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Abstract  This paper discusses an implicit reformulation of a class of MPEC (mathematical program with
equilibrium constraints) problems. We particularly focus on an MPEC problem arising from the robust
optimization of elastic structures subjected to the uncertain external load. We first review the relation
between the worst-case detection and robust constraint satisfaction of the structural responses, and then
derive an MPEC formulation of the robust structural optimization. Since a standard constraint qualification
is not satisfied at any feasible solution of an MPEC problem, we propose a reformulation based on the
smoothed Fischer-Burmeister function, in which the smoothing parameter is treated as an independent
variable. Numerical examples of robust structural optimization are presented to demonstrate that the
presented formulation can be solved by using a standard nonlinear programming approach.
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1. Introduction

Recently, both methodologies and numerical techniques for robust structural optimization
have received increasing attention in structural and mechanical engineering. Since structures
built in the real world inevitably encounter various uncertainties caused by manufacturing
variability, aging, limitation of knowledge of input disturbance, etc., the notion of robust
structural design is desired naturally and earnestly [4, 9, 12, 15, 23, 29, 33, 39, 46].

The two major frameworks for treating uncertain properties of structural systems are
probabilistic and non-probabilistic approaches. Optimization methods of structures based
on a probabilistic uncertainty approach have been well developed as the reliability-based
optimization (see, e.g., [12, 39, 46|, and the references therein). However, particularly
for a complex structural system, this approach may often face a difficulty such that the
statistical property of the system may not be known in detail, while a complex statistical
analysis cannot be justified in the absence of detailed statistical input data. In contrast, a
non-probabilistic uncertainty model is often less information-intensive than a probabilistic
model, because less details of statistical properties are required [6, 18].

Within the framework of a non-probabilistic approach, uncertain parameters are treated
as the so-called unknown-but-bounded parameters. One of well-known methods with a non-
probabilistic uncertainty model is the conver model method [8]. Au et al. [4] and Ganzerli
and Pantelides [23] proposed numerical algorithms for robust structural optimization by
using the convex model method. Note that the convex model method is valid only if the
magnitude of uncertainty is small enough, because this approach is essentially based on the
first-order approximation of the structural response with respect to the uncertain parame-
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ters. Lee and Park [33] also presented a method for robust structural optimization based
on the first-order approximation.

There exist two closely related methodologies with which we can address arbitrary large
magnitude of uncertainty in a structural system. The one is the notion of robust counterpart
of optimization problem proposed by Ben-Tal and Nemirovski [10, 11], and another the info-
gap decision theory proposed by Ben-Haim [7]. A unified methodology of robust counterpart
was presented for a broader class of convex optimization problems [11], in which the given
data of an optimization problem are supposed to possess non-probabilistic uncertainties.
This methodology was applied to the compliance minimization problem of a truss structure
subjected to the uncertain external load [9, 45]. A min-max formulation of a robust compli-
ance design was presented for continua by Cherkaev and Cherkaev [15]. Kocvara et al. [32]
performed a free-material design under multiple loadings by using a cascading technique.
The info-gap decision theory introduces the robustness function as a quantitative measure
of robustness. Specifically, the robustness function represents the greatest level of uncer-
tainty at which any failure cannot occur [7]. By using the robustness function, Kanno and
Takewaki [29] proposed a robustness maximization problem of a truss structure subjected
to uncertainty in the external load.

In this paper, we consider a non-probabilistic uncertainty in the static external load
of a structural system. In accordance with the notion of robust constraint satisfaction
which is shared by the robust optimization methodology [11] and the info-gap theory [7],
we formulate a robust structural optimization problem, in which any constraint on the
mechanical performance cannot be violated at the given magnitude of uncertainty. We
clarify the relations between the robust constraint satisfaction, worst-case detection, and
robust structural optimization; see Section 2.

The robust structural optimization problem is formulated as a semi-infinite programming
problem [40], which can further be reformulated as an MPEC (mathematical program with
equilibrium constraints) in the complementarity form. Since an MPEC does not satisfy
any standard constraint qualification [34], standard nonlinear programming approaches are
likely to fail for this problem. For overcoming this difficulty there exist two main approaches.
The one is to develop specialized algorithms dealing with MPEC problems (see, e.g., [34,
36]), and the other is to reformulate an MPEC problem into a tractable form so that
standard nonlinear programming approaches are applicable. As a method following the
latter methodology, this paper presents an implicit reformulation of MPEC by using the
smoothed Fischer-Burmeister function [22, 31]; see Section 3.

It is known that various problems in structural and mechanical engineering can be formu-
lated as MPEC problems [2, 20, 28, 42, 43]. Although this paper focuses on the application
of MPEC to the robust structural optimization, the presented implicit reformulation can be
applied to any MPEC problem in the complementarity form. Numerous smoothing meth-
ods, as well as regularization schemes, were proposed for MPEC [13, 17, 19, 22, 25, 26, 28,
38, 42, 44]. An MPEC problem in the complementarity form involves the complementarity
conditions

as its constraints, where g;, h; : RY — R (i = 1,...,M). In a typical regularization
approach to MPEC, the complementarity constraints in (1.1) are relaxed as [38]

gi(x) >0, hi(x) >0, g(x)h(x)<e, i=1,..., M, (1.2)
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where ¢ > 0 is a constant. Then a sequence of the relaxed optimization problem with
(1.2), instead of (1.1), is solved by using a standard nonlinear programming approach, e.g.,
the SQP method, by gradually decreasing £ N\, 0. In contrast, in a smoothing method for
MPEC, the constraints in (1.1) are replaced with [22, 42]

W(gi(x), hi(x);e) =0, i=1,...,M, (1.3)

where € > 0 is a constant, ¥(-;¢) is continuously differentiable for any € > 0, and ¢(-;0) :
R? — R is a complementarity function; i.e., 1(a,b;0) = 0 holds if and only if a > 0, b > 0,
and ab = 0. In a manner similar to the relaxation method, the smooth optimization problem
with (1.3) is solved sequentially by decreasing e.

It seems that there exists neither an appropriate guideline for the choice of an initial
value for € nor a proper decreasing strategy of €. Note that the convergence of algorithms
can be proved theoretically irrelevant to the initial value of € and the decreasing strategy.
However, the computational efficiency certainly depends on those choices. Specifically, too
rapid reduction of € is not adequate to avoid the nonsmooth property of the complemen-
tarity function, but unnecessary iterations might be spent if we decrease € too slowly; see
Remark 3.4 for details.

This observation motivates us to propose a new reformulation of MPEC in the com-
plementarity form. The key idea is stated as follows. We add an additional constraint to
(1.3) so that ¢ can work as a measure of the residual of the complementarity constraints.
The smoothing parameter ¢ in (1.3) is regarded as a free variable, and the reformed prob-
lem is solved by using a standard nonlinear optimization method. Then ¢ is automatically
adjusted according to the residual of the complementarity constraints; i.e., as the residual
of the complementarity constraints becomes smaller, the smoothing parameter £ becomes
smaller. At the convergent solution, it is guaranteed that e vanishes automatically, and
hence the complementarity constraints are satisfied exactly. This is a key idea presented in
this paper.

This paper is organized as follows. Section 2 introduces the robust structural opti-
mization formulated as the semi-infinite programming problem, and then reduces it to an
MPEC problem. An implicit reformulation of the MPEC is presented in Section 3. Numer-
ical results are shown in Section 4; an illustrative truss optimization in Section 4.1 and the
optimization of a frame structure in Section 4.2. Finally, conclusions are drawn in Section 5.

A few words regarding our notation: All vectors are assumed to be column vectors. The
(m + n)-dimensional column vector (u™, vT)T consisting of u € R™ and v € R" is often
written simply as (u,v). We denote by " C R" " the set of all n X n real symmetric
matrices. For a vector p = (p;) € R", we use ||p|lo to denote its maximum-norm, i.e.,
denote the n x n identity matrix and the vector (1,...,1)T € R™, respectively, without
specifying n, unless it is not clear from the context.

2. Motivation: Robust Structural Optimization

Consider a finite-dimensional linear elastic structure subjected to the static nodal forces
f € RY, where d is the number of degrees of freedom of displacements. Small displacements
and small strains are assumed. See, e.g., [5] for fundamentals of static analysis of structures.

Let € R™ denote the vector of design variables, where m is the number of design
variables. For example, x; is the member cross-sectional area for a truss, or the element
thickness for a plate discretized into finite elements. Throughout the paper, the geometry
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68 Y. Kanno

of the structure is fixed and only sizes of structural elements are considered as the design
variables to be optimized.

Let K(x) € 8¢ denote the stiffness matrix. The displacement vector u € R? is found
from the equilibrium equation written as

K(x)u=f, (2.1)

where f is assumed to be independent of «.
2.1. Structural optimization without uncertainty

We recall the conventional structural optimization problem before discussing the robust
structural optimization. Readers may refer to [3, 16] for fundamentals of structural opti-
mization.

Consider a mechanical performance of a structure which can be expressed as a constraint
in terms of the displacements uw. For example, we consider the upper bound constraint of the
displacement in a specified direction, or the upper bound constraint of the maximum effective
stress of each structural element. In this paper, we restrict ourselves to the constraints
written in the form of

gj(u) >0, j=1...,n° (2.2)

where g; : R? — R is a differentiable convex function, and n® is the number of the constraints.
Note that w implicitly depends on the design variables & through the equilibrium equation
(2.1).

Let X C R™ denote the set of admissible design variables. For example, we often consider
the lower and upper bound constraints for x;’s. We denote by v(x) the total structural
volume. It is often in structural optimization that we attempt to minimize the total weight
of a structure, which is proportional to v(x) if all the structural elements consist of the same
material. Thus the conventional structural optimization problem under the constraints in
(2.2) is formulated as

m}(n v(x)
rEA, U
s.t.  K(x) (2.3)

(®)u = f
g]('u,)z() jg=1,...,n"%

2.2. Non-probabilistic uncertainty model

A non-probabilistic model for uncertainty in the external load is introduced.

For real-world structures, it is usual that the external load f in (2.1) cannot be known
precisely. Throughout the paper we assume that the uncertainty exists only in f, and that
the other parameters in a structural system, e.g., the parameters representing the stiffness
or the geometry, are known precisely. Let f € R? denote the nominal value, or the best
estimate, of f. We describe the uncertainty of f = (f;) € R? by using unknown parameters
¢ = (¢,) € R¥, where k < d. Assume that f depend on ¢ affinely as

feF()={fFf=F+F¢ a>|Cl) (2.4)

where F, € R¥* is a constant matrix having full column rank. Roughly speaking, o
represents the “level” of uncertainty; i.e., the greater the value of «, the greater the range
of possible variations of f. Therefore, a is called the uncertainty parameter [7]. The matrix
Iy represents the relationship of the uncertainties among f1, ..., f4.
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Implicit Reformulation of MPEC 69

Remark 2.1. Some uncertainty models other than that in (2.4) can be chosen for describing
the uncertainty in the external load, though we postulate that F(«) is convex for any
a > 0. For example, we may use the standard Euclidean norm, instead of the maximum-
norm, to bound ¢ as is done in the conventional ellipsoidal uncertainty model [7-9, 29].
Although the uncertainty model defined by using the maximum-norm may sometimes be
more pessimistic than the ellipsoidal uncertainty model, we restrict ourselves to (2.4) for
the simple presentation of our reformulation explored in Section 3. [

In what follows, we assume that X and F satisfy
Vee X: ImK(xz) D Fla), (2.5)

so that (2.1) has a solution for any f € F(a). This assumption is required to guarantee
that the extremal case of structural response is correctly detected by solving the worst-case
detection problem, which minimizes ¢;(w) in (2.2) under (2.1) and (2.4); see Remark 2.2 for
more account. Note that K (x) can possibly become singular if some structural elements
are removed as a result of optimization.

2.3. Robust structural optimization

When the external load f takes every value in the uncertainty set F(«) defined in (2.4), the
displacement vector w is running through the set {u | K(x)u = f, f € F(a)}. Thence,
it is natural to require that the constraint on the mechanical performance in (2.2) should
be satisfied by all realizations of w. Thus, the robust counterpart of the constraint (2.2) is
introduced under the assumption (2.5) as

Vue{u|K(@xu=f, feF(a)}: gju)>0(=1,...,n°. (2.6)

Recall that the nominal structural optimization problem is formulated as (2.3). A robust
structural optimization problem is defined by replacing constraint (2.2) with its robust
counterpart (2.6) as

iy @ | b e
s.t. gi(u) >0 (Vue{u|K(xu=f, feFla)}), j=1,...,n"

Problem (2.7) is a so-called generalized semi-infinite programming (GSIP) problem [40],
which consists of a finite number of variables and an infinite number of inequality constraints.
It is known that problem (2.7) can be reduced to an MPEC problem [40]; see Section 2.4
for details.

For a fixed x € X, consider the optimization problem

min  g;(u)
s.t. K(x)u=f, (2.8)
f € Fla),

where u and f are the variables. Suppose that problem (2.8) has an optimal solution, which
is denoted by (u™, f¥¢). From definition (2.6), we see that the robust satisfaction of the jth
constraint in (2.6) becomes most critical at w™°. Hence, f* and u" are called the worst-
case external load and displacement, respectively, for the jth constraint. Problem (2.8) is
referred to as the worst-case detection problem [24, 30]. Certainly the worst-case external
load depends on x.
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70 Y. Kanno

Remark 2.2. We say that a structure is kinematically indeterminate, or unstable, if there
exists an infinitesimal displacement vector compatible to a set of rigid-body motions of some
structural elements. If the structure described by « is kinematically indeterminate, then
the solution of problem (2.8) does not necessarily corresponds to the most critical case. See,
e.g., [27, Section 4] for an illustrative example. In contrast, assumption (2.5) ensures that
the optimal solution of problem (2.8) corresponds to the most critical case among f € F(«).
|

The robust constraint introduced in (2.6) requires that the performance constraint (2.2)
should be satisfied in the worst case. Hence, problem (2.7) is equivalently rewritten as

min v(x)

zEX . ¢ (2.9)
s. t. mlcn{gj('u,) | K(x)u=f, feF(a)} >0, j=1,...,n"% }

Thus the robust structural optimization problem can alternatively be formulated as a bi-level
optimization problem.

2.4. MPEC formulation
An MPEC reformulation of problem (2.9) is presented explicitly.

By using (2.4), the lower-level problem included in the constraint of problem (2.9) is
explicitly written as

min {g(u) | K(@)u=F +FC, o> ) - (2.10)
For a fixed @, problem (2.10) is a convex optimization problem in the variables w and
¢. Moreover, assumption (2.5) implies that problem (2.10) satisfies the Slater constraint
qualification. Hence, the optimality condition for problem (2.10) is derived as the standard
Karush-Kuhn-Tucker conditions; i.e., (u*,{*) is an optimal solution of problem (2.10) if
and only if there exists a Lagrange multipliers vector (u*, X", 7*) satisfying

K(@)u' = F+ Fc',

Vygj(u") — K(x)p" =0,
Fyp + X" — 71" =0,

G- 0, NS0, N(a-C)=0, p=1.... .k
a+( >0, 7,>0, 1 (a+()=0, p=1,... k.

The constraint of (2.9) is then reduced to g;(u*) > 0 for each j =1,...,n°
Consequently, problem (2.9) is equivalently rewritten as

min  v(x) )
s.t. xe X,
Vi=1,...,n°:
[ K(z)u; — f — Fo¢; =0,
Voi(uy) — K (@), =0, @11)
9(u;) = 0,
FOT[J,j—FAj—Tj:O,
=G =20, Ay 20, Mpjla—Gy) =0, p=1,....k,
\Oé+<pj20, ijEO, ij<04+<pj):(), pzl,...,]{, )
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where & € R™, u; € R, {; = ({;) € R*, p; € R Xj = (N) € RF, and 7, = (1;) € R”
(7 =1,...,n% are the variables to be optimized.

Since problem (2.11) includes complementarity conditions in its constraints, it is called
the mathematical program with complementarity constraints, or the mathematical program
with equilibrium constraints (MPEC) in the complementarity form [34]. Tt is well known
that any feasible solution of (2.11) does not satisfy a standard constraint qualification (see,
e.g., [34]), and hence conventional nonlinear programming approaches are likely to fail for
this problem. In Section 3 we propose a reformulation, almost all feasible solutions of which
satisfy the linear independence constraint qualification (LICQ).

Remark 2.3. The extra variables uy,...,up and (y,...,¢,c included in problem (2.11)
have physical interpretation as follows. Let u} and ¢} be optimal values of u; and (;,
respectively. Then the worst-case external load for the jth constraint is written as f%° =
]~° + Fo¢;. Moreover, u is the displacement vector corresponding to f™°. Note that the
worst-case load differs between the constraints, i.e., {j # ¢, (j1 # j2) in general. For
robust structural optimization, the optimal solution often has several worst cases, in each
of which the corresponding constraint becomes active. In Section 4 we present numerical
examples of robust optimal solutions which have multiple active worst-case constraints. W

3. Implicit Reformulation of MPEC

For the reformulation of the MPEC problem (2.11) into a tractable form, we make use of a
smoothed Fischer-Burmeister function ¢ : R® — R defined by

Oy, 2,0) =y +2—Vy*+ 22 +2p% (3.1)

The smoothed Fischer-Burmeister function was originally proposed by Kanzow [31] for
solving linear complementarity problems. Subsequently, smooth nonlinear programming
approaches for MPEC were proposed by using this function [22, 25, 26, 42].

It should be clear that a main feature of our new reformulation of MPEC is to regard
the smoothing parameter p in (3.1) as an independent variable. We here establish the key
result for reformulating a complementarity condition.

Proposition 3.1. Let e denote Euler’s constant. Then y = (y;) € R", z = (2;) € R", and
p € R satisfy

y>0, z>0, y'z2=0, p=0 (3.2)

if and only if they satisfy
(b(ymzzap) :OJ 1= 17"'7”7 (33)
yTz =n(e’ —1). (3.4)

Proof. Observe that, for each i = 1,...,n, the equation ¢(y;, z;, p) = 0 holds if and only if
vi, 2z, and p satisfy y; > 0, z; > 0, and p? = y,2;. Hence, the necessity, i.e., the “only if”
part, is obtained immediately.

If p=01n (3.4), then yTz = 0. Hence, it remains to show that (3.3) and (3.4) imply
p=20. Since p* = y;z; (i =1,...,n) hold if (3.3) is satisfied, we see that (3.3) implies

np? = Zyizi =ylz. (3.5)
i=1
Substitution of (3.5) into (3.4) yields p* = e” — 1, which holds if and only if p = 0. O
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Note again that in (3.4) not only y and z but also the smoothing parameter p are
regarded as the independent variables. Moreover, with (3.4) p can play a role of a mea-
sure of the residual of the complementarity constraints. This point is further discussed in
Remark 3.2 below.

It follows from Proposition 3.1 that the MPEC problem (2.11) is equivalently rewritten
as the following implicit formulation:

min v(x) )
s.t. e X,

( K(a:)uj—f—FOCj:O,

Vg;(u;) — K@)Nj =0,

. (u;) >0

Gt d () 20

¢(Q_CPj7)\Pj7p>:07 p:17 7k7
\Qb(@"‘ijanjaP):O, p:1,...,k’,
n¢ k
DD = Gy + (@ + Gl + (2n°R)(1 =€) = 0,
j=1 p=1 )

where x, p, uj, ¢;, p;, Aj, and 7; (j = 1,...,n°) are the variables. Problem (3.6) is
regarded as a conventional nonlinear programming (NLP) problem in the sense that it does
not contain complementarity conditions in its constraints. We call problem (3.6) an implicit
reformulation of the MPEC problem (2.11), because the smoothing parameter p is included
as one of the variables. When we solve problem (3.6), p is to be updated simultaneously
together with the other variables at each iteration of a standard nonlinear programming
algorithm.

Remark 3.2. In problem (3.6), the complementarity conditions in problem (2.11) are rewrit-
ten by using the smoothed Fischer—-Burmeister functions and the additional equality con-
straint in the form of (3.4). We may understand the role of the extra variable p more clearly
by rewriting (3.4) as

1
log (EyTz + 1) = p. (3.7)

A key observation in (3.7) is that p can be regarded as a measure of the residual of the
complementarity condition yTz = 0. An alternative candidate for a measure of the residual,
for example, might be

1
—y'z =p, (3.8)
n

which seems to be simpler than (3.7). However, the function (3.8) does not provide us with
an implicit reformulation. Indeed, (3.3) and (3.8) are solely necessary conditions for (3.2).
Thus, to obtain a necessary and sufficient condition shown in Proposition 3.1, we choose
the logarithm function in (3.7) as a measure of the residual. [ ]

Remark 3.2 also suggests an appropriate choice of the initial value p( for the variable
p when we solve the implicit reformulation with a nonlinear programming algorithm. Let
Yoy and 2z be the initial values of y and z satisfying 0 # y%)z(o) > —1/n. Then, it
might be reasonable to put pq) = log[(y%)z(o)/n) + 1], where y and z correspond to
y=(al-C,...,al—C(,,al+¢y,...,al+¢,) and z = (Ay, ..., A, T1, ..., Tk), respectively,
in problem (3.6).
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Remark 3.5. For understanding the role which the smoothing parameter p plays, it is inter-
esting to compare problem (3.6) with the following problem:

min  v(x)

s.t. e X,

( K(z)u; — f — Fy¢; =0,
V?j(")ij) — K(z)p; =0,
. c. ) 9i(u;) =0,

Vi=1,...,n%: FOTM]-+)\J‘—T]'=0,
¢(04_ij’)‘pj70):()v p=1,...

[ o+ (pjy 7, 0) =0, p=1....k |

(3.9)

which is also equivalent to the MPEC problem (2.11). In our preliminary numerical exper-
iments, the SQP method (fmincon [41]) fails to converge to a solution of (3.9), even for
moderately small number of complementarity constraints. This may be due to the nons-
mooth property of Fischer-Burmeister functions in problem (3.9), i.e., ¢(a — (p;, Apj, 0) and
¢+ Cpj, Tps, 0). In contrast, in (3.6) we use the smoothed Fischer-Burmeister function with
the smoothing parameter p. As discussed in Remark 3.2, p in (3.6) roughly corresponds to
the residual of the complementarity conditions, and it is usual that the complementarity
constraints are not satisfied exactly during the optimization procedure before it converges.
Hence, we may expect that p # 0 holds at intermediate solutions of the optimization proce-
dure. If this is the case, then the constraints of (3.6) are differentiable at any intermediate
solution, which explains the advantage of the implicit formulation (3.6) over (3.9). [

Remark 3.4. The idea of regarding a smoothing parameter p as an independent variable can
also be found in [25, 26], but the formulations presented there are different from ours as
follows. The method in [25, 26] is based on the fact that the complementarity conditions in
(3.2) are equivalent to

¢<yi,2i,p) :O, 1= 1,...,77,, (310)
e’ =1. (3.11)

Then the smooth SQP method was applied to the problem including (3.10) and (3.11) in
its constraints instead of the complementarity conditions. Thus, the value of the smoothing
parameter p is irrelevant to the variables y and z in the method in [25, 26], while in our
reformulation we attempt to adjust p to the residual of the complementarity conditions
as discussed in Remark 3.2. In other words, we expect that |p| is relatively large at the
earlier stage of the optimization procedure, and |p| can be smaller as the residual of the
complementarity constraints is reduced considerably. In contrast, in the method using (3.10)
and (3.11), there may possibly exist two disadvantageous situations: (i) p is almost equal
to 0 even if the residual of complementarity conditions is still relatively large, then the
smoothing effect of the Fischer—Burmeister function might not work properly, which may
cause the divergence of the optimization algorithm (see Remark 3.3); (ii) p is still far from
0 when the residual of complementarity conditions is sufficiently small, then unnecessary
iterations might be spent to reduce the residual of (3.11). [

Remark 3.5. The methodology of the implicit reformulation presented in Proposition 3.1 can
also be applied to smoothed complementarity functions other than the smoothed Fischer—
Burmeister function. For example, consider the CHKS (Chen-Harker—-Kanzow—Smale)
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smoothing function defined by [14]

douxs(y, 2, p) =y + 2 —/(y — 2)> + 4p.

Indeed, it is easy to see that y = (y;) € R", z = (2;) € R™, and p € R satisfy (3.2) if and
only if they satisfy

¢CHKS(yi;Ziap) :07 1= 17"'7” (312)

and (3.4). Therefore, in problem (3.6), we can replace the smoothed Fischer-Burmeister
function ¢ with the CHKS smoothing function without changing the optimal solution. See
Section 4.2.2 for the numerical experiments of the formulation with the CHKS smoothing
function. [ ]

Recall that the difficulty in dealing with the MPEC formulation (2.11) arises from the
fact that MPEC fails to satisfy any standard constraint qualification. We next investigate
the constraint qualification of the implicit reformulation (3.6). For simplicity, we denote by
& the vector of the variables of problem (3.6), i.e.,

§= (:E,p, ((’u’j?Cj?lJ’jy)\j,Tj) |j=1,...,nc)).

Under the assumption that the MPEC problem (2.11) satisfies MPEC-LICQ [34], Propo-
sition 3.6 below shows that the LICQ for problem (3.6) is satisfied. Note that we assume
the strict complementarity conditions at a feasible solution & so that the smoothed Fischer—
Burmeister function is differentiable at &.

Proposition 3.6. Suppose that a feasible solution & of problem (2.11) satisfies the strict
complementarity, i.e.,

(—=Cj)+ Ay >0, (a+()+7 >0, p=1,....k j=1,...,n°
If problem (2.11) satisfies MPEC-LICQ at &, then problem (3.6) satisfies LICQ at &.
Proof. For simplicity, we consider the complementarity conditions
RZsy>0 R?’22z>0, yTz=0, (3.13)

i.e., we put n = 2 in Proposition 3.1. Define 951, qgg, §:R> — R by

Qgi<yaz>p) :qb(yivzhp)’ 1=1,2,
5(y, 2 p) = "% — 2(e” — 1)
Then Proposition 3.1 implies that (y, z, p) satisfies (3.13) and p = 0 if and only if
le(y,Z,p) :€52(y7zap) :5(yvzap) = 0. (314)

Suppose that (y, 2, p) satisfies (3.14) and the strict complementarity conditions. Particu-
larly, we assume

>0, >0, p=zn=p=0.
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Without loss of generality, it suffices to show that Ve (7, Z, p), Ve
are linearly independent. Simple calculations yield

,z,p), and Vé(y, z, p)

N

1 —a1/ltl 0 0

. 0 R 1 %
v¢1(@7'zaﬁ) = 1 ) v¢2(@727ﬁ) = 0 ) V(S(@,Z,ﬁ) = ||,

0 EEY 0

0 0 -2

which are linearly independent. The proof in the general case in the assertion of this
proposition can be obtained similarly, but is omitted for simple presentation. O

Proposition 3.6 guarantees that the implicit formulation (3.6) satisfies LICQ, which al-
lows to solve (3.6) by using a standard nonlinear optimization approach. In contrast, the
constraints are not differentiable at a feasible solution which does not satisfy the strict com-
plementarity. However, as discussed in Remark 3.3, we may expect that p # 0 at almost all
intermediate solutions in the course of optimization. If this is the case, then the constraints
are differentiable. Throughout the numerical experiments presented in Section 4, it is con-
firmed that a standard smooth nonlinear programming approach can solve problem (3.6)
within moderately small number of iterations.

4. Numerical Experiments

The robust optimal designs of structures subjected to the uncertain static loads are found
by solving problem (3.6). Computation was carried out on Core 2 Duo (2.26 GHz with
4.0 GB memory) with MATLAB R2009b. We solve problem (3.6) by using the MATLAB
built-in function fmincon [41], which implements the SQP method and the interior-point
method for nonlinear programming problems. The gradients of the objective and constraint
functions are provided as the user-defined functions.

It is known that fmincon is not superior to other available nonlinear programming
solvers. In fact, it is known that some robust nonlinear programming solvers can solve a
quite large class of MPEC problems [21], while fmincon usually fails in our preliminary
numerical experiments. This drawback of fmincon, however, is adequate for our aim to
examine the presented regularization scheme as discussed in [38]; i.e., if regularized MPEC
problems can be solved by fmincon then it is confirmed that the regularization scheme has
an advantage to enhance the robustness of a well-developed nonlinear programming solver
when it is applied to an MPEC problem.

4.1. 2-bar truss

Consider a two-bar plane truss illustrated in Figure 1. The initial lengths of members (i)
and (ii) are 1.0m and \/2m, respectively. The cross-sectional areas of these members are
considered as design variables, i.e., m = 2. Nodes (b) and (c) are pin-supported, while
node (a) is free. Therefore, the number of degrees of freedom of displacements is d = 2.
The elastic modulus is 200 GPa.

As the nominal external load, f, the horizontal force of 10.0kN is applied at node (a).
In accordance with (2.4), we define the uncertainty model in the external load as

f=Ff+F¢ a>|Gl(j=1,2) (4.1)

with Fy = 1.0 (kN) x I and k = 2. Therefore, (; and (, correspond to the uncertain external
forces (in kN) in the z- and y-directions, respectively.
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Figure 1: A 2-bar truss

>

(a) The nominal case (b) The robust optimal solution

Figure 2: The optimal solutions of the 2-bar truss example

0 5 10 15 20 25 30
iteration

Figure 3: Convergence histories of the smoothing parameter and the residual of the com-

7 13

plementarity constraints for the 2-bar truss example (“—": p; “--- 7 log((yTz/n)+1) in

(3.7))
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Figure 4: Stress states of the robust optimal design of the 2-bar truss (“o”: stresses in the
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worst cases; : stresses computed from randomly generated loads)

As for the mechanical performance constraints in (2.2), we consider the constraints on the
member stresses. Note that the member stress, denoted o;, of a truss is a linear function of
the displacement w. The stress constraint for each member is written as |o;| < 0 (i = 1, 2),
where 0¢ = 10.0 MPa is the upper bound for the member stresses.

Note that the stress constraint requires a special treatment in the structural optimization;
see, e.g., [37]. It is often that some members vanish as the result of optimization. In
such a case, the stress constraints should be satisfied only by the existing members, and
the constraints do not have to be satisfied by the members with vanishing cross-sectional
areas. In other words, the stress constraint should be treated as the so-called vanishing
constraint [1], or the design-dependent constraint [37]. In this example, however, the robust
optimal solution of this example cannot be kinematically indeterminate, which means that
both members should exist at the robust optimal solution. Hence, we do not treat the stress
constraints as the vanishing constraints in this example. A precise treatment of the stress
constraints in the robust structural optimization can be found in [27].

As the initial solution for a nonlinear programming solver, the initial value for x is
given as (2000.0,4000.0) mm?. Then we put u; = K(z)"'f, {; = 0, p; = —K(z) 'a;,
T; = max{[fop;,0}, and A\j = min{—Fou;,0} (j =1,...,n°), where the max-operator and
the min-operator for a vector are understood component-wisely. The initial value for p is
computed by using (3.7).

The robust optimization problem (3.6) is solved for a = 1.0 by using fmincon with de-
fault settings (i.e., the SQP method). The obtained optimal solution is * = (1200.0, 200.0)
mm? as illustrated in Figure 2(b), where the width of each member is proportional to its
cross-sectional area. Figure 3 shows the convergence history of the smoothing parameter p
and the residual of the complementarity constraints, both of which decrease almost mono-
tonically. It is observed in Figure 3 that p is automatically adjusted to the residual of the
complementarity constraints. Note that fmincon fails to solve the formulation (3.9); it stops
because no feasible solution can be found.

If we do not consider any uncertainty, i.e., in the case of & = 0, then the robust structural
optimization (3.6) is reduced to the conventional structural optimization (2.3) subjected to
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Figure 5: A 5-story frame

the nominal load. The optimal solution in this case is &' = (1000.0,0.0) mm?, which is
illustrated in Figure 2(a). Since we consider only the horizontal force applied at node (a),
member (ii) vanishes at the optimal solution when we impose the stress constraint only on
member (i). As a consequence, the nominal optimal solution is kinematically indetermi-
nate (unstable) as seen in Figure 2, whereas the robust optimal solution is kinematically
determinate (stable).

Next we randomly generate a number of external loads f satisfying (4.1) with a = 1.0,
and compute the corresponding member stresses of the robust optimal design. Figure 4 de-
picts the obtained member stresses (o1/0¢, 02/0¢) normalized by the specified upper bound
o¢. It is observed from Figure 4 that the stress constraints are satisfied for all randomly
generated loads. The stress states corresponding to the worst cases are also shown in Fig-
ure 4 by the open circles. Note that there exist four extremal cases of stresses, i.e., the
maximum and minimum stresses of members (i) and (ii). It is observed from Figure 4 that

for each member there exists the worst case in which the stress constraint becomes active.
4.2. Plane frame under displacement constraint

As a moderately large example, consider a 5-story 5-bay plane frame structure shown in
Figure 5, where W = 4m and H = 3m. The frame has 55 members, which are the Euler—
Bernoulli beam elements. All the bottom nodes are rigidly supported. Note that for a frame
structure the rotation of each free node is also considered as one of the degrees of freedom
of (generalized) displacements u € R?, and hence d = 90. The cross-sectional area, denoted
by x;, of each cross section is chosen as a design variable, i.e., m = 55. The elastic modulus
is 200 GPa.

As the nominal load }', horizontal forces of 1.0, 2.0, 3.0, 4.0, and 5.0 x 103 kN are applied
at nodes (a)—(e), respectively, in the positive direction of the z-axis. The vertical force of
12.5 x 103kN is applied at each of nodes (e)—(j) in the negative direction of the y-axis.
Suppose that the uncertain external forces are applied to all free nodes, while no external
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(a) The nominal case

(b) The robust optimal solution for o = 0.1 (¢) The robust optimal solution for o = 0.2

Figure 6: The optimal solutions of the frame example

moments are applied. This uncertainty model is represented as (2.4) by putting k£ = 60 and

Fy = 1.0 (kN) x o || o € RI*90,

ol

Each of beams and columns is assumed to have a sandwich cross-section; i.e., the second
moment of inertia ¢, is assumed to be proportional to the cross-sectional area x; as t; = r?z;,
where 2r = 400mm is the distance between two flanges. As the admissible set A of « in
(3.6), we consider the lower bound constraints, i.e., X = {x e R" |z; > z; (i=1,...,m)}
with z; = 2000mm?, to guarantee that assumption (2.5) is satisfied. For obtaining a
practically acceptable optimal solution, we introduce additional constraints such that the
cross-sectional area of a column must not be larger than that at the lower story. Moreover,
symmetry located members, with respect to the symmetry axis of the configuration in
Figure 5, are supposed to have the same cross-section. Note that the assumptions above,
i.e., the sandwich cross-sections, the monotonicity of the cross-sections of columns, and
the symmetry of configuration, are quite commonly used in optimization of steel frame

O O =
o = O

}oo'

o O
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(¢) The worst-case for the displacement constraint (d) The worst-case for the displacement con-
of node (j) at the robust optimal solution for a = straint of node (k) at the robust optimal solution
0.2 for a = 0.2

Figure 7: The external loads in the worst cases for the robust optimal solutions in Figure 6

structures; see, e.g., [35].

As the constraint on the mechanical performance in (2.2), we consider the upper bound
constraints for the horizontal displacements of nodes (j) and (k), i.e., n® = 2. The upper
bounds are uf = 5H/200 and u§ = 3H/200 for the displacements of nodes (j) and (k),
respectively. Consequently, problem (3.6) has 776 variables in total and 240 complementarity
constraints.

4.2.1. Results of the proposed method

The robust optimization problem (3.6) is solved by using the interior-point method imple-
mented in fmincon [41]. The initial solution is given as x; = 10000mm? (i = 1,...,m),
p = 0.1, and for the other variables the initial values are given in a manner similar to Sec-
tion 4.1. Note that in this example the design variables vector & with sufficiently large x;’s
is feasible for problem (3.6). The computational results are listed in Table 1. The nominal
optimal solution obtained by solving problem (2.3) is shown in Figure 6(a). Figures 6(b)
and 6(c) depict the optimal solutions obtained for & = 0.1 and o = 0.2, respectively. For
these robust optimal solutions, Figure 7 shows the worst-case loads for the displacement
constraints, which are obtained by solving the worst-case detection problem (2.8). Note
that the nominal external load, illustrated in Figure 5, is not depicted in Figure 7. Each
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Table 1: Computational results of the plane-frame example

a Volume (m?®) CPU (s) Iter.

nominal 14.1948 13.4 66
0.05 15.3665 238.1 122
0.10 16.5896 118.8 57
0.15 17.7392 283.1 144
0.20 18.9299 245.6 125

Table 2: Computational results for the CHKS smoothing function: the plane-frame example

a  Volume (m®) CPU (s) Iter.

0.05 15.4871 217.3 88
0.10 16.5499 421.0 187
0.15 17.7378 258.1 128
0.20 18.9760 712.9 298

displacement constraint becomes active in the corresponding worst case shown in Figure 7.
4.2.2. Results using the CHKS smoothing function

As discussed in Remark 3.5, the methodology of the implicit reformulation proposed in
Section 3 can also be applied to the CHKS smoothing function straightforwardly. We
here examine the computational efficiency of the formulation using the CHKS smoothing
function.

In a manner similar to Section 4.2.1, the robust optimization problem of the plane frame
is solved with the interior-point method implemented in fmincon [41]. The same initial
solutions are chosen as those in Section 4.2.1. The computational results for the CHKS
smoothing function are listed in Table 2. Note that the obtained solution for each value
of a is different from the solution obtained in Section 4.2.1, although the objective values
are very similar. It is well known that the optimization problem of a frame structure often
possesses many local optimal solutions; see, e.g., [35]. It is observed from Tables 1 and 2
that the computational efficiency is not improved with the CHKS smoothing function in
general, compared with the smoothed Fischer—-Burmeister function.

4.2.3. Results without implicit control of p

As mentioned in Remark 3.4, use of the independent variable p for constructing an implicit
reformulation of MPEC is found in literature [25, 26]. A potential advantage of our formu-
lation is that the smoothing parameter p is related to the residual of the complementarity
conditions as discussed in Remark 3.2, and hence it is expected that p is automatically
adjusted to the feasibility of the complementarity conditions. In contrast, the formulation
proposed in [25, 26] is based on (3.10) and (3.11), where p is irrelevant to the residuals of
the complementarity constraints. In this section, we examine the formulation using (3.10)
and (3.11) to compare the computational efficiency with the results for our formulation
presented in Section 4.2.1.

The same problem of the plane frame is solved. An initial value for p, denoted p(©, is
chosen as p(® = 0.0.1, 0.1, or 1.00, while initial values for the other variables are given in a
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Table 3: Computational results for the formulation using (3.10) and (3.11): the plane-frame
example

a  p©@ Volume (m®) CPU (s) Iter.
0.05 0.1 15.4598 707.1 339
0.10 0.01 16.5996 2367.9 1094
0.10 0.1 16.6487 733.9 362
0.10 1.0 16.5637 814.8 383
0.15 0.1 17.8811 1809.6 884
0.20 0.01 19.0099 1432.5 669
020 0.1 - (> 2100)
0.20 1.0 18.9467 1562.6 752

manner similar to Section 4.2.1. The computational results are listed in Table 3. In the case
of « = 0.2 and p(® = 0.1, fmincon does not converge within 2100 iterations. It is observed
from Table 3 that the computational efficiency of the formulation using (3.10) and (3.11)
is drastically inferior to that of the proposed method listed in Table 1. Furthermore, for
all the values a examined, the objective values of the solutions obtained in this section are
larger than the solutions obtained by using the proposed method.

5. Concluding Remarks

For a structure subjected to a non-probabilistic uncertainty in the static external load, the
robust structural optimization problem is formulated as an MPEC (mathematical program
with equilibrium constraints) problem in the complementarity form. In this paper, we have
explored an implicit reformulation of the MPEC based on the smoothed Fischer-Burmeister
function, which enables us to apply a standard nonlinear programming approach. In the
implicit formulation, the parameter p for smoothing the Fischer-Burmeister function is
considered as an independent variable, and we have introduced an extra equality constraint
with which p vanishes at the optimal solution. As a consequence, p decreases automatically
as the optimization algorithm approaches to convergence. The applicability of the proposed
methodology to the CHKS smoothing function has also been discussed.

On the other hand, in the proposed reformulation, the complementarity constraints, to-
gether with the associated inequality constraints, are treated as equality constraints. This
treatment might potentially cause difficulties in numerical solution, because, from the prac-
tical point of view, an inequality constraint is more tractable than an equality constraint
for an optimization algorithm in general. In the numerical experiments in Section 4, fea-
sible solutions have successfully been found by using a standard nonlinear programming
approach.
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