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Abstract We propose a pricing method by mathematical programming for swing options with typical
constraints on a lattice model. We show that the problem of pricing typical swing options has a particular
optimal solution such that there are only seven kinds of changed amounts in the solution. Using the solution,
we formulate the pricing problem as a linear program. The solution can be applied to the methods of Jaillet,
Ronn and Tompaidis (2004), and Barrera-Esteve et al. (2006) for improving time complexity.

Another feature of our method is the capability to price swing options in an incomplete market. In an
incomplete market, the price of a swing option is defined as an upper and a lower bound of arbitrage-free
prices. We formulate the problem of finding an upper bound as a linear program. For a lower bound, we
give a bilinear programming formulation.
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1. Introduction

With recent deregulation of energy markets, many derivative instruments have been de-
signed. Some of these are swing options. Swing options are generally traded in gas and
electricity markets. A holder of a swing option buys fixed amount of energy from an option
seller at fixed dates, and then the holder also has rights to change the amount at some
times. The amount is subject to daily and periodic (monthly or annual) constraints. The
number of rights is also limited. The option holder changes the amount depending on their
purpose, such as maximizing-profit and request of demand.

The valuation of swing options is known to be more difficult than that of vanilla options,
because swing options have not only timing constraints but also volume constraints. Typical
techniques for pricing swing options are the least-squares Monte-Carlo method and dynamic
programming.

The least-squares Monte-Carlo method was applied by Longstaff and Schwartz [9] to
American option pricing. Dörr [3], Meinshausen and Hambly [10], and Barrera-Esteve et al.
[1] extended the least-squares Monte-Carlo method to swing options.

On the other hand, dynamic programming was studied by Jaillet et al. [7], Lari-Lavassani
et al. [8] and Thompson [14]. They expressed the underlying asset price process on a lattice
and computed the option price by the backward procedure.

However, these studies do not cover every setting of swing options. First, with these
studies, it is difficult to consider changed volume as a continuous value, so that some dis-
cretized values are used. Thus, these studies may give biased price. Second, these studies
are applicable to the pricing problem in a complete market. This setting is usual, but not
adequate when a market is incomplete.

Our approach is pricing by mathematical programming. Mathematical programming is
flexible enough to add constraints as conditional expressions. Swing option pricing by mathe-
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Pricing Swing Options with Constraints 87

matical programming can also treat changed amount as a continuous variable. Haarbrücker
and Kuhn [5], and Steinbach and Vollebrecht [13] recently studied swing option pricing.
Haarbrücker and Kuhn [5] proposed the valuation of swing options with ramping constraints
on a scenario tree. Steinbach and Vollebrecht [13] proposed the valuation technique by re-
ducing a scenario tree and using a scenario fan.

Our swing option setting is typical and similar to that of Jaillet et al. [7]. Our swing
option has local (daily) constraints, global (annual) constraints, and timing constraints. The
first two constraints are typical constraints. Our formulation is based on a scenario lattice.
However, on a lattice, a formulation that is similar to that of previous works by mathematical
programming is not successful because swing options are path-dependent options. Thus, to
begin with, we decompose the lattice to a tree, formulate the pricing problem on the tree,
and find an optimal solution that has particular changed amounts. Then using the particular
solution, we formulate the pricing problem as a linear program on the lattice. Furthermore,
we apply the particular solution to the methods of Jaillet et al. [7] and Barrera-Esteve et
al. [1] for improving computation time and accuracy.

An advantage of our approach is that the formulated pricing problem can be extended
to that in an incomplete market. In an incomplete market, we define the pricing problem
as the problems of finding an upper bound and a lower bound of “arbitrage-free prices”.
For American options, Föllmer and Schied [4] showed a pricing method using the Snell
envelope in a discrete case. Pennanen and King [11], and Camci and Pinar [2] studied pricing
of American options by stochastic programming in an incomplete market. These pricing
methods are performed under the martingale probability for the underlying asset. In energy
markets, it is difficult to store the underlying asset, so that the pricing is meaningless under
the martingale probability for the underlying asset. However, there are futures contracts
and some tradable products that relate to the underlying asset process in energy markets.
We then use the martingale probability Q for these products, and we formulate the upper
and lower bound problems of swing options as mathematical programming in an incomplete
market.

　The paper is organized as follows. Section 2 provides the definition of swing options
and a formulation of the pricing problem on a tree. Section 3 shows a particular solution
of the pricing problem on a tree, and using the particular solution, formulates the efficient
pricing problem as mathematical programming on a lattice. Section 4 applies the solution
to other pricing methods for improving upon computation time and accuracy. Section 5
focuses on the pricing problem in an incomplete market, and formulates the upper and the
lower bound problem. In addition, we design a backward algorithm to compute the upper
and lower bounds and show a numerical result. Section 6 concludes. 　

2. The Model

2.1. Swing options

There are a buyer and a seller of energy. They close a contract to buy some amount ut of
energy at a strike price of Kt at date t = ti (i = 0, 1, . . . , T − 1). A swing option in this
paper is defined as rights to change of delivery amount with this contract. When a swing
option is added to the contract, the buyer can change the amount from u to u + vt up to
L(≤ T ) times at t = t0, t1, . . . , tT−1 under some constraints. One of the constraints is a local
constraint for DCQ (Daily Contract Quantity):

vmin ≤ vt ≤ vmax,
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where vmin ≤ 0, vmax ≥ 0, and vmin and vmax are time-invariant. Total changed amount is
also limited by a global constraint for ACQ (Annual Contract Quantity):

Vmin ≤
T−1∑
i=0

vti ≤ Vmax.

Furthermore, the interval of exercise is also restricted. The option holder exercising a right
at ti cannot change amount during ti < t < ti+∆tR. Here ∆tR is called the refraction time.

2.2. Asset price processes and profits

We describe an asset price process on a scenario lattice. Figure 1 is an example of our
scenario lattice. Such a lattice is often called a trinomial tree. Let N denote the set of
nodes of a lattice, Sn the underlying asset price∗ at node n, and Ni the set of nodes at ti.
We denote by B(n) and C(n) the set of parents and children of node n, respectively. In
this paper, we call a lattice with |B(n)| ≤ 1 for any n as a tree. We define pnk(> 0) as
the conditional transition probability from node n to node m (m ∈ C(n)). Concerning the
probability at node n, ∑

k∈C(n)

pnk = 1 (1)

holds for each n.

1230
・・・

Figure 1: An example of a scenario lattice (N1 = {1, 2, 3} in this example)

At each node, a buyer may change amount of energy. We assume a buyer faces not
demand problems but financing problems. Namely, we permit a buyer to sell excess amount
at a market price. Then a profit made by changed amount vn at node n is represented as

vn(Sn −Kn).

2.3. Pricing on a tree

We assume that a buyer is rational; thus we define the price of a swing option as the maxi-
mum expected value of the total profit. Our aim is pricing swing options by mathematical
programming on a lattice. On a formulation using mathematical programming, the number
of variables is proportional to the number of states on the model. However, because of the
constraints for ACQ, states of a node are path-dependent. The number of states on a model
is generally proportional to the number of paths.
Example 1. Let us consider a swing option in Figure 1. We assume that a buyer exercises
a right at node 1 with v1 = 1 and exercises a right at node 2 with v2 = 2. Then at node 6,
the state from node 1 and that from node 2 are different.

∗Sn is already discounted by a risk-free asset. We also discount a strike price Kn that is equal to Kti

(n ∈ Ni).
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Pricing Swing Options with Constraints 89

For dealing with path-dependence of swing options, we first decompose the lattice into
a tree and consider pricing on a tree. Here decomposing the lattice into a tree means that
any node that has more than one parent is decomposed into nodes such that each node has
only a parent. Then the number of paths is equal to the number of nodes in the maturity
on the tree. Thus a path-dependent formulation is equivalent to that on the tree, and we
consider the pricing problem on the tree.

Let Mi denote the set of nodes of a tree at ti and en denote a variable representing
whether or not a right is exercised at node n of a tree. For example, en = 1 means an
exercise of a right at node n. Then the optimization problem of maximizing the expected
value is as follows:

max
v,e

E[vn(Sn −Kn)]

s.t. vminen ≤ vn ≤ vmaxen (n ∈ MT−)

Vmin ≤
∑

m∈A(n)

vm ≤ Vmax (n ∈ MT−1)∑
m∈A(n)

em ≤ L (n ∈ MT−1)

en ∈ {0, 1} (n ∈ MT−)

en + em ≤ 1 (n ∈ Mi, m ∈ Mj,n, i < j, tj − ti < ∆tR),

(2)

where MT− = {n | n ∈ Mi, i ≤ T − 1}, Mi,n is the set of node m ∈ Mi such that m is a
sink node of node n, and A(n) is the path history from the root to node n.

3. Pricing on a Lattice

In subsequent sections, we assume for simplicity that ti+1 − ti = ∆t (i = 0, . . . , T − 1) and
the refraction time ∆tR = ∆t, i.e., we exclude timing constraints. But the extension to
general ti and ∆tR is easy.

3.1. A particular solution

In Section 2, we formulated pricing on a tree made of a lattice. However, the tree may have
an exponential number of nodes, so that exponential time is necessary to solve Problem (2).
We aim to reduce the time to be proportional to the number of nodes on the lattice.

We focus on a value of changed amount vn. If the value of vn is chosen from a discrete
set {v1, . . . , vk}, the number of states on a lattice can be described as the number of possible
combinations of the number the option was exercised with each of vi. The following theorem
shows that there is a particular optimal solution in terms of a value of vn.

Theorem 1. In the set of optimal solutions of Problem (2), there is a solution such that
there are at most seven kinds of values of vn in the solution.

Before the proof of Theorem 1, we need some preparation.
First, without loss of generality we can change the constraints of Problem (2) from∑

m∈A(n) em ≤ L to
∑

m∈A(n) em = L, because if there is a path with
∑

m∈A(n) em < L,

the path satisfies
∑

m∈A(n) em = L by the exercise of residual rights with zero amount at

non-exercised nodes. We name this modified problem as (P′).
We define two properties of node n:

• “bang-bang”: en = 1 and vn ∈ {vmin, vmax},
• “non bang-bang”: en = 1 and vn ̸= vmin, vmax.

We also define a property of a path l:
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• “tight”:
∑

m∈l vm = Vmin or
∑

m∈l vm = Vmax.

Concerning Problem (P′), the next lemma holds:

Lemma 1. Problem (P′) has an optimal solution with the following property:

• For any node n with “non bang-bang” such that
∑

m∈A(n) em < L, there is a “tight” path l
such that n ∈ l and if m ∈ l is a sink node of node n then node m is not “non bang-bang”.

Proof. First, from linearity of Problem (2) we can take an optimal solution such that for
any node n with “non bang-bang” there is a “tight” path l which includes n. Let us assume
that the optimal solution does not satisfy the above property. Then in the solution, for
some node n with “non bang-bang” such that

∑
m∈A(n) em < L, any “tight” path including

node n includes a “non bang-bang” node m under node n. We focus on such nodes n and
m. We can consider two transformations of the optimal solution with no effect on global
constraints:

• to decrease the value vn by ∆ and increase the value vm by ∆,

• to increase the value vn by ∆ and decrease the value vm by ∆,

where ∆ is a sufficiently small positive constant. At least one transformation does not
reduce the objective value, because the objective function of Problem (P′) is linear and if
one transformation decreases the objective value, then another transformation increases the
objective value. By increasing ∆, the value vn at not less than one node changes to vmin or
vmax. This change is represented in Figure 2. By repeating the transformation for node n,
a path including node n satisfies the desired property. By the transformations for any node
with “non bang-bang” in order from the root of the tree, the desired property is added to
the optimal solution.

: “non bang-bang”: “bang-bang”
orchange1
or

Figure 2: A transformation of the optimal solution

About node 1, the optimal solution is transformed not to reduce the objective function. Then the solution

changes in two patterns. On the top of Figure, node 1 is “bang-bang”. On the bottom, an upper or a lower

path satisfies the property of Lemma 1.　

From Lemma 1, we prove Theorem 1.

Proof. We analyze the particular solution claimed in Lemma 1. Let us look at the value of
vn such that n is “non bang-bang” step by step from the root.

Step 1: Look at vn such that there is no source node of node n with “non bang-bang”
By Lemma 1, there is a “tight” path that includes node n and does not include a node
with “non bang-bang” except n. On the path, each node m (̸= n) is “bang-bang” or
satisfies em = 0. The number of nodes with “bang-bang” is L−1, and vm at node m with
“bang-bang” is equal to vmax or vmin. In addition, the path has a total volume of Vmin or
Vmax because the path is “tight”. If the total volume is Vmin, vn must have only a value.
The value is (Vmin − L · vmin) mod (vmax − vmin) + vmin. Similarly, if the total volume is
Vmax, vn must be equal to vmax − (L · vmin − Vmax) mod (vmax − vmin). Let (Vmin − L ·
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Pricing Swing Options with Constraints 91

vmin) mod (vmax−vmin)+vmin be equal to v3 and vmax−(L ·vmin−Vmax) mod (vmax−vmin)
be equal to v4.

Step 2: Look at vn such that there is a source node of node n with “non bang-bang”
Let the source node of node n with “non bang-bang” denote n′. About n, by Lemma 1,
there is a “tight” path that does not include a node with “non bang-bang” except n and
n′. From Step 1, a value of vn′ is v3 or v4. Furthermore, the path has a total volume of
Vmin or Vmax because of “tight”. If the total volume is Vmin, vn has only a value in regard
to each v3 or v4. When vn′ = v3, vn is equal to vmin or vmax from Step 1. When vn′ = v4,
vn is equal to (v3 − v4) mod (vmax − vmin) + vmin. On the other hand if the total volume
is Vmax, when vn′ = v4, vn is equal to vmin or vmax from Step 1, and when vn′ = v3, vn is
equal to vmax − (v3 − v4) mod (vmax − vmin). Let (v3 − v4) mod (vmax − vmin) + vmin be
equal to v5 and vmax − (v3 − v4) mod (vmax − vmin) be equal to v6.

Step 3: Look at vn such that there are two source nodes of node n with “non bang-bang”
Let the source nodes of node n with “non bang-bang” denote n′ and n′′. From Step 2,
vn′ + vn′′ is equal to v3 + v6 or v4 + v5. However, by a calculation, v3 + v6 is equal to
vmax + v4, and v4 + v5 is equal to vmin + v3. Thus if vn′ + vn′′ is equal to v3 + v6, vn must
be v5 from Step 2. If vn′ + vn′′ is equal to v4 + v5, vn must be v6 in the same way.

In the case that there are more than two source nodes of node n with “non bang-bang”,
vn must also be v5 or v6 from Steps 2 and 3.

Eventually, there is a particular solution such that the value of vn is chosen from
{vmax, vmin, v

3, v4, v5, v6, 0} in the solution.

In conclusion, the possible values of vn are as follows:

v1 = vmin,

v2 = vmax,

v3 = vmin + (Vmin − L · vmin) mod (vmax − vmin),

v4 = vmax − (L · vmax − Vmax) mod (vmax − vmin),

v5 = vmin + (v3 − v4) mod (vmax − vmin),

v6 = vmax − (v3 − v4) mod (vmax − vmin),

v0 = 0.

(3)

In particular, when vmin = −1, vmax = 1 and Vmin, Vmax have an integer value, if en = 1
then vn must be vmin or vmax. Thus the next corollary holds:
Corollary 1. When vmin = −1, vmax = 1 and Vmin, Vmax have an integer value, there are at
most three kinds as the value of vn for Problem (2).
Remark 1. For the optimal solution of swing options, a closely related result has recently
been obtained in a paper [12] by Ross and Zhu, of which the author became aware after the
completion of this work. Our result, Theorem 1 above, may be regarded as being essentially
equivalent to their result, but our theorem covers a more general case with regard to the
number of rights. Moreover, our proof is based on an approach different from [12].

3.2. Formulating the pricing problem on a lattice

In this section, we formulate the pricing problem on a lattice with the use of the particular
solution given in Section 3.1.

We can consider a state of a node as a combination of the number of exercise times with
each of v1, . . . , v6. Each the number of exercise times is not more than L, so that the number
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of states is not more than
∑L

i=0 i+5C5 = L+6C6. We can give more efficient representation.
Let Numn(v

i) denote the number of exercise times with vi between the root and node n.
The next proposition reduces the number of states:
Proposition 1. A State of a node can be described as a combination of the number of
exercise times with each of only v1, · · · , v4 on a lattice, and the number of states is at most

L+2C2 + 2 · L+1C2.

Proof. First, from the proof of Theorem 1,

Numn(v
3) + Numn(v

4) ≤ 1. (4)

Second, we focus on Numn(v
5) and Numn(v

6). When Numn(v
3) + Numn(v

4) = 0,
Numn(v

5) and Numn(v
6) are equal to 0 because of the proof of Theorem 1. When Numn(v

3)+
Numn(v

4) = 1, v5 and v6 must be alternatively chosen from Step 3 of the proof of Theorem
1, so that

|Numn(v
3)− Numn(v

4) + 2 (Numn(v
5)− Numn(v

6)) | ≤ 1. (5)

This equation means that if Numn(v
5) > Numn(v

6) then Numn(v
5) − Numn(v

6) = 1 and
Numn(v

4) = 1. Furthermore, because v4 + v5 = v1 + v3 and v3 + v6 = v2 + v4, Numn(v
5)

can be equal to Numn(v
6). Moreover, v5 + v6 = v1 + v2 for Equation (3), and thus

Numn(v
5),Numn(v

6) can be equal to 0.
As a result, we can describe a state of node n as a combination of the number of exercise

times with each of only v1, . . . , v4. Then the number of the states is at most L+2C2+2·L+1C2

because of Equation (4) and Numn(v
1) + Numn(v

2) + Numn(v
3) + Numn(v

4) ≤ L.

Let a state of node n denote a combination of the number of exercise times (Numn(v
1),

Numn(v
2),Numn(v

3),Numn(v
4)), xj

n a probability at node n with a state j, and xi,j
n a

probability of changed amount vi at node n with a state j. Then a profit at node n with a
state j is ∑

i∈Ij

vi(Sn −Kn)x
i,j
n ,

where Ij is the index set of changeable amounts in a state j. Then the pricing problem is
to maximize the sum of profits at each node with each state by assigning the probability
xj
n to xi,j

n . Figure 3 designs an example of the problem. A formulation of the problem is as
follows:

max
x

∑
n∈NT−

∑
j∈J

∑
i∈Ij

vi(Sn −Kn)x
i,j
n

s.t. x
(0,0,0,0)
0 = 1

xj
0 = 0 (j ∈ J\{(0, 0, 0, 0)})

xj
n =

∑
i∈Ij

xi,j
n (n ∈ NT−)

xi,j
n ∈ {0, xj

n} (n ∈ NT−, i ∈ Ij) (∗)
xi,j
nk = pnkx

i,j
n (n ∈ NT−, k ∈ C(n), i ∈ Ij)

xj
n =

∑
m∈B(n)

∑
i∈I[j]

xi,[j−i]
mn (n ∈ N\{0})

xj
n ≥ 0 (n ∈ NT−)

xj
n ≥ 0 (n ∈ NT , |j| = L)

xj
n = 0 (n ∈ NT , |j| < L),

(6)
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where NT− is the node set for any t ≤ tT−1, |j| is the number of exercise times in a state
j, J is the feasible set of a state j, [j − i] is the state† that changes to a state j by the
exercise with vi, and I[j] is the set of index i such that [j − i] ≥ 0. The 3rd and 4th
constraints‡ are assigning the probability xj

n to xi,j
n , and The 5th constraint represents a

transition probability from node n to node k.

Figure 3: An example of Problem (6)

In the example, the option buyer at node n with states j = (2, 2, 1, 0) and (2, 2, 0, 1) chooses a changed

volume from the set of changeable amounts. The choices are equivalent to assigning the probability at node

n with the state j. Thus the choices determine the probability at nodes C(n).　

Problem (6) is not a linear program because of the equation (∗). However, Problem (6)
is equivalent to a linear programming problem by the next theorem.

Theorem 2. Let us consider the problem including the equation xi,j
n ≥ 0 in place of the

equation (∗) in Problem (6), and call the problem as Problem A. Then Problem A has the
same optimal value as Problem (6).

Proof. In Problem A, the feasible set is convex because all constraints are linear. Then the
extreme points of the feasible set are feasible points in Problem (6) because the extreme
points necessarily satisfy the equation (∗) in Problem (6). Hence this problem has the same
optimal value as Problem (6).

4. Applying Theorem 1 to Other Methods

In Section 3, for the problem of pricing swing options on a tree, we show the presence of a
particular solution such that there are at most seven kinds of changed amounts. A Markov
process can be approximated as a tree, so that the particular solution actually exists and
the parallel methods with Problem (6) when the price process is a Markov process. Then

†

[j − i] =

{
j − ei (i ≤ 4),

j − fi (i ≥ 5),
(7)

where e0 = (0, 0, 0, 0), ei is the ith unit vector, of which ith component is 1, f5 = (1, 0,−1, 1), and
f6 = (0, 1, 1,−1).
‡The 4th constraint may be more flexible, in other words, xi,j

n may be more freely chosen, but the constraint
is described as the equation (∗) for simplicity. This simplification is justified by Theorem 2.
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we can apply Theorem 1 to other numerical pricing methods for improving computation
time and accuracy.

4.1. Applying Theorem 1 to Jaillet et al. (2004)

In this section, we apply Theorem 1 to the method of Jaillet et al. [7].
Jaillet et al. [7] proposed a pricing method of swing options by dynamic programming

approach. Their swing options are similar to ours. One difference is that their swing options
allow vmin and vmax to be time-varying.

Their approach uses a multiple layer lattice. The lattice is distinguished by the number
of residual rights and the sum of changed amounts. Their approach starts from the maturity
date and works by backward induction.

To valuate a swing option, they discretize the changeable amount at each date. They
limit the changeable amount to M kinds at even intervals, such as 1, 2, . . . ,M . Then the
total number of lattices is

∑L
k=1 kM = O(L2M), and their pricing method has the time

complexity O(NL2M2). When vmin and vmax are time-invariant, the discretization is not
necessary from Theorem 1 and their method is refined as follows:

Theorem 3. If vmin and vmax are time-invariant in the problem of Jaillet et al. [7], the time
to solve the problem reduces O(NL2) from O(NL2M2).

Proof. In the case where vmin and vmax are time-invariant, the number of states is at most

L+2C2 + 2 ·L+1 C2 = O(L2) from Proposition 1. Because a state j represents a combination
of the number of residual rights and the sum of changed amounts, the number of lattices
is also O(L2). Furthermore, from Theorem 1 only seven kinds of the changeable amounts
are necessary at each node. Thus seven times of a computation are necessary per node for
backward induction. Then the time complexity is N · 7 ·O(L2) = O(NL2).

Remark 2. In option pricing, some dynamic programming approaches parallel mathemat-
ical programming approaches on scenario tree or lattice model. Actually, the method of
Jaillet et al. [7] with Theorem 3, namely the method such that computation time is O(NL2),
corresponds to our formulation in Equation (6).

4.2. Applying Theorem 1 to the least-squares Monte-Carlo method

In this section, we apply Theorem 1 to a pricing method by the least-squares Monte-Carlo
method．

Dörr [3], Meinshausen and Hambly [10], and Barrera-Esteve et al. [1] extended the least-
squares Monte-Carlo method to swing options. Barrera-Esteve et al. [1] particularly focused
on swing options with changeable amount. They considered the set of discrete admissible
values of vn and designed a pricing algorithm by the least-squares Monte-Carlo method.
They defined the set of discrete admissible values as {vmin, vmin +∆v, . . . , vmax −∆v, vmax}
where ∆v is a positive value.

However, for our typical swing options, we can get explicit admissible values from Theo-
rem 1. Thus we can perform the Monte-Carlo simulation faster and more accurately. Some
numerical examples show the improvement.

Example 2. We compare our method, which gives explicit admissible values, with that of
Barrera-Esteve et al. [1]. Both methods are performed with 1000 paths per simulation and
with six basis functions, and we set the price as the mean of 500 simulations.

We assume that the underlying asset process {St} is the following mean-reverting process:

dXt = −aXtdt+ σdZt, St = S0 exp(Xt), (8)

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Pricing Swing Options with Constraints 95

Table 1: Comparison of our method and Barrera-Esteve et al. (Vmax = −Vmin = 30)

option price standard error computation time

(second)

Barrera-Esteve et al. 257.49 0.17 6918

ours 257.40 0.18 2352

The simulation is performed on a computer with 2GHz CPU and 2GB memory.

Table 2: Comparison of our method and Barrera-Esteve et al. (Vmax = 27.1 and Vmin =
−25.25)

option price standard error computation time

(second)

Barrera-Esteve et al. 233.85 - 16422

ours 232.96 0.16 2334

The simulation is performed on a computer with 2GHz CPU and 2GB memory. The standard error of

Barrera-Esteve et al. [1] is blank because the option price of 233.85 is computed using linear interpolation.

where S0 = 100, X0 = 0, a = 2, and σ = 0.1. For a swing option, we set parameters
T = 20, ∆t = 0.1, L = 15, K = 100, and vmax = −vmin = 4. For two kinds of global
constraints we perform the simulation of the swing option pricing.

First, we consider the global constraint of Vmax = −Vmin = 30. In this case, the method
of Barrera-Esteve et al. [1] with ∆v = 2 estimates a true value, so that we compare both
methods in terms of the computation time. Table 1 shows that our method is faster than
that of Barrera-Esteve et al. [1].

Second, we consider the global constraint of Vmax = 27.1 and Vmin = −25.25. In this
case, by setting of ∆v = 0.05 the method of Barrera-Esteve et al. [1] estimates a true value.
However, ∆v = 0.05 is so small that the computational burden becomes high. We thus set
∆v = 1 and evaluate the option price using linear interpolation, and then their method
may estimate a biased value. Table 2 reports that our method is much faster than that of
Barrera-Esteve et al. [1] because ∆v is smaller than in the first case. In addition, because
their method with ∆v = 1 estimates a biased value, the option price of Barrera-Esteve et al.
[1] is biased from ours and the method is more accurate than ours.

5. Pricing in an Incomplete Market

5.1. Formulating the pricing problem in an incomplete market

In Sections 2, 3 and 4, we defined the price of a swing option as the expected value under
the probability P . However, the probability P is not generally used in option pricing.
Alternatively, the martingale probability Q that is equivalent to P is used. This pricing
method is based on the arbitrage pricing theory.

Nevertheless, in some studies swing options are priced under the probability P . In energy
markets the underlying asset cannot be preserved and cannot be used to hedge profits of
an option, so that the definition of the martingale probability Q for the underlying asset is
meaningless. However, in energy markets, futures contracts related to the underlying asset
price are tradable. Thus hedging by the futures contracts allows us to define the pricing
problem under the martingale probability Q for the futures contracts. If Q is unique, a
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market is complete; otherwise a market is incomplete.

When a market is complete, the pricing problem is obtained by replacing P by Q on
Problem (6) and the price is unique. Taking the dual of Problem (6), we get the following
problem:

min
z

z
(0,0,0,0)
0

s.t. zjn −
∑

k∈C(n)

pnkz
[j+i]
k ≥ vi(Sn −Kn) (n ∈ NT−, i ∈ Ij)

zjn ≥ 0 (n ∈ NT , |j| = L),

(9)

where [j + i] is the state such that [j + i] + [j − i] = 2j. In Problem (9), z can be regarded
as a contingent claim. In a complete market any contingent claim is replicatable; then, by
substituting z into a portfolio of tradable assets, we can rewrite Problem (9) as the hedging
problem. Let U denote the set of tradable assets and Un ∈ R|U | the set of prices of U at
node n. The tradable assets include futures contracts and a risk-free asset. These prices are
already discounted by the risk-free asset, and thus the risk-free asset price U0

n is equal to 1
for any n. Then the hedging form of Problem (9) is as follows:

min
θ

U0θ
(0,0,0,0)
0−

s.t. Un(θ
j
n− − θ

[j+i]
n ) ≥ vi(Sn −Kn) (n ∈ NT−, i ∈ Ij)

θjn = θjk− (n ∈ NT−, k ∈ C(n))

Unθ
j
n− ≥ 0 (n ∈ NT , |j| = L),

(10)

where θn represents the holding amount of the tradable assets U at node n. Problem (10)
has a similar form to the hedging problem of European and American options.

On the other hand, when a market is incomplete, the price is not unique. Let Q denote
the set of the martingale probability Q. The price under Q ∈ Q is called the arbitrage-free
price. In an incomplete market, an upper bound and a lower bound of arbitrage-free prices
are important, so that we discuss these pricing problems. We obtain the pricing problems
by adding the martingale condition to Problem (6). In this regard, the constraints for xi,j

n

in Problem (6) are replaced by

qnkx
i,j
n = xi,j

nk (n ∈ NT−, k ∈ C(n), i ∈ Ij),∑
k∈C(n)

xi,j
nkUk = xi,j

n Un (n ∈ NT−, i ∈ Ij), (11)

where qnk is an element of the probability Q. However, the constraint qnkx
i,j
n = xi,j

nk is not
necessary because the martingale condition (the second constraint) includes the constraint.
We rewrite xi,j

nk to yi,jnk for simplicity, and then the pricing problem of the upper bound is as
follows:
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max
y

max
x

∑
n∈NT−

∑
j∈J

∑
i∈Ij

vi(Sn −Kn)x
i,j
n

s.t. x
(0,0,0,0)
0 = 1

xj
0 = 0 (j ∈ J\{(0, 0, 0, 0)})

xj
n =

∑
i∈Ij

xi,j
n (n ∈ NT−)∑

k∈C(n)

yi,jnkUk = xi,j
n Un (n ∈ NT−, i ∈ Ij)

xj
n =

∑
m∈B(n)

∑
i∈I[j]

yi,[j−i]
mn (n ∈ N\{0})

yi,jn ≥ 0 (n ∈ NT−, i ∈ Ij)

xi,j
n ≥ 0 (n ∈ NT−, i ∈ Ij)

xj
n ≥ 0 (n ∈ NT , |j| = L)

xj
n = 0 (n ∈ NT , |j| < L).

(12)

The upper bound problem is a linear programming problem, and easy to solve. On the
other hand, the pricing problem of the lower bound is obtained by replacing maxy by miny

on Problem (12). However, the lower bound problem is a min-max programming problem,
which is difficult to solve. We thus consider the dual of the lower bound problem:

min
y

min
z,θ

z
(0,0,0,0)
0 +

∑
n∈NT−

∑
k∈C(n)

∑
j∈J

∑
i∈Ij

(
−Ukθ

i,j
n + z

[j+i]
k

)
yi,jnk

s.t. zjn − Unθ
i,j
n ≥ vi(Sn −Kn) (n ∈ NT−, i ∈ Ij)∑

k∈C(n)

∑
i∈Ij

yi,jnkUk =
∑

m∈B(n)

∑
i∈I[j]

yi,[j−i]
mn Un (n ∈ NT−\{0})

zjn ≥ 0 (n ∈ NT , |j| = L)

yi,jn ≥ 0 (n ∈ NT−, i ∈ Ij),

(13)

where θ ∈ R|U |. This is a bilinear programming problem and generally easier to solve
than a min-max programming problem. The second term of the objective function means
the expectation value of additional borrowing (or lending) at each node. By comparing
Problem (13) with Problem (10), or in other words, by comparing an incomplete market
with a complete market, we verify that if y is unique then the second term of the objective
function is equal to 0 in an optimal solution.

In Problem (12), all variables are local variables, namely, the constraints relate to a
node, and then the variable x and y can be separately chosen at each time. Thus Problem
(12) can be also solved by a backward algorithm§. The pricing algorithm is as follows:
1. Set t = T − 1.
2. At each node n ∈ Nt and in each state j, choose xi,j

n = x∗,i,j
n such that

∑
i∈Ij x

i,j
n = 1

and xi,j
n maximizes

∑
i∈Ij v

i(Sn −Kn)x
i,j
n . Put x∗,j

n =
∑

i∈Ij v
i(Sn −Kn)x

∗,i,j
n .

3. If t = 0, then
∑

i∈Ij x
∗,j
0 is the upper (lower) bound of arbitrage-free prices; otherwise

set t = t− 1.
4. At each node n ∈ Nt and in each state j, choose yi,jnk = y∗,i,jnk , where k ∈ C(n), such that∑

k∈C(n) y
i,j
nkUk = Un and yi,jnk maximizes (minimizes)

∑
k∈C(n) y

i,j
nkx

∗,[i+j]
k . Set Φ∗,i,j

n =

§The algorithm can be interpreted as the extension of Jaillet et al. [7].
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k∈C(n) y

∗,i,j
nk x

∗,[i+j]
k .

5. At each node n ∈ Nt and in each state j, choose xi,j
n = x∗,i,j

n such that
∑

i∈Ij x
i,j
n = 1 and

xi,j
n maximizes

∑
i∈Ij(v

i(Sn−Kn)+Φ∗,i,j
n )xi,j

n . Put x∗,j
n =

∑
i∈Ij(v

i(Sn−Kn)+Φ∗,i,j
n )x∗,i,j

n .
Return to Step 3.

This algorithm is sequential, so that when the problem size is large, we can save memory
to solve by using this algorithm.

5.2. A numerical result

In this section, we give a numerical example of solving the upper and lower bounds of
arbitrage-free prices of a swing option.

We first give the description of a swing option. We set T = 20, L = 15, vmax = −vmin = 4,
Vmax = 27.1, and Vmin = −25.25. This setting is same as that in Section 4.2. The strike
price Kn does not depend on nodes and the value K is given later.

Second we define a lattice. We use a trinomial tree like Jaillet et al. [7]. Figure 4
represents the trinomial tree. In each time there are three nodes, and each node can transit
to any node in next time. We denote the asset prices of the upper, middle, and lower nodes
by Sa, Sb, and Sc, respectively.

Figure 4: The trinomial tree in the numerical example

We give an the asset prices on the lattice as the approximation value of the following
underlying asset process {St} like Jaillet et al. [7]¶:

dXt = −aXtdt+ σdZt, (14)

St = St0exp(Xt), (15)

where St0 = 100, Xt0 = 0, a = 2 and σ = 0.1. We also assume t0 = 0 and the time step
∆t = 0.1, so that tT = 2. We set prices on the lattice in accordance with Hull and White [6],
and then Sa

t = 100 exp(σ
√
3∆t) = 105.63, Sb

t = 100 and Sc
t = 100 exp(−σ

√
3∆t) = 94.67

for any t.

We assume that we can trade only a risk-free asset and a futures contract with the
maturity date tT and the risk-free rate is equal to 0. We set these as U . The price of the

¶The example does not mean the pricing under {St} because {St} is under a complete market. The example
is completely numerical.
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Table 3: The upper and lower bounds of arbitrage-free prices of the swing option

upper bound lower bound

K = 102 268.6 43.8

K = 100 262.3 2.2

K = 98 271.5 47.7

K = 50 1303.1 1139.7

We use CPLEX11.2 and a computer with 2GHz CPU and 2GB memory.

futures contract F (t, tT ) is as follows
∥:

F (t, tT ) = Et[StT ]

= St exp

(
exp(−a(tT − t))Xt +

σ2

4a
(1− exp(−2a(tT − t)))

)
.

(16)

In the above settings, we solve the upper and lower bounds of arbitrage-free prices of the
swing option. We choose some values as K and see the change of the price. Table 3 shows
the result. The upper and lower bounds considerably differ in this example, because the
variable y that corresponds to the martingale probability has high flexibility in the example.
The difference is especially large at K = 100, since Sn−K can take a positive and negative
value and then the flexibility of y highly concerns the objective value.

6. Conclusion

In this paper, we have proposed a pricing method for swing options with typical constraints
on a lattice model. Dealing with path-dependence of swing options, we find a particular
solution of swing options in terms of changed amount. Using the solution, we have formu-
lated the problem of pricing swing options as a linear program. This pricing method can
naturally extend to the pricing in an incomplete market. We have formulated the problem
of finding the upper and lower bounds of arbitrage-free prices as a linear program and a
bilinear program, respectively. Moreover, we have shown a backward algorithm for finding
the upper and lower bounds.

We have also applied the particular solution to some previous works for improving time
complexity and accuracy and we have demonstrated these improvements in numerical ex-
amples. The constraints of our swing option are more limited than those of the previous
works, but the constraints are typical, so that these improvements are expected to be useful
of practical significance.
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∥This pricing formula is actually incorrect in this case, because the underlying asset cannot be preserved
and the pricing based on the arbitrage theory is meaningless. However, we do not need accurate prices and
we only need an example of prices on the lattice, so that there is no problem.
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