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Abstract A quick decision on implementation of countermeasures for quality problems is important for
reducing the quality cost of electronic products. At the beginning of the production period, the claim rate
is uncertain owing to the lack of sufficient field claim data. Therefore, a quick decision on implementation of
countermeasures may lead to misjudgment. On the other hand, until the end of the production period, there
is an option to postpone the decision. When the option to postpone the decision is exercised, increased field
claim data will reduce the uncertainty of the claim rate. Then the probability of misjudgment will decrease.
However, postponing the decision may increase the number of inferior products before the countermeasures.
In order to support the decision on implementation of countermeasures for quality problems under uncer-
tainty, we propose a new method that combines Bayesian updating and real options. We evaluate the value
of the option to postpone the decision qualitatively and show the possibility of reducing the quality cost.

Keywords: Decision making, OR practice, Markov decision process, reliability, risk
management, real option, optimal stopping, dynamic programming, Bayesian statistics

1. Introduction

Quality problems of consumer electronics are critical both for customers and manufacturers.
For customers, quality problems decrease the sense of reassurance. For manufacturers, the
increase of the quality cost has a huge impact on profitability. The warranty accruals of
manufacturers usually account for some percentages of product sales [23]. In addition, the
brand image of products is easily damaged by quality problems.

Manufacturers have been devoting much effort to the improvement of product qual-
ity in the design process and the production process. However, quality problems are not
completely eliminated before shipment. In the case of consumer electronics, field quality
problems sometimes become apparent during the production period. In order to improve
the product quality of the remaining production period, countermeasures for the quality
problems must be implemented before the end of the production period. Since recent elec-
tronic products, such as computers, are produced within a short period, a quick decision on
implementation of countermeasures is required. Manufacturers must decide quickly whether
to implement countermeasures and bear the associated cost.

At the beginning of the production period, uncertainty of claim rates makes the decision
difficult owing to the lack of sufficient field claim data. Figure 1 (below) shows a typical
change of the amount of in-warranty products. When a new product model begins to be
shipped, in-warranty products are few. The amount of in-warranty products increases as the
production continues. Then it remains constant, because the production period is usually
shorter than the warranty period, which is typically one year. Finally, it begins to decrease
one year after the start of production.
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Figure 1: Observed claim rate and two-sided 95% confidence interval of the claim rate
(above), in-warranty amount of products (below)

Figure 1 (above) shows the observed claim rate (solid line) and the two-sided 95% con-
fidence interval of the claim rate (dotted line). Here, the observed claim rate is calculated
by dividing the number of claims by the number of in-warranty products. The confidence
interval is calculated based on binomial distribution and considered as uncertainty in de-
cision making. The confidence interval is wide at the beginning of the production period
because there are few observed claims and small in-warranty amounts. In other words, the
claim rate is uncertain at the beginning of the production period. If the true claim rate
is high, an earlier countermeasure has a greater cost-reduction effect. However, the true
claim rate may be low. In this case, the countermeasure is ineffective and the expended cost
is wasted. Therefore, although manufacturers want to implement countermeasures earlier,
quick decision making involves high risk. In particular, it is especially difficult to judge at
the beginning of the production period because of the high uncertainty.

However, it is unnecessary to make a decision under high uncertainty. The decision can
be postponed until sufficient field claim data and in-warranty product data are collected.
If the decision is postponed, uncertainty decreases and the confidence intervals of claim
rates become narrow. This makes it possible to make a more correct decision. This option
is called the option to postpone or the option to wait in the terminology of real option
analysis [8, 16]. If this option is exercised, the probability of a wrong decision becomes
small. However, the amount of the production after the decision will decrease and the effect
of the countermeasure will become smaller. Therefore, there is a trade-off between the
probability of misjudgment and the effect of countermeasures. In this uncertain situation,
it is helpful to support the decision making on whether the manufacturer should implement
a countermeasure at the present time or postpone the decision.

Real option analysis is a method of decision making under uncertainty [8, 16] , devel-
oped as an extension of option pricing techniques [3, 15, 20]. Applications of real options
have been studied in various domains, such as project investments [13, 18], resource invest-
ments [4], maintenance planning [9], and policy evaluation [19]. In many industrial projects,
management has the option to acquire additional information in order to reduce uncertainty
before committing to an irreversible decision [1]. This option is valuable, because the new
information reveals more about the true state and reduces risk. From a statistical view-
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point, Bayesian analysis is a natural way to update distributions based on new information.
Simple case studies of Bayesian updating are presented in [14] where the reserves are divided
into two or three broad categories (high, medium, low) and where the probabilities for each
category are conditional upon the true reservoir volume. Once the prior probabilities for
each reserve category are known, Bayes’ theorem can be used to deduce the probability of
high/medium/low reserves given new observations. Decamps et al. [6] and Klein [12] solved
for the optimal investment timing when a firm is uncertain about the drift parameter of
the state process and the variance parameter is known. In their models, over time the firm
learns more about the true drift parameter. In the fullness of time, full information can be
obtained. They applied arithmetic Brownian motion to the value of the project, which is
thought to be unrealistic.

Optimal stopping is concerned with the problem of choosing a time to take a particular
action in order to maximize an expected reward or minimize an expected cost. There are
many researches related to the optimal stopping problem. In the area of real option, optimal
stopping is related to the pricing of American options [10, 11, 22]. We consider a kind of
an optimal stopping problem for the decision making of implementing a countermeasure
against field quality problems at present time, where the number of claims follows binomial
distribution. Our criterion function is the expected loss caused by postponing the decision.
In Markov decision processes many authors propose a variety of criteria (e.g., utility, prob-
abilistic constraints and mean-variance) and investigate Markov decision processes for their
criteria, instead of standard criteria, that is, the expected discounted total reward and the
average expected reward per unit [17]. White [24] reviews the decision problems with such
criteria in detail. Our problem is related to a parking problem, because our criterion func-
tion depends on the stopping time when a countermaeasure (i.e., parking) is implemented.
A criterion in a classical parking problem is the expectation reward which is maximized with
respect to stopping time. For this problem, for example, see Chow et al. [5] and DeGroot [7].
However, we are not interested in when to take an action unlike general optimal stopping
problems, though our proposed method solves a kind of an optimal stopping problem for
each simulation scenario. Our simulation scenarios differ by the unobserved true claim rate
and the optimal time of implementing a countermeasure or the optimal decision at present
time also differs. We repeat the simulation with different true claim rate and calculate the
expected loss caused by postponing the decision at the present time for decison making.

Our aim in this paper is to apply a more general approach of Bayesian updating to the
decision making for a countermeasure for field quality problems. Firstly, we treat obeserv-
ing the amount of in-warranty products and the amount of claims in Bayesian updating
framework. The new information can change the estimates of the claim rate. The value of
postponing the judgment for implementing a countermeasure to a future decision point is
presented. Secondly, we consider an appropriate claim generation model based on binomial
distribution and the unobserved true claim rate. Contrastingly, many results of real option
analysis assume without any reason that the stochastic process is an arithmetic Brownian
process or a Wiener process. Thirdly, we consider appropriate future scenarios based on the
observed claim data and the claim generation model. Real option analysis requires future
scenarios∗ and leads to the solution that fits the scenarios. Therefore, future scenarios must
be considered appropriately.

We propose a new method to support decision making on countermeasures for quality
problems under uncertainty. The proposed method is based on decision tree analysis and

∗For example, increase and decrease of demand, trend of economy, change of price, and so on.
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Figure 2: Decision tree

selects the best strategy that minimizes quality cost at each decision point. To the best
of our knowledge, there is no study that implements similar methods for the support of
decision making for quality problems after shipment.

The remainder of this paper is organized as follows. In Section 2, we introduce the
proposed decision-making model and assumptions for the model. The algorithm of our
decision-making model is presented in Section 3. Experimental results are shown in Section
4. In Section 5, we conclude the paper.

2. Decision-making Model and Assumptions

2.1. Decision tree

A decision tree is a rooted tree that represents all possible decisions (options) and scenarios
in each period hierarchically. Using a decision tree to find the optimal decisions is called
solving a decision tree. Scenarios of a decision tree represent the uncertainty in the future.
In the case of implementing countermeasures for quality problems, we deal with the claim
rate as the main element of uncertainty.

Figure 2 is a two-period decision tree that illustrates the options and the scenarios of
field quality problems. As described in Section 1, we define the following two options at each
decision point: implementing a countermeasure and postponing judgment. Implementing a
countermeasure means improving the product quality of the remaining production period.
Countermeasures include detection of problems, modification of operations, replacement of
parts, for example. Improvement of product quality is achieved when the countermeasure
is effective. Postponing judgment at time t means implementing no countermeasure at time
t, but does not mean implementing no countermeasures permanently. Countermeasures can
be implemented at any future decision points of the remaining production period after t .

Black squares in Figure 2 are decision points. The left-most black square means the
decision point at the present time t0, and this decision is of interest. At each decision point,
the better option is selected by considering whether a countermeasure for quality problems
should be implemented now or the judgment should be postponed to the next decision
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point. A decision is made quantitatively by comparing the estimated quality cost of both
cases. Here, quality cost means the whole repair cost of the products manufactured after
the present time (t0) and the cost of implementing a countermeasure (C). The cost of a
countermeasure includes labor cost and material cost for changing the product design and
the production process, for example. Arcs from decision points are called decision arcs,
and other arcs from black circles are called scenario arcs. There are two arcs from each of
the decision points, which mean implementing a countermeasure and postponing judgment,
respectively. Scenario arcs mean stochastic variation of claim amounts in the future. For
simplicity of illustration, only three scenario arcs are drawn in Figure 2.

A brief overview of our decision-making model is as follows. The in-warranty products
are considered as risk exposure in insurance terminology. Because the claim rate is constant
and independent of the elapsed usage time (Assumption 1), it is appropriate to consider
that the number of claims Rt follows binomial distribution Bi(Nt, p

∗).

Rt ∼ Bi(Nt, p
∗). (2.1)

where Nt is a number of in-warranty products and p∗ is the unobservable true claim rate.
This means that claims occur randomly with a constant probability. Following the claim
generation model Bi(Nt, p

∗), we calculate the realization probability of each Rt. The amount
of Rt and Nt corresponds to the scenarios of a decision tree at time t. Although the claim
rate is continuous, we segmented the claim rate into k discrete small grids between 0 and 1.
Scenario arcs are considered discretely as shown in Figure 2. Scenario 1 to k corresponds
to the k grids that segment the claim rate between 0 and 1.

The information that manufacturers get at time t is the number of claims Rt and the
number of in-warranty products Nt. The option to postpone is valuable, because the new
information (Rt+1 and Nt+1) reveals more about the true state (p∗). As discussed below, we
model this reduction of uncertainty using Bayesian updating.

Based on the decision tree analysis, we calculate the quality cost of each scenario by
considering the value of the option to postpone. Then we select the option that minimizes
the cost at each decision point. The quality cost at present depends on the decision at the
future time. We calculate the quality cost at the future decision point preliminarily in order
to calculate the cost at present. To realize this calculation, we use the recursive structure
of the problem like dynamic programming.

2.2. Notations and assumptions

The notations are listed in Table 1. Before we illustrate the detail of the proposed algorithm,
the following assumptions of the presented decision-making model are explained.
1. The claim rate p∗ is constant and independent of the elapsed usage time.

This means that there are few initial failures and wear-out failures compared
with random failures. In general, this is true of electronic devices and systems
that consist of many parts [2].

2. If a countermeasure is effective, the claim rate of products manufactured after the coun-
termeasure becomes a fixed value Q: the target claim rate anticipated in the design
process. If the true claim rate p∗ is higher than the target claim rate Q, the counter-
measure is effective.

We estimate the value of taking a countermeasure and compare it with the
quality cost for decision making. In order to estimate the value of taking a
countermeasure, we assume that the countermeasure makes the claim rate of
products decrease to a fixed rate anticipated in the design process.
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Table 1: List of notations

Notation Explanation
t / t0 / T time / the present time / time of the final production
p∗ / q∗i true claim rate (unobservable) / true claim rate for ith simulation (unobservable)
g(p∗) posterior distribution of the true claim rate
p̂t observed claim rate at t: p̂t = Rt/Nt

Q claim rate after implementing a countermeasure
nt amount of in-warranty products at t

Nt cumulative sum of in-warranty products at t: Nt =
∑t

τ=1 nτ

rt amount of claims at t

Rt cumulative sum of claims at t: Rt =
∑t

τ=1 rτ
w repair cost of one claim
C cost of implementing a countermeasure
M number of simulations

LAct
t (p̂t) quality cost when a countermeasure is implemented at t (t0 ≤ t ≤ T )

Lt(p̂t, q
∗
i ) quality cost based on the decision at t (t0 ≤ t ≤ T )

FE expected loss caused by postponing the decision to t0 + 1

3. Until the end of the production period, it is possible to implement a countermeasure for
a quality problem once at an arbitrary time.

We consider that one countermeasure resolves the quality problem. Of course,
more than one countermeasure can be implemented in practice. The second
countermeasure is considered after observing the effect of the first counter-
measure. Therefore, only the first countermeasure is considered here.

4. The effect of a countermeasure appears by the next decision point.
5. The amount of products under warranty nt in the future is assumed by the planned

schedule of production.
6. The decision-making model presented here adopts a descrete time model.

The time t is between the present time t0 and the time of the final production
T . Because there is no production after T and a countermeasure afterward
has no effect, we do not consider the pediod after T .

Under these assumptions, we consider whether to implement a countermeasure now or post-
pone the decision to the next decision point, and provide the decision support by comparing
the quality cost of both cases quantitatively.

3. Algorithm

In this section, we illustrate our algorithm for solving the decision tree. In the following
article, we use a discrete time domain. We calculate the expectation of loss amount caused
by postponing a decision at the present time t0. If the loss amount is greater than zero,
implementing a countermeasure at t0 is suggested.

3.1. Flow chart of the presented algorithm

Figure 3 illustrates the flow chart of the presented algorithm described in the next subsection.
Our algorithm consists of five steps. As step 1, data and parameters are given as input: rt
(t ≤ t0), Rt0 , nt (t ≤ t0), Nt0 , w, C, Q, and T . Step 2 is setting the true claim rate q∗i by
sampling from distribution g(p∗) and generating future scenarios Pr(p̂t+1 | p̂t, q∗i ). In step 3,
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set true repair rate ：For  i in 1 to  M

DynamicProgramming
For  t in T-1 to t0 

end  For  tcalculate

input data, parameters

calculate
calculatecalculate

calculate

calculateend  For  i
Step 3

Step 1
Step 2

Step 5

Generating future scenarios
Cost calculation

Decision making Repeat simulations
Figure 3: Flow chart of the presented algorithm

we calculate the quality cost under the future scenarios by dynamic programming. In step
4, these steps are repeated M times with different q∗i . Step 5 calculates FE which is the
expected loss amount caused by postponing the decision at t0. Following these steps, the
decision making is supported by the quantitative evaluation of quality cost considering the
option to postpone.

3.2. Detail of the proposed algorithm

Step 1. Input data and parameters

As parameters, values of w, C, Q, and T are given. The following data are given as input.

• rt (t ≤ t0), Rt0 : observed past amount of claims before the present time t0.

• nt (t ≤ t0), Nt0 : observed past amount of in-warranty products before t0.

Step 2. Generating future scenarios

In this step, we generate future claim scenarios based on the unobserved true claim rate
p∗ and the future in-warranty amount nt (t > t0) given by Assumption 5. Here, we apply
a Bayesian statistical approach. Because there is no clue to tell the true claim rate p∗

before any field claims are observed, we suppose that the prior distribution of claim rate is
uniform distribution Beta(1, 1)†. The likelihood of the observed data Nt0 , Rt0 with respect
to p∗ is described with Binomial distribution Bi(Nt0 , p

∗)‡. Note that the observed claim rate
p̂t0 = Rt0/Nt0 is only a maximum likelihood estimate of the claim rate. Then, the posterior
distribution g(p∗) is given by the following Beta distribution using Bayes’ theorem§.

g(p∗) ∼ Beta(Rt0 + 1, Nt0 −Rt0 + 1). (3.1)

Although the posterior distribution is given by Equation (3.1), the true claim rate is an
unobservable fixed value. We set the true claim rate p∗ by sampling repeatedly at random
from distribution g(p∗), and we call its ith value q∗i (i = 1, . . . ,M). Then, the future scenario

†The prior distribution can be any distribution if it is appropriate.
‡The claim generation model at t is considered to be given by the binomial distribution Bi(Nt, p

∗).
§This Bayesian idea is similar to [21].
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is generated by calculating the following transition probability Pr(p̂t+1 | p̂t, q∗i ). This is the
conditional probability that the observed claim rate at t + 1 is p̂t+1 = Rt+1/Nt+1 when the
observed claim rate at t is p̂t = Rt/Nt. Here, rt+1 = Rt+1 −Rt = Nt+1p̂t+1 −Ntp̂t.

Pr(p̂t+1 | p̂t, q∗i ) =

(
Nt+1 −Nt

Rt+1 −Rt

)
q∗i

(Rt+1−Rt)(1− q∗i )
(Nt+1−Nt)−(Rt+1−Rt)

=

(
nt+1

rt+1

)
q∗i

rt+1(1− q∗i )
(nt+1−rt+1). (3.2)

Following Assumption 1, the true claim rate is constant with respect to t. As mentioned in
Section 2, the claim rate is segmented into discrete small grids between 0 and 1. Therefore,
p̂t and p̂t+1 are discrete, and transition probability is calculated for finite scenario arcs.
Step 3. Cost calculation under the generated future scenario
In this step, we calculate the quality cost for each of the generated future scenarios. First,
we calculate the expectation of quality cost of products after the present time t0 when a
countermeasure is implemented at t and the observed claim rate is p̂t.

LAct
t (p̂t) = C + w

∫ 1

Q

((nT − nt)Q+ (nt − nt0)p
∗) Pr(p∗ | p̂t)dp∗

+ w

∫ Q

0

(nT − nt0)p
∗ Pr(p∗ | p̂t)dp∗ (3.3)

= C + w

(
(nT − nt)δt(p̂t)Q+ (nt − nt0)ϵt(p̂t) + (nT − nt0)

(
Rt + 1

Nt + 2
− ϵt(p̂t)

))
.

(3.4)

Note that the true claim rate p∗ is unobservable. The first term in Equation (3.3) is the nec-
essary cost of a countermeasure. The second term is the claim cost when the countermeasure
is effective. The claim rate of products after the countermeasure becomes Q (Assumption
2). The claim rate of products before the countermeasure does not change. The third term
is the claim cost when the countermeasure is ineffective. The claim rate does not change
and stays the same p∗ in this case. Pr(p∗ | p̂t) is the conditional probability that the true
claim rate is p∗ when the observed claim rate is p̂t. By Bayes’ theorem,

Pr(p∗ | p̂t) =
Pr(p̂t | p∗)g(p∗)∫ 1

0
Pr(p̂t | p∗)g(p∗)dp∗

=

(
Nt−Nt0
Rt−Rt0

)
p∗(Rt−Rt0 )(1− p∗)((Nt−Nt0 )−(Rt−Rt0 ))g(p∗)∫ 1

0

(
Nt−Nt0
Rt−Rt0

)
p∗(Rt−Rt0)(1− p∗)((Nt−Nt0 )−(Rt−Rt0 ))g(p∗)dp∗

. (3.5)

δt(p̂t) in Equation (3.4) is the probability that the true claim rate p∗ is higher than the
claim rate after countermeasure Q: δt(p̂t) = Pr(p∗ > Q | p̂t) . When the observed claim rate
is p̂t and the countermeasure is implemented at t, we assume that the claim rate after the
countermeasure will become Q with probability δt(p̂t) calculated as follows (Assumption 2).

δt(p̂t) ≡
∫ 1

Q

Pr(p∗ | p̂t)dp∗

=
1

B(Rt + 1, Nt −Rt + 1)

∫ 1

Q

p∗Rt(1− p∗)(Nt−Rt)dp∗. (3.6)
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This is the upper probability of Beta distribution Beta(Rt+1, Nt−Rt+1). The probability
density function of Beta distribution Beta(α, β) is f(x;α, β) = 1

B(α,β)
xα−1(1 − x)β−1. Beta

function B(x, y) is B(x, y) =
∫ 1

0
t(x−1)(1 − t)(y−1)dt. δt(p̂t) reflects the uncertainty of the

claim rate. Even if p̂t is high, δt(p̂t) is small at the beginning of the production period owing
to the small amount of observed claims and in-warranty products. ϵt(p̂t) is defined as below
and also calculated by the upper probability of Beta distribution.

ϵt(p̂t) ≡
∫ 1

Q

p∗ Pr(p∗ | p̂t)dp∗

=
Rt + 1

Nt + 2

1

B(Rt + 2, Nt −Rt + 1)

∫ 1

Q

p∗(Rt+1)(1− p∗)(Nt−Rt)dp∗. (3.7)

Lt(p̂t, q
∗
i ) is the quality cost based on the decision at t when the observed claim rate is p̂t

and the claim scenario follows the unobservable true claim rate q∗i . At each decision point,
“the quality cost after t0 in the case of implementing a countermeasure at t” and “the quality
cost after t0 in the case of postponing the decision to t + 1” are compared. The optimum
policy is to select the option with the smaller cost. When the decision is postponed, different
p̂t+1 is observed at t + 1 by the future scenarios (Equation (3.2)). Therefore, based on the
decision at t, the quality cost Lt(p̂t, q

∗
i ) is the smaller of LAct

t (p̂t) and the expectation of
Lt+1(p̂t+1, q

∗
i ) about p̂t+1. In practice, the latter is evaluated discretely.

Lt(p̂t, q
∗
i ) = min

(
LAct
t (p̂t),

∫ 1

0

Pr(p̂t+1 | p̂t, q∗i )Lt+1(p̂t+1, q
∗
i )dp̂t+1

)
. (3.8)

As shown in the above equation, in order to calculate Lt(p̂t, q
∗
i ), we must calculate

Lt+1(p̂t+1, q
∗
i ) beforehand. Because there is no production after T and a countermeasure

afterward has no effect, no countermeasure will be implemented after T . Therefore¶,
LT (p̂T , q

∗
i ) can be calculated first based on the observation p̂T by Bayes’ theorem (Equa-

tion (3.5).

LT (p̂T , q
∗
i ) = w(nT − nt0)

RT + 1

NT + 2
. (3.9)

Here, RT+1
NT+2

is the mean of Beta(RT + 1, NT − RT + 1). Consequently, tracking back from
T − 1 to t0, calculation of Lt(p̂t, q

∗
i ) is possible. This is realized by dynamic programming.

A decision at t0 is made by comparing “the cost of implementing a countermeasure at
t0” and “the cost of postponing the decision to t0+1”. We select the policy with the smaller
cost. F (q∗i ) below is the gap of the cost of both cases when the true claim rate is q∗i . This
is the loss amount caused by postponing the decision to the next decision point t0 + 1. If
F (q∗i ) is positive, a countermeasure should be implemented at t0. Otherwise, the decision
should be postponed to t0 + 1. This is also evaluated discretely in practice.

F (q∗i ) =

∫ 1

0

Pr(p̂t0+1 | p̂t0 , q∗i )Lt0+1(p̂t0+1, q
∗
i )dp̂t0+1 − LAct

t0
(p̂t0). (3.10)

Step 4. Repeat the simulations and cost calculations
The discussion above is based on the situation that the true claim rate sampled randomly
from the distribution g(p∗) is q∗i . We repeat Step 2 and Step 3 M times (M is a large enough
number) and calculate F (q∗i ) with respect to each q∗i (i = 1, . . . ,M).
¶LT does not depend on the scenarios gererated by q∗i . We represent it as LT (p̂T , q

∗
i ) for the sake of

convenience.
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Step 5. Decision making at present time t0
Finally we calculate the expectation FE of cost gap F (q∗i ). FE means the expected loss
amount caused by implementing no countermeasure at t0 and postponing the decision to
t0 + 1. If FE is positive, implementing a countermeasure at t0 is the optimum policy. If FE

is negative, postponing the decision to t0 + 1 is the optimum policy.

FE =

∫ 1

0

F (p∗)g(p∗)dp∗ ∼ 1

M

M∑
i=1

F (q∗i ). (3.11)

The quality cost at t0 is given by Equation (3.8).

Lt0(p̂t0 , q
∗
i ) = min

(
LAct
t0

(p̂t0),

∫ 1

0

Pr(p̂t0+1 | p̂t0 , q∗i )Lt0+1(p̂t0+1, q
∗
i )dp̂t0+1

)
. (3.12)

This is also calculated with respect to each q∗i . Therefore, the expected cost at t0 is

Lt0E =

∫ 1

0

Lt0(p̂t0 , p
∗)g(p∗)dp∗ ∼ 1

M

M∑
i=1

Lt0(p̂t0 , q
∗
i ). (3.13)

4. Experiment

4.1. Decision making for different in-warranty numbers

In this subsection, we show an experimental result of our presented method about the
relationship between the number of in-warranty products and the decision-making results.

When there are many product models in the market, it is helpful to show the priority
of the countermeasure for each of the product models. Manufacturers must implement
efficient countermeasures for the product models with quality problems. In practice, in
view of resource constraints, it may be impossible to implement countermeasures for all of
the field problems.

As an experiment, we consider the situation that there are the four product models
listed in Table 2 in the market. The observed claim rate and the production plan of these
four product models are the same. The only difference of these product models is the in-
warranty amount at the present time. The monthly production plans are evenly split by
the simulation time step. Other parameters used commonly in all the experiments in this
section are as follows. The simulation time step is two days, t0 = 0, T = 45, w = 20, 000,
Q = 600ppm, Nt0 = nt0 × 15. The number of grids that segment the claim rate is k = 654,
which is also the number of scenarios. The number of simulation is M = 654.

Figure 4 illustrates the relationship of the cost of implementing a countermeasure (C)
and the loss amount caused by postponing the decision (FE). If FE is positive, implementing
a countermeasure at t0 is better than postponing the decision to t0 + 1. If FE of a machine
is positive when C is very large, a countermeasure should be implemented for the product
model even at a high cost. Therefore, we set the priority order by the value of C when
FE = 0. Figure 4 shows that the priority order is the same as the descending order of
the in-warranty amount nt: D-C-B-A. This is because the situation is less uncertain if the
in-warranty amount is large. The option to postpone is selected if there is high uncertainty.

If the cost C of each product model is known, it is possible to determine the priority
order by directly comparing FE at every known C. However, C is usually unknown. Thus,
it is effective to determine the priority order based on the value of C when FE = 0.
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Table 2: Input data of the evaluated product models with different in-warranty amounts
Product model In-warranty Observed claim Production plan (in 1-3 months later)

name amount nt0 rate [ppm] p̂t0 1 2 3
A 3,000 800 3,000 4,000 5,000
B 4,000 800 3,000 4,000 5,000
C 8,000 800 3,000 4,000 5,000
D 100,000 800 3,000 4,000 5,000

-1.5E+06-1.0E+06-5.0E+050.0E+005.0E+05

0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07 1.2E+07FE ：loss am
ount caused
 by 

postponing  
judgment

C ： cost of implementing a countermeasureA B C D
Figure 4: Cost of a countermeasure and loss of postponement (in-warranty amounts)

The calculation time for the production model A on a computer running Windows XPTM

and MATLABTM with an Intel Core2 i5TM 2.40GHz processor and 2.85GB RAM was 88.2
seconds. If we set M = 69 and k = 69, the calculation time is 1.2 seconds and the difference
of calcuated Lt0E is less than 1% for every C. Increasing M and k increases the accuracy
of calcuated Lt0E slightly while the calculation time increases enormously.

4.2. Value evaluation of the option to postpone

In this subsection, we evaluate the value of the option to postpone. By using the data listed
in Table 2 in the previous subsection, we compare the cost of the three cases below:
• With the option to postpone: Lt0E. There is an opportunity to implement a counter-
measure at the future decision point.

• Without the option to postpone: LNoOpt
t0E

. A countermeasure can be implemented only
at the present time t0.

• Ideal judgment: LIdeal
t0E

. True claim rate q∗i is observable and decision is made by directly
comparing Q and q∗i at the present time t0. This is an unrealistic situation.
Lt0E is calculated by Equation (3.13). LNoOpt

t0E
is calculated as follows. If there is no option

to postpone and no countermeasure is implemented at all, the expected cost is calculated
as follows based on the observed claim rate.

LNoAct
t0

(q∗i ) = w(nT − nt0)
Rt0 + 1

Nt0 + 2
. (4.1)

If a countermeasure is implemented at t0, the cost is (See Equation (3.4))

LAct
t0

(p̂t0) = C + w

(
(nT − nt0)δt0(p̂t0)Q+ (nT − nt0)

(
Rt0 + 1

Nt0 + 2
− ϵt0(p̂t0)

))
. (4.2)

We compare LNoAct
t0

(q∗i ) and LAct
t0

(p̂t0).

LNoOpt
t0 (p̂t0 , q

∗
i ) = min(LNoAct

t0
(q∗i ), L

Act
t0

(p̂t0)). (4.3)
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2.0E+072.2E+072.4E+072.6E+072.8E+073.0E+073.2E+073.4E+073.6E+073.8E+074.0E+07

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07
Lt0E, Lt0ENoOpt , Lt0E

Ideal

C ： cost of implementing a countermeasure

Model A

2.0E+072.2E+072.4E+072.6E+072.8E+073.0E+073.2E+073.4E+073.6E+073.8E+074.0E+07

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07
Lt0E, Lt0ENoOpt , Lt0E

Ideal

C ： cost of implementing a countermeasure

Model B

2.0E+072.2E+072.4E+072.6E+072.8E+073.0E+073.2E+073.4E+073.6E+073.8E+074.0E+07

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07
Lt0E, Lt0ENoOpt , Lt0E

Ideal

C ： cost of implementing a countermeasure

Model C

2.0E+072.2E+072.4E+072.6E+072.8E+073.0E+073.2E+073.4E+073.6E+073.8E+074.0E+07

0.0E+00 5.0E+06 1.0E+07 1.5E+07 2.0E+07
Lt0E, Lt0ENoOpt , Lt0E

Ideal

C ： cost of implementing a countermeasure

Model D

Figure 5: Lt0E (dotted lines), LNoOpt
t0E

(solid lines) and LIdeal
t0E

(gray lines)

This depends on q∗i and the expectation is calculated as follows.

LNoOpt
t0E

=

∫ 1

0

LNoOpt
t0 (p̂t0 , p

∗)g(p∗)dp∗ ∼ 1

M

M∑
i=1

LNoOpt
t0 (p̂t0 , q

∗
i ). (4.4)

If q∗i is observable, decision can be made by directly comparing Q and q∗i .

LIdeal
t0

(p̂t0 , q
∗
i ) = min(w(nT − nt0)Q,w(nT − nt0)q

∗
i ). (4.5)

This depends on q∗i and the expectation is calculated as follows.

LIdeal
t0E

=

∫ 1

0

LIdeal
t0

(p̂t0 , p
∗)g(p∗)dp∗ ∼ 1

M

M∑
i=1

LIdeal
t0

(p̂t0 , q
∗
i ). (4.6)

Now, we show the value of the option to postpone experimentally. Again, we consider
the situation that the four product models listed in Table 2 are in the market. Figure 5
shows the quality cost (Lt0E, L

NoOpt
t0E

, LIdeal
t0E

) with respect to the cost of implementing a

countermeasure (C). Dotted lines mean Lt0E, solid lines mean LNoOpt
t0E

and gray lines mean

LIdeal
t0E

. These graphs show that Lt0E is always smaller than LNoOpt
t0E

and larger than LIdeal
t0E

for
all C.

LNoOpt
t0E

≥ Lt0E ≥ LIdeal
t0E

. (4.7)

This result means that the consideration of the uncertainty is effective and the option to
postpone has the possibility of reducing the quality cost.

The difference between LNoOpt
t0E

and Lt0E is smaller if there are more in-warranty products.
This difference illustrates the value of the option to postpone. Figure 5 shows that the option
to postpone is more valuable when the uncertainty at the present time t0 is larger.
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Table 3: Input data of the evaluated product models with different observed claim rates
Product model In-warranty Observed claim Production plan (in 1-3 months later)

name amount nt0 rate [ppm] p̂t0 1 2 3
A 3,000 800 3,000 4,000 5,000
E 3,000 900 3,000 4,000 5,000
F 3,000 1,000 3,000 4,000 5,000

-3.0E+05-2.0E+05-1.0E+050.0E+001.0E+052.0E+053.0E+054.0E+05

0.0E+00 4.0E+06 8.0E+06 1.2E+07 1.6E+07FE ：loss am
ount caused
 by 

postponing  
judgment

C ： cost cost of implementing a countermeasureA E F
Figure 6: Cost of a countermeasure and loss of postponement (observed claim rates)

The difference between LNoOpt
t0E

and Lt0E is negligible when C is large or small. This
is because the decisions are the same with or without the option to postpone. When C is
small, a countermeasure is implemented immediately with or without the option to postpone.
When C is large, no countermeasure is implemented at all. When C is a medium value, the
option to postpone is valuable and a gap exists between LNoOpt

t0E
and Lt0E.

The difference between LIdeal
t0E

and Lt0E is also smaller if there are more in-warranty
products. This means that the decision with the option to postpone becomes more accurate
when the uncertainty at the present time t0 is smaller.

4.3. Decision making for different observed claim rates

In this subsection, we show another experimental result. Here, we examine the relationship
between the observed claim rates and the decision-making results. As an experiment, we
consider the situation that there are the three product models listed in Table 3 in the market.
The number of in-warranty products and the production plan of these three product models
is the same. The only difference of these product models is the observed claim rate at the
present time. Other parameters are the same as in the previous subsection 4.1.

Figure 6 illustrates the relationship between the cost of a countermeasure for quality
problem (C) and the loss amount caused by postponing the decision (FE). If FE is positive
even when C is very large, a countermeasure should be implemented at any cost. Therefore,
we set the priority order by the value of C when FE = 0. Figure 6 shows that the priority
order is high when the observed claim rate is high.

If the observed claim rate is high, the value along the vertical axis (FE) is also high
as shown in Figure 6. In this experimental case, we can also decide the priority order by
comparing FE directly. However, as shown in the previous subsection 4.1 (Figure 4), it is
better to decide the priority order by the value of C when FE = 0 .
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Table 4: Input data of the evaluated product models with different production schedules
Product model In-warranty Observed claim Production plan (in 1-3 months later)

name amount nt0 rate [ppm] p̂t0 1 2 3
A 3,000 800 3,000 4,000 5,000
G 3,000 800 4,000 3,000 5,000
H 3,000 800 5,000 3,000 4,000
I 3,000 800 3,600 4,800 6,000
J 3,000 800 4,200 5,600 7,000

-6.0E+05-4.0E+05-2.0E+050.0E+002.0E+054.0E+056.0E+05
0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07FE ：loss amou

nt caused by postponing  ju
dgment

C ： cost of implementing a countermeasureA G H -6.0E+05-4.0E+05-2.0E+050.0E+002.0E+054.0E+056.0E+05

0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07FE ：loss am
ount caused
 by 

postponing  
judgment

C ： cost of implementing a countermeasureA I J
Figure 7: Cost of a countermeasure and loss of postponement (production plans)

4.4. Decision making for different production plans

In this subsection, we examine the relationship between the production plans and the
decision-making results.

First, we consider the situation that there are the three product models A, G, H listed
in Table 4 in the market. The only difference of these product models is the production
schedules. The total production amounts are the same among these product models. Other
parameters not listed below are the same as in the previous subsection 4.1. Figure 7 (left)
shows that the priority order is high when the production amount in the next month is large.
This is because the loss amount caused by postponing judgment depends on the produc-
tion amount during the postponed decision time step. If the immediate future production
increases, the loss amount caused by postponing judgment to the next decision point also
increases.

Next, we consider the case when the total production amounts are not the same. We
consider the situation that there are the three product models A, I, J listed in Table 4 in the
market. Other parameters are the same as previously described in subsection 4.1. Figure 7
(right) shows that the priority order is high when the future production amount is large.

4.5. Decision making in practice

In practice, there are various product models in the market. Figure 8 is the case that the
three product models listed in Table 5 exist in the market. Various lines are drawn in
Figure 8. The priority order of countermeasure is D-E-H based on the value of C when
FE = 0.

5. Conclusion

We proposed a method of decision support under uncertainty by considering the option to
postpone the decision. In practice, the proposed method is useful for making a prompt
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Table 5: Input data of the evaluated product models with different production plans
Product model In-warranty Observed claim Production plan (in 1-3 months later)

name amount nt0 rate [ppm] p̂t0 1 2 3
D 100,000 800 3,000 4,000 5,000
E 3,000 900 3,000 4,000 5,000
H 3,000 800 5,000 3,000 4,000

-8.0E+05-6.0E+05-4.0E+05-2.0E+050.0E+002.0E+054.0E+05

0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07 1.2E+07 1.4E+07FE ：loss am
ount caused
 by 

postponing  
judgment

C ： cost of implementing a countermeasureD E H
Figure 8: Cost of a countermeasure and loss of postponement

decision on implementing countermeasures for quality problems based on our filed qual-
ity data and shipment data, especially when the observed filed quality data is limited and
uncertainty is large. The proposed method supports the prompt decision on whether to
implement a countermeasure now or postpone the decision to the next decision point based
on the scenario generated from observed data. We evaluated the option to postpone qual-
itatively and showed the possibility of reducing the quality cost. We also showed that the
presented method is effective for making the priority order of product models in the market.
Our goal is further practical application of the presented method. One of our future task is
evaluating risk and unexpected loss, not the expectation of cost. The improvement of the
assumption in the method is also our future work.
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