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Abstract  'We propose a method to reduce the sizes of SDP relaxation problems for a given polynomial
optimization problem (POP). This method is an extension of the elimination method for a sparse SOS
polynomial in [8] and exploits sparsity of polynomials involved in a given POP. In addition, we show
that this method is a partial application of a facial reduction algorithm, which generates a smaller SDP
problem with an interior feasible solution. In general, SDP relaxation problems for POPs often become
highly degenerate because of a lack of interior feasible solutions. As a result, the resulting SDP relaxation
problems obtained by this method may have an interior feasible solution, and one may be able to solve
the SDP relaxation problems effectively. Numerical results in this paper show that the resulting SDP
relaxation problems obtained by this method can be solved fast and accurately.

Keywords: Nonlinear programming, semidefinite programming, semidefinite pro-
gramming relaxation, polynomial optimization, facial reduction algorithm

1. Introduction

The problem of detecting whether a given polynomial is globally nonnegative or not,
appears in various fields in science and engineering. For such problems, Parrilo [11]
proposed an approach via semidefinite programming (SDP) and sums of squares (SOS) of
polynomials. Indeed, he replaced the problem by another problem of detecting whether
a given polynomial can be represented as an SOS polynomial or not. If the answer
is yes, then the global nonnegativity of the polynomial is guaranteed. It is known in
Powers and Wérmann [13] that the latter problem can be converted as an SDP problem
equivalently. Therefore, one can solve the latter problem by using existing SDP solvers,
such as SeDuMi [18], SDPA [5], SDPT3 [19] and CSDP [1]. However, in the case where the
given polynomial is large-scale, i.e., the polynomial has a lot of variables and/or higher
degree, the resulting SDP problem becomes too large-scale to be handled by the state of
the arts computing technology, practically.

To recover this difficulty, for a sparse polynomial, i.e., a polynomial which has few
monomials, Kojima et al. in [8] proposed an effective method for reducing the size of the
resulting SDP problem by exploiting the sparsity of the given polynomial. Following [23],
we call the method the elimination method for a sparse SOS polynomial (EMSSOSP).

In this paper, we deal with the problem to detect whether a given polynomial is
nonnegative over a given semialgebraic set or not. More precisely, for given polynomials
f, fi,---, fm, the problem is to detect whether f is nonnegative over the set D := {z €
R™ | fi(x) >0,..., fru(x) > 0} or not. For this problem, we apply a similar argument in
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Parrilo [11]. Then we obtain the following problem:

Find ojforj=1,...,m,

subject to f(z) = ij(a:)aj(x) (Vz € R"), (1.1)
j=1
oj is an SOS polynomial for j =1,...,m.

If we find all SOS polynomials ¢; in (1.1), then the given polynomial f is nonnegative over
the set D. However, (1.1) is still intractable because the degree of each o; is unknown
in advance. Therefore, we put a bound of the degree of ¢;. Then, we can convert (1.1)
to an SDP problem by applying Lemma 2.1 in [8] or Theorem 1 in [13] to the problem.
In this case, we have the same computational difficulty as the problem of finding an
SOS representation of a given polynomial, namely the resulting SDP problem becomes
large-scale if f, f1,..., fm has a lot of variables and/or higher degree.

The contribution of this paper is to propose a method for reducing the size of the
resulting SDP problem if f, f1,..., f,, are sparse. To this end, we extend EMSSOSP,
so that the proposed method removes unnecessary monomials in any representation of f
with fi,..., f from o; (j = 1,...,m). If f, f1,..., f, are sparse, then we can expect
that the resulting SDP problem obtained by our proposed method becomes smaller than
the SDP problem obtained from (1.1). In this paper, we call our proposed method EEM,
which stands for the Extension of Elimination Method.

Another contribution of this paper is to show that EEM is a partial application of a
facial reduction algorithm (FRA). FRA was proposed by Borwein and Wolkowicz [2, 3].
Ramana et al. [17] showed that FRA for SDP with nonempty feasible region generates
an equivalent SDP with an interior feasible solution. In addition, Pataki [12] simplified
FRA of Borwein and Wolkowicz. Waki and Muramatsu [22] proposed FRA for conic
optimization problems. It is pointed out in [23] that EMSSOSP is a partial application
of FRA. In general, SDP relaxation problems for polynomial optimization problems
(POPs) become highly degenerate because of a lack of interior feasible solutions. As a
consequence, the resulting SDP problems obtained by EEM may have an interior feasible
solution, and thus we can expect an improvement on the computational efficiency of
primal-dual interior-point methods.

The organization of this paper is as follows: We discuss our problem and usage of the
sparsity of given polynomials f, f1,..., f;, in Section 2 and propose EEM in Section 3.
SDP relaxations [9,20] for POPs are applications of EEM. We apply EEM to some
test problems in GLOBAL Library [6] and randomly generated problems, and solve the
resulting SDP relaxation problems by SeDuMi [18]. In Section 4, we present the numerical
results. When we execute EEM to remove unnecessary monomials in SOS representations,
there is a flexibility in EEM. We focus on the flexibility and show facts on SDP relaxation
for POPs and SOS representations of a given polynomial in Section 5. A relationship
between our method and FRA is provided in Section 6. Section 7 is devoted to concluding
remarks. We give some discussion and proofs on EEM in Appendix.

1.1. Notation and symbols
S™ and S} denote the sets of n x n symmetric matrices and n x n symmetric positive

semidefinite matrices, respectively. For X, Y € S", we define X o Y = Z?jzl Xi;Y;;. For
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every finite set A, #(A) denotes the number of elements in A. We define A+ B = {a+5b |
a € Abe B} for A, B C R". We remark that A4+ B = () when either A or B is empty. For
A CR"and a € R, aA denotes the set {aa | a € A}. Let N™ be the set of n-dimensional
nonnegative integer vectors. We define N := {a € N* | "7 «; < r}. Let Rlz] be the
set of polynomials with n-dimensional real vector x. For every a € N, 2® denotes the
monomial z{*---2%. For f € R[z], let F be the set of exponents o of monomials z*
whose coefficients f, are nonzero. Then we can write f(z) = > . far®. We call F
the support of f. The degree deg(f) of f is the maximum value of |a| := > 7 | a; over
the support F. For G C N" Rg[z] denotes the set of polynomials whose supports are
contained in G. In particular, R,[z] is the set of polynomials with the degree up to r.

2. On Our Problem and Exploiting the Sparsity of Given Polynomials
f? f17 SR fm
2.1. Our problem

In this subsection, we discuss how to convert (1.1) into an SDP problem. For a finite
set G C N” let Y be the set of SOS polynomials whose supports are contained in G.
In particular, we denote X, if G = N'. Let d = [deg(f)/2], d; = [deg(f;)/2] for all
j=1,....,mand 7 = max{d,dy,...,d,}. We fix a positive integer r > 7 and define
rj=r—d;forall j =1,...,m. Then we obtain the following SOS problem from (1.1):

Find o € Xy, foralljzl...,m,

subject to f(z Z fix (Vx € R™). (2.1)

We say that f has an SOS representation with fi,. .., fn if (2.2) has a solution (o1, ..., 0.,).
In this case, (1.1) also has a solution, and thus f is nonnegative over the set D.

We assume that o; € Y, in any SOS representations of f with fi,..., f;,. Then we
can obtain the following SOS problem from (2.1):

Find ajGZg.foralljzl...,m,

subject to  f(z Z fix (Vx € R™). (2:2)

Note that SOS problem (2.2) is equivalent to SOS problem (2.1) by the assumption.

Let F' and F} be the support of f and f;, respectively. Without loss of generality, we
assume F' C |Ji2, (Fj + G+ Gj). In fact, if F'Z JJZ,(F} + G+ Gj), then (2.2) does not
have any solutions.

To reformulate (2.2) into an SDP problem, we use the following lemma:

Lemma 2.1 (Lemma 2.1 in [8]) Let G be a finite subset of N and u(z,G) = (z* : a €
G). Then, f is in X if and only if there exists a positive semidefinite matriz V € ST(G)
such that f(z) = u(x, G)"Vu(z,G) for all x € R™.

We apply Lemma 2.1 to o; in (2.2). Then we can reformulate (2.2) into the following
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problem:

Find V; e Sf(aj) forall j =1,...,m,

subject to f(z) = iu(m, G ' Viu(z, Gy) fi(x) (Vo € R™),

J=1

(2.3)

where u(z, G;) be the column vector consisting of all monomials z* (« € G;). We define
the matrices Ej, € S#%) for all a € JI)(F; + G; + G;) and for all j = 1,...,m as
follows:

(fj)s fa=p+~v+dandé € Fj,

(Ejn)pry = { 0 o (for all 8,7 € G;).

Comparing the coefficients in both sides of the identity in (2.3), we obtain the following
SDP:
Find V; ESﬁ(Gj) forall j =1,...,m,

subject to  f, = ZEj7a oV, (a€ U(Fg +Gj + Gy)).

j=1 j=1

(2.4)

We observe from (2.4) that the resulting SDP (2.4) may become small enough to
handle it if G; is much smaller than N:}j forall j =1,...,m.

Remark 2.2 Some sets G; may be empty. For instance, if G; = (), then the problem (2.1)
is equivalent to the problem of finding an SOS representation of f with fs, ..., f,, under
the condition o; € %,

2.2. Exploiting the sparsity of given polynomials f, fi,..., f.

We present a lemma which plays an essential role in our proposed method EEM. EEM
applies this lemma to (2.1) repeatedly, so that we obtain (2.2). This lemma is an extension
of Corollary 3.2 in [8] and Proposition 3.7 in [4].

Lemma 2.3 Let G; C N" be a finite set forallj =1,...,m. f and f; denote polynomials
with support F' and Fj, respectively. For 6 € \J._ (F; + G; + Gj), we define J(0) C
{1,...,m},B;(8) C G, and T; C F; + G + G; as follows:

J(é) = {j S {1,,m} ‘ o€ Fj+2Gj},
Bi0) = {a€Gylé-20€ Ry,

T; = {y+ta+pB|y€FapcG)a#p}

Assume that f has an SOS representation with f1,..., fm and G1, ..., Gy, as follows:

2
m kj

F@) =Y F@)D [ D (gia)ar™ | (2.5)

7j=1 =1 aGG]‘
where (gji)a s the coefficient of the polynomial g;;. In addition, we assume that for a

fired § € UjL, (F + Gy + Gy) \ (FUUL, T)), J(6) and (B1(9), ..., Bm(9)) satisfy

{ (fj)o—20 >0 for all j € J(6) and o € B;(6) or (2.6)

(fj)o—20 <0 forall j € J(6) and o € B;(6).
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Then, f has an SOS representation with fi,..., fm and Gy \ B1(9),...,Gy \ Bn(6), i.e.,
(9ji)a =0 forall j € J(§),a € B;(§) and i =1,... k; and

F@)=>_H@> [ D (g™ | - (2.7)

7=1 =1 OCEGJ'\B]'((S)

We postpone a proof of Lemma 2.3 until Appendix A.

Remark 2.4 We have the following remarks on Lemma 2.3.

1. If f is not sparse, i.e., f has a lot of monomials with nonzero coefficient, then the
set Ui~ (Fj + G + Gj) \ (FUUL, Tj) may be empty. In this case, we do not have
any candidates 0 for (2.6). In addition, if fi,..., f,, are sparse, then coefficients to
be checked in (2.6) may be few in number, and thus we can expect that there exists
d such that J(d) and B;(¢) satisty (2.6).

2. Lemma 2.3 is an extension to Corollary 3.2 in Kojima et al. [8] and (2) of Proposi-
tion 3.7 in Choi et al. [4]. In fact, the authors deal with the case where m = 1 and
fi = 1 in these papers. In that case, we have F; = {0} and the coefficient (f;)q of a
constant term in f is 1.

We give an example of notation J(J), B;(d) and Tj.
Example 2.5 Let f =x,fi =1, fo =z and f3 = 22 — 1. Then we have F = {1}, F| =
{0}, F» = {1} and F3 = {0, 2}.

We consider the case where we have G; = {0,1,2}, Gy = G3 = {0, 1}. Then we obtain

(U(Fj + G+ Gj)> \ F =1{0,2,3,4},Ty = {1,2,3}, T, = {2} and T3 = {1,3}.

=1

In this case, we can choose § € {0,4}. If we choose § = 4, then J(J§) = {1,3} and we
obtain B;(0) = {2}, B2(6) = 0 and B3(d) = {1}. Moreover, J(8) and (B1(d), B2(6), B3(9))
satisfy (2.6). Lemma 2.3 implies that if f has an SOS representation with f; and G;, then
f also has an SOS representation with f;, G1 \ B1(0) = {0,1}, G2\ By(d) = {0,1} and
G\ Bs(6) = {0}.

3. An Extension of EMSSOSP
For given polynomials f, f1,..., f, and a positive integer r > 7, we set r; = r—|[deg(f;)/2]
for all j. We assume that f can be represented as follows:

m

fl@)=>" filx)o;(x) (3.1)

=1

for some o; € X,,. We remark that the support of o; is contained in NSTJ,. By applying
Lemma 2.3 repeatedly, our method may remove unnecessary monomials of ¢; in (3.1) for
all SOS representations of f with fi,..., f,, and G4,..., G, before deciding all coefficients
of oj. We give the detail of our method in Algorithm 3.1.

Algorithm 3.1 (The elimination method for a sparse SOS representation with

fiyeooy fm)
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Input polynomials f, f1,..., fm.

Output G*:=(G7,...,G}).

Step 1 Seti =0 and G°:= (N ,... N7 ).

Step 2 For G' = (GY,...,G,,), if there does not exist any 6 € ;- (Fj + G4 +G%)\ (FU
"L T}) such that B(S) = (B1(0), ..., Bn(0)) and J(0) satisfy (2.6) and B;(5) # 0

for some 3 =1,...,m, then stop and return G*.

Step 3 Otherwise set Gé“ = G;'. \ B;(6) forallj=1,....,m, and i =i+ 1, and go back

to Step 2.

We call Algorithm 3.1 FEM in this paper. In this section, we show that EEM always
returns the smallest set (G7,...,G},) in a set family. To this end, we give some notation
and definitions, and use some results in Appendix B.

For G = (Gy,...,Gn), H=(Hy,...,H,) CX =N x---xN! | wedefine GNH :=
(GiNHy,...,G,NHy), G\H :=(G1\ Hy,...,G, \ Hy,) and G C H if G; C H; for all
j7=1...,m.

Definition 3.2 We define a function P : 2% x 2% — {true, false} as follows:

true if all B; are empty or there exists § € J;_,(F; + G; + Gj) \ (FU
P(G,B) = Uiz, 7)) such that B = B(0) and, B and J(5) satisfy (2.6),
false otherwise
for all G = (Gy,...,Gy),B := (By,...,By) € X. Moreover, let G := (N, ... , NI ).
We define a set family T(G°, P) C 2% as follows: G € T(G°, P) if and only if G = G° or
there exists G' € T'(G°, P) such that G C G' and P(G',G'\ G) = true.

The following theorem guarantees that EEM always returns the smallest set (G3,. ..,
G:) e (G P).
Theorem 3.3 Let P and G(G°, P) be as in Definition 3.2. Assume that f has an SOS
representation with fi,..., fm and G°. Then, T'(G°, P) has the smallest set G* in the
sense that G* C G for all G € T(G°, P). In addition, EEM described in Algorithm 3.1
always returns the smallest set G* in the set family T'(G°, P).
For this proof, we use some results in Appendix B. We postpone the proof till Appendix C.
We give an example to see a behavior of EEM.
Example 3.4 (Continuation of Example 2.5) Let f = x,f1 = 1,f, = x and f3 =
2? — 1. Clearly, f is nonnegative over the set D = {x € R | fi, fo, f3 > 0} = [1, +00). Let
r = 2. Then we have ry = 2,7, = r3 = 1. We consider the following SOS problem:

{ Find  o; € ¥, for j =1,2,3, (3.2)

subject to  f(z) = o1(z) f1(z) + 02(2) fo(z) + 03(2) f3(2) (Vo € R).

The initial G° = (Ny, Ny, N;). From Example 2.5, we have already known 0° = 4, G} =
G\ B{(0") = {0,1} and G* = ({0,1},{0, 1}, {0}).

Table 1 shows §, J(6), Bj(0) and T; in Example 3.4 in the ith iteration of EEM for the
identity of (3.2).

For G' € T'(G°, P), we choose 0" =3 € U_,(F; + G} + GH)\ (FUU;_, T}) = {0,3}.
Then we obtain .J(§") and Bj (") in the third row of Table 1 and G* = ({0, 1}, {0}, {0}).
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For G? € T(G°, P), we choose 6> =2 € U?Zl(F] + G2+ G2\ (FU U]  T7) ={0,2}.
Then we obtain J(0*) and B}(6%) in the fourth row of Table 1 and G* = ({0}, {0},0).
This implies that f3 is redundant for all SOS representations of f with f, fg, f3 and G3.

For G® € T'(G°, P), we choose 6% = 0 € szl(Fj + G+ G\ (FU UJ \T7) = {0}.
Then we obtain J(6°) and Bj(0%) in the fifth row of Table 1 and G* = (0,{0},0). This
implies that f; is redundant for all SOS representations of f with fi, fo, f3 and G*.

For G* € T'(G°, P), because the set U?ZI(F] +Gi+G))\ (FLJU?:1 T}) is empty, EEM
stops and returns G* = (0, {0}, 0). Then by using G*, from SOS problem (3.2), we obtain
the following Linear Programming (LP):

Find )\2 Z 0
subjecto to Ay = 1.

Because this LP has the solution Ay = 1, SOS problem (3.2) has a solution (o1, 09, 03) =
(0,1,0). This implies that f =0-f; +1- fo+0- f5.

Table 1: 6, J(0), Bj(6) and 7T} in Example 3.4
6 | J(6%) | Bi(0") By(6") BL(d) T} T, T

i=04[{1,3}] {2} 0 {1y 1{1,2,3% {2} {1,3}
i=11]3]| {2} 0 {1} 0 {1} {2} 0
i=212|{1,3} | {1} 0 {0} {1} 0 0
i=310| {1}y | {0} 0 0 0 0 0
i=4| -] - - - — 0 0 0

4. Numerical Results for Some POPs

In this section, we present the numerical performance of EEM for Lasserre’s and sparse
SDP relaxations for Polynomial Optimization Problems (POPs) in [6] and randomly gen-
erated POPs with a sparse structure. To this end, we explain how to apply EEM to SDP
relaxations for POPs.

For given polynomials f, fi, ..., fn., POP is formulated as follows:
it (@) | ()20 (G =1...,m)}. (4.1)

We can reformulate POP (4.1) into the following problem:

sup{p | f(z) —p =0 (Vz € D)}. (4.2)

pER

Here D is the feasible region of POP (4.1). We choose an integer r with r > 7. For (4.2)
and r, we consider the following SOS problem:

fl@)—p=oo+ Zaj (Vz € R™) } (4.3)

*
pri=Sup_ 4p
peRﬁ'jEErj
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where we define r; = r — [deg(f;)/2] for all j = 1,...,m and ro = r. If we find a feasible
solution (p, 09,01, ...,0,) of (4.3), then p is a lower bound of optimal value of (4.1),
clearly. It follows that py,, > p; for all r > 7 because we have ¥ C ¥ for all k£ € N.

We apply EEM to the identity in (4.3). Then, we can regard f(x) — p in (4.3) as a
polynomial with variable x. It should be noted that the support F' of f(z) — p always
contains 0 because —p is regarded as a constant term in the identity in (4.3). Moreover, let
fo(x) = 1 for all z € R™. We replace og(x) by o¢(x) fo(x) in the identity in (4.3). Then we
can apply EEM directly, so that we obtain finite sets G}, G7, ..., G},. We can construct
an SDP problem by using G§, G5, ..., G}, and applying a similar argument described in
subsection 2.1.

It was proposed in [20] to construct a smaller SDP relaxation problem than Lasserre’s
SDP relaxation when a given POP has a special sparse structure called correlative sparsity.
We call their method the WKKM sparse SDP relaxation for POPs in this paper. In the
numerical experiments, we have tested EEM applied to both Lasserre’s and the WKKM
sparse SDP relaxations.

We use a computer with Intel (R) Xeon (R) 2.40 GHz cpus and 24GB memory, and
Matlab R2009b and SeDuMi 1.21 with the default parameters to solve the resulting SDP
relaxation problems. In particular, the default tolerance for stopping criterion of SeDuMi
is 1.0e-9. We use SparsePOP [21] to make SDP relaxation problems. To see the quality
of the approximate solution obtained by SeDuMi, we check DIMACS errors. If the six
errors are sufficiently small, then the solution is regarded as an optimal solution. See [10]
for the definitions.

To check whether the optimal value of an SDP relaxation problem is the exact optimal
value of a given POP or not, we use the following two criteria €obj and €f,,4: Let T be a
candidate of an optimal solution of the POP obtained by Lasserre’s or the WKKM sparse
SDP relaxation. See [20] for the way to obtain z. We define:

_|the optimal value of the SDP relaxation — f(Z)]
by T max{L, f(2)} |
€feas = min{fp(2) (k=1,...,m)}.

If €foqg = 0, then 7 is feasible for the POP. In addition, if €obj = 0, then Z is an optimal

solution of the POP and f(Z) is the optimal value of the POP.

Some POPs in [6] are so badly scaled that the resulting SDP relaxation problems
suffer severe numerical difficulty. We may obtain inaccurate values and solutions for such
POPs. To avoid this difficulty, we apply a linear transformation to the variables in POP
with finite lower and upper bounds on variables x; (i = 1,...,n). See [24] for the effect
of such transformations.

Although EMSSOSP is designed for an unconstrained POP, we can apply it to POP
(4.1) in such a way that it removes unnecessary monomials in og in (4.3). It is presented
in subsection 6.3 of [20] that such application of EMSSOSP is effective for a large-scale
POP. In this section, we also compare EEM with EMSSOSP.

Table 2 shows notation used in the description of the numerical results in subsec-
tions 4.1 and 4.2.
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Table 2: Notation

Method

sizeA
nnzA

#LP
#SDP

a.SDP

m.SDP
SDPobj
POPobj

eTime
n.e.

p.v.

ter.

a method for reducing the size of the SDP relaxation problems.
“Orig.” means that we do not apply EMSSOSP and EEM to POPs.
“EMSSOSP” and “EEM” mean that we apply EMSSOSP and EEM to
POPs, respectively.

the size of coefficient matrix A in the SeDuMi input format

the number of nonzero elements in coefficient matrix A in the SeDuMi
input format

the number of linear constraints in the SeDuMi input format

the number of positive semidefinite constraints in the SeDuMi input
format

the average of the sizes of positive semidefinite constraints in the Se-
DuMi input format

the maximum of the sizes of positive semidefinite constraints in the
SeDuMi input format

the objective value obtained by SeDuMi for the resulting SDP relax-
ation problem

the value of f at a solution Z retrieved by SparesPOP

cpu time consumed by SeDuMi or SDPA-GMP in seconds

n.e. = 1 if SeDuMi cannot find an accurate solution due to numerical
difficulty. Otherwise, n.e. =0

phase value returned by SDPA-GMP. If it is “pdOPT”, then SDPA-
GMP terminates normally.

the number of iterations in SeDuMi
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4.1. Numerical results for GLOBAL Library

In this numerical experiment, we solve some POPs in GLOBAL Library [6]. This library
contains POPs which have polynomial equalities h(z) = 0. In this case, we divide h(z) =0
into two polynomial inequalities h(z) > 0 and —h(z) > 0 and replace them by their
polynomial inequalities in the original POP. We remark that in our tables, a POP whose
initial is “B” is obtained by adding some lower and upper bounds. In addition, we do not
apply the WKKM sparse SDP relaxation to POPs “Bex3.1.4”, “st_e01”, “st_e09” and

“st_e34” because their POPs do not have the sparse structure.

Tables 3 and 4 show the numerical results for Lasserre’s SDP relaxation [9] for some
POPs in [6]. Tables 5 and 6 show the numerical results for the WKKM sparse SDP
relaxation [20] for some POPs in [6].

We observe the following.

e From Tables 4 and 6, the sizes of SDP relaxation problems obtained by EEM are the
smallest of the three for all POPs. As a result, EEM spends the least cpu time to
solve the resulting SDP problems except for Bst_07 on Table 3 and Bex_5_2_2 case2 on
Table 5. Table 4 tells us that EEM needs one more iteration than that by EMSSOSP
for Bst_07. Looking at the behavior of SeDuMi in this case carefully, we noticed
that SeDuMi consumes much more CPU time in the last iteration for computing the
search direction than in the other iterations. Also in the case of Bex_ 5.2 2 _case2, EEM
needs three more iterations than that by EMSSOSP. Exact reasons of them should be
investigated in further research.

e For all POPs except for Bex5_2 2 _casel, 2, 3, the optimal values of the SDP relaxation
problems are the same. For the WKKM sparse SDP relaxation of Bexb_ 2 2 _casel, 2,
3, all three methods cannot obtain accurate solutions; their DIMACS errors are not
sufficiently small. Consequently, these computed optimal values are considered to be
inaccurate.

e From Tables 4 and 6, for almost all POPs, DIMACS errors for SDP relaxation problems
obtained by EEM are smaller than the other methods. This means that SeDuMi
returns more accurate solutions for the resulting SDP relaxation problems by EEM.

e We cannot obtain optimal values and solutions for some POPs, e.g., Bex5 2 2 casel,
2, 3. In contrast, the optimal values and solutions for them are obtained in [20]. At
a glance, it seems that the numerical result for some POPs may be worse than [20].
The reason is as follows: In [20], the authors add some valid polynomial inequalities to
POPs and apply Lasserre’s or the WKKM sparse SDP relaxation, so that they obtain
tighter lower bounds or the exact values. See Section 5.5 in [20] for the details. In the

experiments of this section, however, we do not add such valid polynomial inequalities
in order to observe the efficiency of EMSSOSP and EEM.
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Table 7: Numerical results of the WKKM sparse SDP relaxation problems with relaxation
order r = 2 for POP (4.4)

2n Method SDPobj POPobj €obj €feas E/feas eTime
24 Orig. -6.539703e-01  -1.9839457e-01  4.6e-01 | -4.540e-01 -2.270e-01  14.67
24 | EMSSOSP | -6.539851e-01  -1.9842222e-01  4.6e-01 | -4.540e-01 -2.270e-01 6.91
24 EEM -6.540020e-01  -1.9846984e-01  4.6e-01 | -4.539e-01 -2.270e-01 1.13
44 Orig. -4.809124e-01 -4.0113645e-01  8.0e-02 | -2.124e-01 -1.062e-01  35.85
44 | EMSSOSP | -4.809140e-01 -4.0113753e-01  8.0e-02 | -2.124e-01 -1.062e-01 8.63
44 EEM -4.809147e-01  -4.0113958e-01  8.0e-02 | -2.124e-01 -1.062e-01 1.34
64 Orig. -7.670512e-02  -1.6406578e-02 6.0e-02 | -4.161e-01 -2.080e-01  51.36
64 | EMSSOSP | -7.670623e-02 -1.6412691e-02 6.0e-02 | -4.092e-01 -2.046e-01  18.43
64 EEM -7.670639¢-02  -1.6427020e-02 6.0e-02 | -3.884e-01 -1.942¢-01 1.76
84 Orig. -1.923065e-01  -9.2640748e-02 1.0e-01 | -6.817e-01  -3.409e-01 103.33
84 | EMSSOSP | -1.923129¢-01 -9.2667806e-02  1.0e-01 | -6.824e-01 -3.412e-01  27.46
84 EEM -1.923141e-01  -9.2675663e-02  1.0e-01 | -6.827e-01 -3.414e-01 2.30
104 Orig. -3.090968e-01  -4.7102083e-02  2.6e-01 | -2.992e-01 -1.496e-01 126.64
104 | EMSSOSP | -3.090987¢-01 -4.7103057¢-02  2.6e-01 | -3.550e-01  -1.759e-01 8.76
104 EEM -3.090987e-01  -4.7103023e-02  2.6e-01 | -3.979e-01 -1.971e-01 4.95

4.2.

Let C; = {i,i+ 1,0 +2} foralli = 1,...,n — 2.
tors (x;, Tiy1, Tivo) and (Yi, Yiv1, Yire) of z,y € R™, respectively. We consider the following

POP:
n—2
inffﬁvyeRn Z<IC“ yCi)TPi <xcz)
i=1 yei (4.4)
subject to  x{ Qiye, + ¢j xe, + diye, +7% =0 (i =1,...,n—2),

0<z,y<1(i=1,...,n),

Numerical results for randomly generated POP with a special structure
zc, and ye, denote the subvec-

where ¢;,d; € R?, Q; € R¥3, and P € S°%6 is a symmetric positive semidefinite matrix.
This POP has 2n variables and 5n — 2 polynomial inequalities.

In this subsection, we generate POP (4.4) randomly and apply the WKKM sparse
SDP relaxation with relaxation order » = 2,3. The SDP relaxation problems obtained by
Lasserre’s SDP relaxation are too large-scale to be handled for these problems.

Tables 7 and 8 show the numerical results of the WKKM sparse SDP relaxation with
relaxation order r = 2. To obtain more accurate values and solutions, we use SDPA-
GMP [5]. Tables 11 and 12 show the numerical result by SDPA-GMP with tolerance
€ = 1.0e-15 and precision 256. With this precision, SDPA-GMP calculate floating point
numbers with approximately 77 significant digits. Tables 9 and 10 show the numerical
results of the WKKM sparse SDP relaxation with relaxation order r = 3. Tables 13 and
14 show the numerical result by SDPA-GMP with the same tolerance and precision as
above. In this case, we solve only 2n = 24 and 44 because otherwise the resulting SDP
problems become too large-scale to be solved by SDPA-GMP.
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Table 11: Numerical results by SDPA-GMP 7.1.2 with e=1.0e-15 for the WKKM sparse
SDP relaxation problems with relaxation order r = 2 in POP (4.4)

H. Waki & M. Muramatsu

2n Method p.v. iter.  eTime  SDPobj by SDPA-GMP || SDPobj by SeDuMi
24 Orig. pdOPT 53  719.260 -6.54001981e-01 -6.539703e-01
24 | EMSSOSP | pdOPT 49 115.920 -6.54001981e-01 -6.539851e-01
24 EEM pdOPT 44 17.370 -6.54001981e-01 -6.540020e-01
44 Orig. pdOPT 57  1655.640 -4.80914669e-01 -4.809124e-01
44 | EMSSOSP | pdOPT 50  249.480 -4.80914669e-01 -4.809140e-01
44 EEM pdOPT 43 31.350 -4.80914669e-01 -4.809147e-01
64 Orig. pdOPT 58  2599.260 -7.67063944e-02 -7.670512e-02
64 | EMSSOSP | pdOPT 52  385.260 -7.67063944e-02 -7.670623e-02
64 EEM pdOPT 48 53.090 -7.67063944e-02 -7.670639¢-02
84 Orig. pdOPT 53  3066.100 -1.92314133e-01 -1.923065e-01
84 | EMSSOSP | pdOPT 48  453.890 -1.92314133e-01 -1.923129¢-01
84 EEM pdOPT 41 60.660 -1.92314133e-01 -1.923141e-01
104 Orig. pdOPT 59  4341.780 -3.09098714e-01 -3.090968e-01
104 | EMSSOSP | pdOPT 50  625.520 -3.09098714e-01 -3.090987e-01
104 EEM pdOPT 46 80.070 -3.09098714e-01 -3.090987e-01

Table 12: DIMACS errors by SDPA-GMP 7.1.2 with e=1.0e-15 for the sparse SDP relax-
ation problems with relaxation order r = 2 in POP (4.4). We omit err2 and err4 from

this table because they are zero for all POPs and methods.

2n Method errl err3 errb err6

24 Orig. 2.987¢-32 7.456e-74 2.595e-16 3.272e-16
24 | EMSSOSP | 2.013e-33 3.365e-74 3.473e-16  3.729¢-16
24 EEM 1.682e-68 3.950e-77 3.877e-16 3.877e-16
44 Orig. 1.852e-31 1.059e-73 3.274e-16  4.486¢-16
44 | EMSSOSP | 1.549e-32 7.730e-74 3.86le-16 4.448e-16
44 EEM 2.012e-68 2.908e-77  7.564e-17  7.564e-17
64 Orig. 4.578e-31 8.935e-74 6.357e-16 8.141e-16
64 | EMSSOSP | 7.600e-33 6.223e-74 6.360e-16 6.889¢-16
64 EEM 2.402e-76  4.331e-77  3.539¢-16  3.539¢-16
84 Orig. 6.983e-32  2.500e-73 6.106e-16  9.097e-16
84 | EMSSOSP | 1.859e-34 9.731e-61 2.978¢-16  3.202¢-16
84 EEM 9.632e-69 4.153e-77 4.269e-16  4.269e-16
104 Orig. 3.615e-31  1.695e-73  4.399¢-16  7.407e-16
104 | EMSSOSP | 8.722¢-34 1.041e-73 1.602e-16 1.698e-16
104 EEM 1.798e¢-68  2.114e-77 1.703e-16 1.703e-16

We observe the following.

e The sizes of the resulting SDP relaxation problems by EEM is again the smallest in
the three methods. In particular, when we apply EEM and the WKKM sparse SDP
relaxation with relaxation order r = 2, positive semidefinite constraints corresponding
to the quadratic constraints in (4.2) are replaced by linear constraints in SDP relaxation
problems. EEM removes all monomials except for the constant term in o; € X, because
those monomials are redundant for all SOS representations of f. Then o; € ¥; for
all 7 =1,...,n can be replaced by o; € ¥ for all j = 1,...,n. This is equivalent to
oj > 0 for all j =1,...,n. Therefore, we obtain n linear constraints in the resulting

SDP relaxation problems.
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Table 13: Numerical results by SDPA-GMP 7.1.2 with e=1.0e-15 for the WKKM sparse
SDP relaxation problems with relaxation order r = 3 in POP (4.4)

2n Method p-v. iter. eTime SDPobj by SDPA-GMP || SDPobj by SeDuMi
24 Orig. pdOPT 63  108657.790 -5.16010521e-01 -5.160104e-01
24 | EMSSOSP | pdOPT 62 50558.410 -5.16010521e-01 -5.160105e-01
24 EEM pdOPT 60 5815.020 -5.16010521e-01 -5.160105e-01
44 Orig. pdOPT 71  268508.010 -4.40956190e-01 -4.409558e-01
44 | EMSSOSP | pdOPT 70  125076.640 -4.40956190e-01 -4.409530e-01
44 EEM pdOPT 67 13884.150 -4.40956190e-01 -4.409561e-01

Table 14: DIMACS errors by SDPA-GMP 7.1.2 with e=1.0e-15 for the sparse SDP relax-
ation problems with relaxation order r = 3 in POP (4.4). We omit err2 and err4 from
this table because they are zero for all POPs and methods.

2n Method errl err3 errb errb

24 Orig. 3.769e-30 1.713e-73 4.862e-16 5.763e-16
24 | EMSSOSP | 3.433e-30 2.059e-58 2.822e¢-16 3.196e-16
24 EEM 1.229e-65 3.354e-76  2.458e-16 2.458e-16
44 Orig. 6.368e-30 2.474e-73 3.905e-16 4.838e-16
44 | EMSSOSP | 5.010e-30 2.579e-73  4.820e-16 5.563e-16
44 EEM 4.523e-66 5.239e-76 3.112e-16  3.112¢-16

e From Tables 11 and 12, SDPA-GMP with precision 256 can solve all SDP relaxation
problems accurately. In particular, SDPA-GMP solves SDP relaxation problems ob-
tained by EEM more than 8 and 50 times faster than EMSSOSP and Orig., respectively.

e From Tables 7, 8 and 11, SeDuMi returns the optimal values of SDP relaxation prob-
lems obtained by EEM almost exactly as accurately as SDPA-GMP and more than
15 times faster than SDPA-GMP, while SeDuMi terminates before we obtain accurate
solutions of SDP relaxation problems obtained by the other methods.

e From Table 10, in SDP relaxation problems with relaxation order r = 3, DIMACS
errors for SDP relaxation problems by EEM are the smallest in all methods. Moreover,
from Tables 13 and 14, the optimal values of SDP relaxation problems by EEM coincide
the optimal values found by SDPA-GMP for 2n = 24 and 44. However, SeDuMi cannot
obtain accurate solutions because these values are larger than the tolerance 1.0e-9 of
SeDuMi.

5. An Application of EEM to Specific POPs

As we have seen in Section 3, we have a flexibility in choosing § although EEM always
returns the smallest set G* € T'(G° P). We focus on this flexibility and we prove the
following two facts in this section: (i) if POP (4.1) satisfies a specific assumption, each
optimal value of the SDP relaxation problem with relaxation order r > 7 is equal to that
of the relaxation order 7. To prove this fact, we choose § to be the largest element in
Ui (Fj + G+ Gj) \ (F UL, Tj) with the graded lexicographic order*. (ii) We give an
extension of Proposition 4 in [7], where we choose ¢ to be the smallest element.

*We define the graded lexicographic order o = 3 for a, 8 € N™ as follows: |a| > |5] or , |a| = |5] and «; >
B; for the smallest index i with a; # ;.
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First of all, we state (i) exactly. Let 7; be the largest element with the graded lexico-
graphic order in F;. For v € N, we define Z(y) = {k € {0,1,...,m} | 7 = v (mod 2)}.
We impose the following assumption on polynomials in POP (4.1).

Assumption 5.1 For any fized j € {0,1,...,m}, for each k € Z(v;), the largest mono-
mial 7% in fi has the same sign as (f;),.

The following theorem guarantees that we do not need to increase a relaxation order

for POP which satisfies Assumption 5.1 in order to obtain a tighter lower bound.

Theorem 5.2 Assumer > 7. Then under Assumption 5.1, the optimal value of the SDP
relazation problem with relaxation order r is the same as that of relaxation order 7.
We postpone a proof of Theorem 5.2 till Appendix D.

We give two examples for Theorem 5.2.

Example 5.3 Let f =z, fi =1, f, = 2, fs = 22 — 1. We consider the following POP:
inf{z |z >0,2>—1>0}. (5.1)

Then clearly, we have 71 = 0,79 = 1,73 = 2 and Z(y1) = Z(y3) = {1, 3}, Z(2) = {2},
and this POP satisfies Assumption 5.1. Therefore, it follows from Theorem 5.2 that the
optimal value of each SDP relaxation problem with relaxation order r > 1 is equal to the
optimal value of the SDP relaxation problem with relaxation order 1. We give the SOS
problem with relaxation order 1:

sup {p|x—p=o01(z)+ 209+ (2% — 1)o3 (Vo € R)}.
pER,01€%1,02,03>0
Furthermore, we can apply EEM to the identity to reduce the size of the SOS problem
above. Then the obtained SOS problem is equivalent to LP as follows:

sup {plz—p=o0o1+xoy, Vx€R)} = sup {pl|o=—p,o2=1}
pER,01,02>0 pER,01,02>0
Clearly, the optimal value of this LP is 0, and thus the optimal value of the SDP relaxation
problem with arbitrary relaxation order is 0.

This POP is dealt with in [25] and it is shown by using positive semidefiniteness in
SDP relaxation problems that the optimal values of all SDP relaxation problems are 0.
In [22], it is shown that the approach is FRA and this fact is a motivation to show a
relationship between EEM and FRA. We give the details in Section 6.

Example 5.4 Let f = —x,fi = 1,fo = 2 —x, f3 = 22 — 1. Then clearly, we have the
same ~y; and Z(v;) as in Example 5.3. This POP also satisfies Assumption 5.1. We solve
SDP relaxation problem with relaxation order r = 1. Then we obtain the following SOS
problem with relaxation order r = 1:

sup {pl—x—p=01(2)+(2—2)0y + (2* — 1)o3 (Vo € R)}.
peER01€X1,02,03>0

Applying EEM to the identity, we obtain the following LP problem:

sup {p|-z—p=01+2—2)oy (Vx€R)}

0,01,0220

= sup {p|l-p=o01+20y,1=09}=-2.

001,020
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From this result, the optimal value of the SDP relaxation problem with arbitrary relax-
ation order is —2, which is equal to the optimal value of the POP.

Next, we show (ii). Consider an SOS representation of f with fo, f1,..., fim, i.€.,
f = fooo + fio1 + -+ fmOm, where 0; € &, for j =0,1,...,m. In particular, we have
ro = r because fo = 1. Let ¢; be the smallest element in the graded lexicographic order
in Fj for j =0,1,...,m. For f, fo, f1,..., fm, we impose the following condition:
Assumption 5.5 1. f is a homogeneous polynomial with degree 2r,
2. for any fizred j = 0,1,...,m, for each k € I(¢;), the smalleset monomial x* has the
same sign as (fj)e;,
3. |ej| < deg(f;) forallj=1,...,m.
We remark that fo = 1 is not contained in 3 of Assumption 5.5.
Theorem 5.6 We assume that f € Z;ﬁ:o [i¥r;.  Then under Assumption 5.5, f €
fOEro =X,

We give a proof in Appendix D.

Theorem 5.6 is an extension of Proposition 4 in [7]. Indeed, in [7], the authors show
that for a homogeneous polynomial f with degree 2r, f € ¥, + f13,_1 if and only if f € 3,
where f; =1 —>_" 22, Clearly, f, fo and f; satisfy Assumption 5.5.

=1

6. A Relationship between EEM and FRA
In this section, we establish a relationship between EEM and a facial reduction algorithm
(FRA) proposed in [22]. In [22], the authors extended FRAs proposed in [2,12,16,17]
into conic optimization problems and derived a more practical FRA for SDP (6.1). It is
called FRA-SDP. In [23], the authors mentioned that in the case where m = 1 and f; = 1,
EMSSOSP can be interpreted as a partial application of FRA-SDP. In this section, we
show that in more general case, EEM can be interpreted as a partial application of FRA-
SDP. This implies that EEM may generate an SDP problem which has an interior feasible
solution.

FRA-SDP works for the following SDP (6.1). By using FRA-SDP, we can generate
another SDP which is equivalent to the original SDP and has an interior feasible point in

the feasible region:
inf {CeX|A,eX =0, (k=1,...,p)} (6.1)

Xesn

where C, A;, € S” and b € RP.

We give the algorithm of FRA-SDP for SDP (6.1). See [22] for more details of this
algorithm:
Algorithm 6.1 (FRA-SDP)

Step 1 Seti:=0 and Fy :=S}.
Step 2 Find a nonzero (y, W) € R x F; of the homogenized dual system (HDS)

p
by >0,W == Ay, W € ST (6.2)

k=1

Step 3 If there exists no such (y, W), then stop and return F;.
Step 4 If bTy > 0, then stop; the problem is infeasible. Otherwise, go to Step 4-1.
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Step 4-1 Decompose W = RR™ and find an n x n nonsingular matriz Z such that
Z = (L,R) for a matriz L.

Step 4-2 Set n :=n — rank(W), Fipq = S%, C:=271077T and Ay, := Z7 1A, 77T
(k=1,...,p).

Step 4-3 Make the following smaller SDP:

. A1 il _ _
Xlgéfi{c .X)Akox_bk (k;_1,...,p)}, (6.3)
where o S
~ ct C ~ A A
C:<~ ) andA-:(~k )
02T Od J AiT A%
Go to Step 5.

Step 5 Seti:=1i+ 1, and go back to Step 2.

It is shown in [22] that (i) FRA-SDP terminates in finitely many iterations, (ii) the
resulting SDP (6.3) has an interior feasible solution if the original SDP (6.1) is feasible,
and (iii) any solution (y, W) in (6.2) satisfies b’y = 0 if SDP (6.1) is feasible. From (i),
by solving the resulting SDP instead of SDP (6.1), we can expect that the computational
stability and efficiency of primal-dual interior-point methods for SDP (6.3) are improved.

We consider SDP (2.4) obtained from the problem (2.3). In this section, we add the
zero objective function in SDP (2.4) and regard SDP (2.4) as the minimization problem.
The SDP problem is as follows:

3

#(ij)nfl {O ZEJEQ oVi=fa(a €| JF;+ G+ Gy)) } ’ (6.4)
‘/]'ES_‘_ (j=1,...,m) j=1 j=1

where E;, € S#(%). When we apply Lemma 2.3 to (2.3) once, it can construct H :=
G\ B(9) from G if there exists ¢ which satisfies (2.6) in Lemma 2.3 is found. The SDP
obtained from SOS problem (2.3) with H = (Hy,..., Hy,) is

inf 0
viest) (j=1,...m)

where (Ej o), 1, is the leading principal submatrix of £, indexed by H; for j = 1,...,m.
The following theorem shows that FRA-SDP can generate SDP (6.5) from SDP (6.4).

This implies that EEM is a partial application of FRA.

Theorem 6.2 We assume that f has an SOS representation with fi, ..., fmn and G4,. ..,

G- Let §, J(9) and B(9) be as in Lemma 2.3. We define

B L if (fj)s—2a <0 for all j € J(0) and o € B;(0),
Yo = —1 if (fj)s—2a > 0 for all j € J(9) and a € B;(0),

> (Ejo)mm, oV = fo (a € | J(Fy + H; + Hy)) } , (6.5)

j=1 j=1

m

Ya = OfO’I” CL”O{E (U(F}‘FGJ—’—G])) \{6} and

j=1

Wilsnr = { ~(s)s2ays i B =1 € B;(0), for all (B,v) € Gj and j=1,...,m.

0 0.W.
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Then (y, (Wh,...,Wy)) is a solution of (6.2) which is constructed from SDP (6.4). More-
over, SDP (6.5) is the same as SDP (6.3) obtained by W = (Wy,..., Wy,).

Proof: We prove that (y, W) satisfies (6.2) obtained from SDP (2.4). We have fTy =
fsys = 0 because of y, = 0 (o € UL, (F; + G; + G;) \ {6}) and 6 ¢ F. In addition,
W; e Sf(Gj) because W; is diagonal and —(f;)s—20ys > 0. We show the equality W; =
=D aer;+Gy4G; Eiala- Sj(y) denotes — 3 cp o o Ejaya for simplicity. If j & J(4),
then it is clear that S;(y) = O = W, because 6 € F; + G; + G;. We consider the case
where j € J(§). From definitions of E;, € S#(¢) and y, we have

~(s—srsats 16— Py~ B €
(Sj(y>>5l,52 = (—Ej,cS)ﬁl,ﬁg Ys = { ( 3)605 » 0.W. 1 2 ’

for f1,0: € Gj,7 = 1,...,m. In the case where 51 # [, (S(y))ﬁhﬁ2 =0 = (W,)s,.
because 0 ¢ Tj. In the case where 8; = [, it follows that

(S5 W) = —(Eia)sisys = { _(fj)g‘wly‘s g£1 € B;(9),

for 1 € G;. This shows that (S;(y))s 5 = (Wj)sp for all 3 € G;. Therefore, we have
— ZaeFj+Gj+Gj EioYo =Si(y) =W, for j=1,...,m.
We show the second statement. Let H; := G; \ B;(d) for j = 1,...,m. From the

definition of W, we define a nonsingular block diagonal matrix Z = diag(Z;;j = 1,...,m)
as follows:
Zj = (Lj7Rj)a Rj = (\/ _(fj)é—Zayéeoc) and Lj = (ea)ae[—[j )
aGBj(cS)

where e, € R#(Gi) is the a-th standard column vector. Then we have W; = RJ-R;F and
Zj is nonsingular. In fact, we can give an explicit form of the inverse of Z; as follows:

LT 1
Z71 = ( i ) , R = | ———e,, _
’ R ’ ~(fi)s-2a¥ ) ep 5

It is easy to verify the following:

(Bja)u,m, = LIEjoL;jfor ae U(Fj +H;+H;)and j=1,...,m,
j=1

(Ejo)m;; = Oforac U(Fj +G;+G5)\ (U(FJ + H;j+ Hj)) and j =1,...,m.

J=1 Jj=1

Consequently, we obtain the following smaller SDP problem:

> (Eia)um, o Vi = fa (a € [ J(F; + G+ Gy),
( i)nf 0 75t m 7=l m
#HG) L
Ges Gt | NP0 0V = fo (0 € ((J(F + G+ G))\ (J(F; + H + Hy))
=1 j=1 j=1

(6.6)
This SDP is corresponding to SDP (6.3) in FRA-SDP. Here we use the following claim:

Copyright (© by ORSJ. Unauthorized reproduction of this article is prohibited.



184 H. Waki & M. Muramatsu

Proof of Claim 1: We obtain the desired result from SOS representations (2.5) and (2.7).
O

It follows from Claim 1 that f, = 0 for all @ € U}~ (F;+G;+Gy)\ (UL, (F;+H;+H;))
because such « is not contained in F'. Therefore we can remove linear equalities on V; for
ae UL (F+ G+ Gi)\ (UL, (F) + Hj + Hj)) from SDP (6.6). Then the obtained SDP
is equivalent to SDP (6.5). O

We remark that in some cases, FRA can reduce the size of SDP (2.4) more than EEM.
In the case where m = 1 and f; = 1, such an example is presented in [23].

7. Concluding Remarks

SDP relaxation problems obtained from POP often become large-scale and highly degen-
erate. To overcome these difficulties, in this paper, we extend EMSSOSP by Kojima et
al. [8] into constrained POPs. EEM can reduce the sizes of the resulting SDP relaxation
problems by using sparsity of f, fi,..., f,. Moreover, EEM is a partial application of
FRA and we can expect that the resulting SDP relaxation problems have an interior fea-
sible solution and that computational efficiency of primal-dual interior-point methods is
improved. We apply EEM to POPs in subsections 4.1 and 4.2 and observe that EEM is
effective for those POPs. For SDP relaxation problems with relaxation order r = 3 for
POPs in subsection 4.2, all DIMACS errors by EEM are smaller than the other methods
although SeDuMi terminates before returning an accurate value and solution.

We cannot know whether SDP relaxation problems obtained by EEM have an interior
feasible solution or not in advance although EEM is a partial application of FRA. If
not, one can obtain such an SDP by applying FRA-SDP. However, we may encounter a
numerical difficulty in FRA-SDP because FRA-SDP is comparable to solving the original
SDP. We need to develop an algorithm for avoiding such a difficulty. This is one of our
future works for SDP relaxation in POPs.

A. A Proof of Lemma 2.3
From (2.5), we obtain

k; 2 k; 2

=D L@ [ D (g | + ) > (ga)a”

JEJ(9) =1 \aeG; FIS e m}\J() i=1 \acG;

From the definition of J(§) and (2.6), the monomial 2° does not appear in the second
term. Indeed, if j & J(0), then § & F; + G; + G because § € T;. Thus, we focus on the

first term:

s 2

2 K@)y | 2 (g)e”

JjeJ(9) i=1 \a€Gj

= > Z > S (Falgsg)s | o

jeJ(8) i=1 e€F;+G;+G; \ a€F;,p,veGje=a+p+y

<
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Because the monomial 2° does not appear in the polynomial f, we obtain the following
equation:

0= > (f)al(gii)s(gsi)y foralli=1,... k;and j € J(0).

aEFj,ﬁ,’YEGj,a+B+’7:§

Moreover, it follows from § & T and the definition of B;(4) that this equation is equivalent
to the following equation:

0= > (f)algsi)3 foralli=1,....k;, and j € J(4).

O(EFj,ﬁEBj (5),01-‘1—26:5

From (2.6), we obtain (g;;)o = 0 for all j € J(d),i =1,...,k; and o € B;(J). Because
B;(0) =0 for all j & J(J), we obtain the desired result.

B. Some Results on the Set Theory

To show Theorem 3.3, we deal with a more general case of a function P and a set family
['(G°, P) defined in Definition 3.2. We will prove Theorem 3.3 in Appendix C by using
results obtained in this appendix.
Let X be a finite set. We consider a function P : 2% x 2% — {true, false} and assume
that P(C,0) = true for all C' C X.
Definition B.1 For a given set G° € 2% and the function P, we define a set fam-
ily T(G°, P) C 2% as follows: G € T(G° P) if and only if G = G° or there emists
G’ € T'(G°, P) such that G € G’ and P(G',G'\ G) = true.
Remark B.2 1. If G € T'(G° P) and there exists A C G such that P(G, A) = true, then
G\ A € T(GY P). Indeed, if A is empty, then clearly G\ A € T'(G?, P). Otherwise,
H' and H denote G and G \ A, respectively. Then we have H' € I'(G°, P), H C H’
and P(H',H'\ H) = P(G, A) = true. Therefore, H =G\ A € T'(G°, P).
2. Tt follows from Definition B.1 that for all G € T'(G°, P) except for G, there exist two
sequences {G?}]_, and {Ap}g;(l) satisfying
Gr e T'(G° P),GY =G, AP C G?, B.1
GPtt =GP\ AP and P(GP, AP) = true for all p=0,...,¢— 1. (B.1)

For the family I'(GY, P) and the function P, we assume the following in Appendix B:
Assumption B.3 IfG € I'(G°, P), A C G and P(G, A) = true, then P(GNH,ANH) =
true for any H € T(G°, P).

Under Assumption B.3, the following lemma ensures the existence of the smallest
set G* in T'(GY, P) in the sense that G* C G for any G € I'(GY, P).

Lemma B.4 Let G,H € T(G°, P). Then GNH € I'(G°, P).
Proof: For G, we have the sequences {G}!_,; and {Ap}g;(l) satisfying (B.1). We prove by
induction on p that GPNH € (G, P) for all p. This implies GNH = G'NH € I'(G°, P).

Because G C G° for any G € T'(G°, P), it follows that G°N H = H € I'(G°, P). Next, we
assume that GP N H € T'(G° P) for some p. Then it follows from 1 of Remark B.2 and
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Assumption B.3 that (GPNH)\ (A?NH) € T'(G°, P). We have GPT'NH = (GP\ AP)NH =
(GPNH)\ A? = (GPN H) \ (A? N H) and this completes the proof. O

It follows from Lemma B.4 that G* := (e (o py G is the smallest set in ['(GY P) in
the sense that G* C G for all G € T'(G°, P).
We propose an algorithm for finding G*.

Algorithm B.5 (The elimination method)

Step 1 Seti=0.

Step 2 If there does not exist any nonempty subsets A of G* such that P(G*, A) = true,
then stop and return G°.

Step 3 Otherwise set G = G'\ A and i =i+ 1, and go back to Step 2.

At Step 2 of Algorithm B.5, we have a flexibility in choosing a nonempty subset A.
The next theorem ensures that Algorithm B.5 always returns the smallest set G*.

Theorem B.6 The set returned by Algorithm B.5 is G* € T'(G°, P).

Proof: Let G be the set returned by Algorithm B.5. From Algorithm B.5, for any
nonempty set C' C G, P(G, C) = false. We assume G* C . Then there exists nonempty
set D such that G = G*UD and G*ND = (. We have the sequences {GP})_o and {AP}IZ,
satisfying (B.1) and G? = G*. Because G* N D = (), there exists p € {0,...,¢ — 1} such
that D C G? and D € GP*™! = GP\ AP. This implies that d € A? for some d € D, and thus
APNG is nonempty. Then P(GPN G, AN G) = P(G, AN G) = true. For G, by choosing
A= AP NG at Step 2, we can get a smaller set than G. This implies that Algorithm B.5
returns a smaller set than G and thus contradicts the property of G. Therefore G* = G.
0

C. A Proof of Theorem 3.3

In this appendix, we give a proof of Theorem 3.3. To this end, we use the results in
Appendix B. In Definition B.1, we set X = N} x---xN}' "and P to be as in Definition 3.2.
Then Definition B.1 is equivalent to the definition of I'(G?, P) in Definition 3.2. Therefore,
if the set family I'(G°, P) defined in Definition 3.2 satisfies Assumption B.3, it follows from
Theorem B.4 that G N H € I'(G% P) if G, H € T'(G° P). This ensures the existence of
the smallest element G* in ['(G°, P). Moreover, it follows from Theorem B.6 that EEM
described in Algorithm 3.1 always returns G*. Therefore, it is sufficient to show that the
set family I'(GY, P) satisfies Assumption B.3.

The following lemma guarantees that the set family ['(G°, P) satisfies Assumption B.3.
Lemma C.1 Let G, H € T(G°, P). If P(G, B(6)) = true for some 6 € J;-,(Fj + G +
Gi)\ (FUUL, T)), then P(G N H, B(6) N H) = true.

Proof: For GN H, sets J'(6), B}(0) and T} which correspond to J(0), B;(d) and T} are as
follows:
J©0) = {je{l,....m}|deF;+2(G;NH;)},
B/((S) = {OZGGijj |5—20&€F}‘},
T; = {v+a+plrela e nHa#p}
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Clearly, we have Bj(6) = B;(d) N H;. Let B'(d) := (B1(9),...,B,,(9)). If all Bi(d)
are empty, then it follows from definition of P that P(G N H,B(0) N H) = true. We
assume that there exists j € {1,...,m} such that Bj(d) # 0. We will prove P(G N
H, B'(9)) = true under this assumption. Clearly, § ¢ F'UJ;_, T] because of T} C Tj. If
o ¢ Ujo,(Fy + (G 1 Hy) + (G N Hjy)), then Bj(0) = 0 for all j =1,...,m. We consider
the case where 0 € (JJ_, (F+(G;NH;)+(G;N H;y)). Bj(d) and J'(9) satisfy (2.6) because
of B}(0) = B;(d) N H; and J'(0) C J(9). Therefore, P(G N H, B(§) N H) = true. O

D. Proofs of Theorem 5.2 and Theorem 5.6

First of all, we give a proof of Theorem 5.2. To this end, we use the following lemma.
Lemma D.1 Ifr > 7, then 2r — 1 > deg(f).

Proof: We have r > 7+ 1 > [deg(f)/2] + 1 because of r > 7. Then we have 2r — 1 >
279 41 > 248U > deg(f). 0

Before we introduce Lemma D.2, we give some notation and symbols. Given 5; € N} \
N 1, let s; be the largest element with the graded lexicographic order in the set S;. For
S := (S0, 51, ...,5m), the set A(S) denotes {v; +2s; | j =0,...,m}. Note that A(S) is
empty if all sets Sy, S1,...,S, are empty.

The following lemma ensures that the largest element in A(S) satisfies (2.6) under
Assumption 5.1.
Lemma D.2 Assume r > 7. We define G; = Ny _ U S; forall j =0,1,...,m. 0 €
A(S) denotes the largest element with the graded lexicographic order in the set A(S).
Then 6 € ULo(Fj + G + Gy) \ (FUU;L,Tj), and J(6) and B(0) satisfy (2.6), where
B(9) := (By(9), ..., Bn(d)).

Proof: 1t follows from Lemma D.1 that § ¢ F' because of 0| = deg(f;)+2r; > 2r—1, and
thus § € Jj_o(F+G;+Gj)\F. For o € A(S), we consider J(0) = {j € {0,1,...,m} | § =
v;+2s;}. Note that we have oy + a3 > as+ay if given elements ay, s, ag, ay € N satisfy
a1 = ao and ag = a4. From this fact on the graded lexicographic order and the fact that
d,7;,s; are the largest elements in A(S), F};, G;, respectively, it follows that v; +2s; is the
largest element in F; + G + Gy, and thus ¢ is the largest element in (J;_o(F; + G + Gj).
As a consequence, we have

B,(0) = { {s;} ifjeJ),

J 0 0.W.

Moreover, we can prove 0 ¢ T; for all j € {0,1,...,m}. Indeed, if § € T} for some j, then
we have 6 = a + 1 + (B2 for some a € Fj and ) # B2 € G;. We assume 3; = 3. Then
a+28 € F;+G;+ G and a+ 23, = 0, and thus this contradicts the fact that § is the
largest element in (Jj_,(F}; + G +G;). Therefore 6 € UL (F; +G;+Gy) \ (FUUL, T))-

We need to check the sign of (f;),, for all j € J(J). We denote J(§) = {j1,...,Jp}-
Then J(§) € Z(vy;,) for k = 1,...,p because we have v;, = § — 2s;, = 0 mod 2 for all
k=1,...,p. It follows from Assumption 5.1 that all the signs of (f;),, for all j € J(4)
are the same sign. Therefore J(0) and B(9) satisfy (2.6). O

Proof of Theorem 5.2: We define S; = Np \NJ'_; and G; = N}, _; U S; for all j =
0,1,...,m. By applying Lemma D.2, then we can remove s; from G; and 5; for j €
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J(9). Next, we construct the set A(S) from the resulting sets Sy, S1, ..., S, and apply
Lemma D.2 again. Lemma D.2 ensures that one can remove the largest element s; in
some sets S; as long as the set A(S) is not empty. By repeating this procedure, all
sets Sp, 51, - .., Sy, become empty. This implies that the resulting SOS problem is equiv-
alent to SOS problem with relaxation order » — 1. Therefore, by induction on r, the SDP
relaxation problem with relaxation order r is equivalent to the SDP relaxation problem
with relaxation order 7. 0

Next, we prove Theorem 5.6. Let G; C Nj}j and s; be the smallest element in G; with
the graded lexicographic order for j = 0,1,...,m. We define the set C(G) = {¢; + 2s; |
j=0,1,....,m} for G := (Gy,...,Gpn).

Lemma D.3 § € C(G) denotes the smallest element with the graded lexicographic order
in the set C(G). Then 6 € UjL,(Fy + Gy +Gj) \ (FUUL, 1)), and J(6) and B(6) satisfy
(2.6), where B(5) := (By(9), ..., Bn(9)).

Proof: Tt follows from 1 and 3 of Assumption 5.5 that o ¢ F for all a € C(G). By
applying a similar discussion in Lemma D.2 and 2 of Assumption 5.5, we can prove this
lemma. 0

Proof of Theorem 5.6: Let G; = N:}j for all 7 = 0,1,...,m. Applying Lemma D.3, we
can remove s; from G; for j € J(9). Next, we construct the set C'(G) from the resulting
sets G, G, ...,G,, and apply Lemma D.3 again. Lemma D.3 ensures that one can remove
the smallest element s; in some sets G; as long as the set C(G) is not empty. Note that
we have |¢; + 2s;] < 2r for j = 1,...,m because of 3 of Assumption 5.5. Therefore, by
applying this procedure repeatedly, all sets Gy, . . ., G,, become empty and Gy = N*\N”"_,.
This implies f € fyX,, = X,. O
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