i (t)
⊤ϕi,t (Rs(t− 1)) .

Therefore, we can see from (3.5.i) that the adjustments ui,s(t) are independent of ξi(t).
Furthermore, the regularization terms can be expressed as follows:

λ
∑

i∈I\{1}

∑
t∈T \{1}

∥wi(t)∥2 = λ
∑

i∈I\{1}

∑
t∈T \{1}

(
∥w0

i (t)∥2 + ∥ξi(t)∥2
)
,

from the orthogonality of w0
i (t) and ξi(t). The minimum of the regularization terms is

therefore obtained when ξi(t) = 0, which means that

w∗
i (t) = w0

i (t) =
∑
ℓ∈S

ei,ℓ(t)ϕi,t (Rℓ(t− 1)) . (3.8)

This proof is completed by referring to (3.6) and (3.8).

Theorem 3.1 states that the optimal adjustments, u∗
i,s(t), can be computed without any

concern about the dimensions, Ni,t, of the feature vectors.
Considering that the regularization terms in the problem (3.5) can also be expressed by

λ
∑

i∈I\{1}

∑
t∈T \{1}

∥wi(t)∥2 = λ
∑

i∈I\{1}

∑
t∈T \{1}

∑
ℓ∈S

∑
s∈S

ei,ℓ(t) ei,s(t)Ki,ℓ,s(t) (3.9)

from (3.6) and (3.8), we can see that the problem to be solved can be formulated as a convex
quadratic optimization problem (QP):

minimize (1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t)

+ λ
∑

i∈I\{1}

∑
t∈T \{1}

∑
ℓ∈S

∑
s∈S

ei,ℓ(t) ei,s(t)Ki,ℓ,s(t) · · · (3.10.a)

subject to (3.5.b), . . . , (3.5.h),

ui,s(t) = ui(t) +
∑
ℓ∈S

ei,ℓ(t)Ki,ℓ,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1}, · · · (3.10.b)

(3.10)
with decision variables a(t), ei,s(t), ui(t), ui,s(t), vs(t), xi,s(t) and zs(t).

Although the problem (3.10) is tractable in the sense that the convex QP is polynomial-
time-solvable, it is more beneficial to reduce the problem to a linear optimization problem
especially when a large number of financial assets and/or scenarios must be dealt with.
Thus, we shall employ an L1-norm regularization of the form,

λ
∑

i∈I\{1}

∑
t∈T \{1}

∑
s∈S

|ei,s(t)|,

in place of (3.9). In view of the following relation:

|ei,s(t)| = min{wi,s(t) + yi,s(t) | ei,s(t) = wi,s(t)− yi,s(t), wi,s(t) ≥ 0, yi,s(t) ≥ 0},

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



210 Y. Takano & J. Gotoh

problem (3.10) can be reduced to a linear optimization problem (LP):

minimize (1− α)
∑
t∈T

θ(t)

(
a(t) +

1

1− β

∑
s∈S

Pszs(t)

)
− α

∑
t∈T

η(t)
∑
s∈S

Psvs(t)

+ λ
∑

i∈I\{1}

∑
t∈T \{1}

∑
s∈S

(wi,s(t) + yi,s(t)) · · · (3.11.a)

subject to (3.5.b), ..., (3.5.h),

wi,s(t) ≥ 0, yi,s(t) ≥ 0, i ∈ I \ {1}, s ∈ S, t ∈ T \ {1}, · · · (3.11.b)

ui,s(t) = ui(t) +
∑
ℓ∈S

(wi,ℓ(t)− yi,ℓ(t))Ki,ℓ,s(t), i ∈ I \ {1}, s ∈ S, t ∈ T \ {1},

· · · (3.11.c)
(3.11)

with decision variables a(t), ui(t), ui,s(t), vs(t), wi,s(t), xi,s(t), yi,s(t) and zs(t).

Note that Theorem 3.1 does not apply when the L1-norm is employed in the regular-
ization terms. Problem (3.11), however, is clearly an approximation of problem (3.10). We
shall verify the practical effectiveness of a solution to problem (3.11) in the next section.

4. Numerical Experiments

The numerical results presented in this section show the investment performance of the
kernel control policy, i.e., the control policy obtained by solving the problem (3.11). All
computations were conducted on a Windows 7 personal computer with a CORE i5 Processor
(2.40GHz) and 4GB memory, and NUOPT (ver. 13.1.5), a mathematical programming
software package developed by Mathematical System, Inc., was used to solve the LPs.

We considered five financial assets (i.e., I = 5) over a planning horizon of five periods
(i.e., T = 5) and in 200 scenarios (i.e., S = 200). The initial holdings were set as x̄1(0) := 100
and x̄i(0) := 0 for i ∈ I \{1}. The lower limit, Li, and the upper limit, Ui, of the investment
proportion were set to 0 and 0.5, respectively, for all i ∈ I. The net cash flow, C(t), was 0
for all t ∈ T . The occurrence probability, Ps, was 1/S for all s ∈ S and the confidence level,
β, was 0.9. The weights of CVaR, θ(t), and those of the expected portfolio value, η(t), were
set as θ(T ) = η(T ) = 1 and θ(t) = η(t) = 0 for t ∈ T \ {T}. We employed the following
Gaussian kernel, which corresponds to an infinite-dimensional feature space, as the kernel
function for problem (3.11):

Ki,ℓ,s(t) = exp

−

∑
j∈I

t−1∑
k=1

(Rj,ℓ(k)−Rj,s(k))
2

σ2
i,t

 ,

where σi,t are user-defined parameters.
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We compared the efficiency of the following models and parameter settings:

Basic : the basic optimization model (2.8),

Linear(1) : the optimization model using the linear control policy (3.4) with µ = 1,

Linear(4) : the optimization model using the linear control policy (3.4) with µ = 4,

Kernel(a,a) : our optimization model (3.11) with λ = 0.00001 and σi,t = 0.1
√
t− 1,

Kernel(a,b) : our optimization model (3.11) with λ = 0.00001 and σi,t = 0.4
√
t− 1,

Kernel(b,a) : our optimization model (3.11) with λ = 0.001 and σi,t = 0.1
√
t− 1,

Kernel(b,b) : our optimization model (3.11) with λ = 0.001 and σi,t = 0.4
√
t− 1.


(4.1)

4.1. Scenario generation

DeMiguel et al. [6] showed that the out-of-sample investment performance can be substan-
tially improved by exploiting the serial dependence of stock returns. Based on the vector
autoregressive (VAR) model in [6], we randomly generated scenarios of the total returns,
Ri,s(t), by using the following one-period autoregressive model of the rate of returns R̃i(t)−1,
i ∈ I \ {1}:

R̃i(t)− 1 = γi +
∑

j∈I\{1}

δi,j

(
R̃j(t− 1)− 1

)
+ ε̃i(t), i ∈ I \ {1},

where γi are intercepts and δi,j are coefficients of the asset j’s rate of return, and ε̃i(t) are
random errors. Note that asset 1 was cash and R1,s(t) were set to 1 for all s ∈ S and
t ∈ T , without loss of generality. We assumed that ε̃i(t) are independently and identically
distributed with respect to t ∈ T .

We collected monthly data of investment fund’s base price from 2003 to 2010 from the
Yahoo finance Japan∗. Specifically, asset 2 was a fund investing in large-sized and value
stocks, asset 3 was a fund investing in large-sized and growth stocks, asset 4 was a fund
investing in small-sized and value stocks, and asset 5 was a fund investing in small-sized
and growth stocks.

The estimated values of the parameters γi, i ∈ I \ {1}, and δij, i, j ∈ I \ {1}, were


0.0064

0.0035

0.0111

0.0176

 and


0.404 0.074 0.108 −0.273

0.338 0.073 0.089 −0.259

0.539 0.022 0.235 −0.427

0.388 0.381 0.152 −0.437

 ,

respectively.

We assumed that ε̃i(t) follow a multivariate normal distribution with zero mean and the

∗http://finance.yahoo.co.jp
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variance-covariance matrix Σ. The estimated value of Σ was as follows:

Σ =


0.0026 0.0023 0.0028 0.0030

0.0023 0.0024 0.0027 0.0030

0.0028 0.0027 0.0038 0.0036

0.0030 0.0030 0.0036 0.0048

 .

It was found from the values of γi and diagonal elements of Σ that assets 4 and 5, both
of which consist of small-sized stocks, are relatively high-risk and high-return.

4.2. Performance evaluation methodology

We generated two different sets of scenarios: a training set {Ri,s(t) | i ∈ I, s ∈ S, t ∈ T }
and a testing set {Rout

i,s (t) | i ∈ I, s ∈ Sout, t ∈ T }, where Sout is a set of scenarios of size S
and Sout ∩ S = ∅. The optimization problems (4.1) are formulated and solved by using the
training set. Let us denote the optimal solutions to the problems (4.1) by u∗

i (t), r
∗
i,j(k, t),

w∗
i,s(t) and y∗i,s(t).
The in-sample performance was evaluated on the basis of the training set. The out-of-

sample performance was then evaluated as follows: In the case of the basic optimization
model (2.8), the performance of the adjustments uout

i (t) = u∗
i (t) were evaluated on the basis

of the testing set. In the case of the linear control policy (3.4), the out-of-sample performance
was evaluated on the basis of the testing set by using the following adjustments:

uout
i (1) = u∗

i (1), i ∈ I,

uout
i,s (t) = u∗

i (t) +
t−1∑

k=max{t−µ, 1}

∑
j∈I

r∗i,j(k, t)
(
Rout

j,s (k)− R̄j(k)
)
,

i ∈ I \ {1}, s ∈ Sout, t ∈ T \ {1},

uout
1,s (t) = C(t)−

∑
i∈I\{1}

uout
i,s (t), s ∈ Sout, t ∈ T \ {1}.

We employed the following Gaussian kernel function in the model (3.11) for the out-of-
sample performance evaluation:

Kout
i,ℓ,s(t) = exp

−

∑
j∈I

t−1∑
k=1

(
Rj,ℓ(k)−Rout

j,s (k)
)2

σ2
i,t

 ,

and then we evaluated the out-of-sample performance on the basis of the testing set by
using the following adjustments:

uout
i (1) = u∗

i (1), i ∈ I,

uout
i,s (t) = u∗

i (t) +
∑
ℓ∈S

(
w∗

i,ℓ(t)− y∗i,ℓ(t)
)
Kout

i,ℓ,s(t), i ∈ I \ {1}, s ∈ Sout, t ∈ T \ {1},

uout
1,s (t) = C(t)−

∑
i∈I\{1}

uout
i,s (t), s ∈ Sout, t ∈ T \ {1}.
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Figure 3: Efficient frontier (in-sample, see also (4.1))

4.3. Efficient frontier

Figures 3 and 4 show the efficient frontiers of the solutions to problems (4.1). In Figures 3
and 4, the horizontal axis and vertical axis are the expected portfolio value (2.6) and CVaR
(2.7), respectively. Each plot on a frontier corresponds to a different value of the trade-off
parameter, α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
In-Sample Performance.

Figure 3 shows the in-sample performance. It can be seen that the solutions to the basic
optimization model (2.8) are dominated by those of other models that use control policies.
The linear control policy with µ = 4 performs better than the one with µ = 1. The frontiers
of Linear(1) and Linear(4) are similar to those of Kernel(b,b) and Kernel(b,a), respectively.
The solutions to Linear(1) and Linear(4) are all dominated by those of Kernel(a,b). Moreover,
the solutions to Kernel(a,a) overwhelm all the other solutions.

Out-of-Sample Performance.

Figure 4 shows the out-of-sample performance. It can be seen that the solutions to
Kernel(a,a) deteriorate. Since these solutions performed the best in the in-sample tests, this
indicates that Kernel(a,a) overfitted the training scenario set. The solutions to the basic
optimization model (2.8) are still dominated by those of the models, except Kernel(a,a);
however, the differences among them are smaller in the out-of-sample tests than in the in-
sample tests. The solutions to Kernel(a,b) dominate those of all the other models when a
high-return investment is made. Most of the solutions to Linear(4) are dominated by those
of Kernel(a,b), but the difference is not very large. Also, Linear(1) and Kernel(b,b) attain
low CVaRs when a low-risk investment is made.
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-88-86-84-82-80-78-76-74
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CVaR
Expected Portfolio ValueBasic Linear(1) Linear(4) Kernel(a,a) Kernel(a,b) Kernel(b,a) Kernel(b,b)

Figure 4: Efficient frontier (out-of-sample, see also (4.1))

Table 1: CPU time (in seconds, see also (4.1))Basic Linear(1) Linear(4) Kernel(a,a) Kernel(a,b) Kernel(b,a) Kernel(b,b)min 3.1 51.1 90.4 183.9 159.8 198.9 172.1average 3.4 71.1 107.3 209.1 171.1 216.1 197.3max 3.7 90.8 138.7 230.2 189.7 230.3 219.7
It is clear from Figures 3 and 4 that dynamic asset allocation under a nonlinear control

policy is effective if we can properly set the parameters. In addition, the linear control
policy, which is a kind of compromise solution to an intractable optimization problem, is
comparable to nonlinear control policies in the out-of-sample tests.

Computational Time.

In drawing an efficient frontier in Figure 3, we solved nine optimization problems, each
corresponding to α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Table 1 shows the minimum
CPU time (min), the average CPU time (average), and the maximum CPU time (max) of
each model. Although our model improved the investment performance, its CPU time to
arrive at a solution was longer than those of other models.

4.4. Investment amounts in out-of-sample tests

Figure 5 shows the boxplots of the investment amounts, xi,s(t), in the out-of-sample tests.
The boxplot displays the distribution of {xi,s(t) | s ∈ Sout} for each asset i ∈ I and each
period t ∈ T . The investment amounts obtained by the basic optimization model (2.8)
have a low dispersion relative to those of the linear and kernel control policies. We can
interpret this as meaning that the control policies improve the investment performance by
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Figure 5: Investment amounts in out-of-sample tests (see also (4.1))
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enabling flexible investment decisions to be made in each scenario. Although short-sales
are not allowed by the constraints on training scenario sets, it can be seen that control
policies sometimes sell short in the out-of-sample tests. A rolling-horizon implementation is
an effective way to get rid of such a problem. In employing this approach, we periodically
solve the multi-period optimization problem and use only the initial adjustments, ui(1), to
rebalance the portfolio. As long as we continue to take this approach, we will never sell short
(see also the investment amounts in the first period in Figure 5). Even if a rolling horizon
is difficult to implement in practice, we think that increasing the number of scenarios in the
training set will help prevent control policies from violating constraints in the out-of-sample
tests.

It can be seen that when high return is preferred (i.e., α = 0.7), Linear(4) and Kernel(a,b)
make large investments in low-return assets (assets 2 and 3) compared with Basic. Similarly,
when low risk is preferred (i.e., α = 0.3), Linear(4) and Kernel(a,b) make large investments
in high-risk assets (assets 4 and 5) compared with Basic. We can see from these results
that the control policy achieves both high return and low risk by efficiently diversifying
investments in a wide variety of assets.

5. Conclusions

We built a computational framework to determine an optimal nonlinear control policy for
dynamic asset allocation over multiple periods. By utilizing the kernel method, the prob-
lem of selecting the best control policy from among nonlinear functions was formulated as
a convex quadratic optimization problem. Furthermore, by employing the L1-norm regu-
larization, we reduced the problem to a linear optimization problem so that we could solve
it reliably and efficiently by using a mathematical programming software package.

We conducted numerical experiments to assess the investment performance of what we
call the kernel control policy. Although the CPU time of optimizing the kernel control policy
was long compared with other models, our policy resulted in better investment performance
than the basic model and linear control policies could give.

A further direction of study is to create a procedure for setting the parameters of the
kernel method. Our numerical experiments have shown that the investment performance is
highly dependent on the values of the parameters; hence, how to set them is of practical
importance. Moreover, there is a real possibility that the actual probability distribution
of the total return is much different from what we assumed when determining the control
policy. Additional numerical experiments considering such a situation will be reported
subsequently.
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