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Abstract  An order admission model is developed to introduce revenue management into MTO B2B in-
dustries. This solution is designed to resolve a common order management dilemma faced by manufacturers
with severe seasonal demands. Considering the requirement that manufacturing industries be risk averse,
the objective is to maximize the expected total revenue under a targeted capacity utilization constraint.
The deterministic admission problem and its auxiliary model are presented and solved through an iterative
dynamic programming algorithm. Through this algorithm, a reward-threshold order admission policy can
be established at the beginning of the planning horizon, helping companies to achieve a balance between
profitability and stability.
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1. Introduction

Utilization is connected to productivity measures in manufacturing industries (e.g., Devlin
et al. [16], Ptak [34], and Stonebraker [38]). In the B2B MTO (Business-to-Business Make-
to-Order) environment, it is well known that capacity utilization is positively related to
revenue in some high-tech industries. For instance, semiconductor manufacturing firms
in Taiwan, such as Taiwan Semiconductor Manufacturing Company (TSMC) or United
Microelectronics Corporation (UMC), set targeted utilization levels for annual and monthly
business planning and even treat the targets as a performance measure at each foundry firm.
In practice, if yearly utilization achieves more than 60-70%, they can at least break even.
That is the reason these manufacturers or fabricators prefer to target utilization at 80-100%
for business planning. Based on their published statistics, annual earnings increase as the
utilization rate rises. In addition, most investors believe utilization is positively related to
pretax earnings.

On the other hand, many manufacturers face seasonal or cyclic demands. The strin-
gent capacity situation becomes severe in the high seasons. These problems affect not only
semiconductor manufacturers, but also the apparel, shoe, glass making, and tool machine
industries (see Sridharan [37]). It makes sense that capacity rationing for preferred orders
can improve profit when capacity is insufficient to satisfy all incoming orders. From this
angle, the relationship between utilization and revenue seems a little subtle. For a manu-
facturer, high utilization usually corresponds to good revenue. However, in order to raise
the profitability further, utilization possibly needs to be sacrificed by employing the revenue
management. This causes a kind of trade-off between utilization and revenue.

From another angle, setting a target utilization rate may be treated as a risk control
manoeuvre. The action of rejecting an incoming order may result in a displacement or
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opportunity cost, especially due to the uneven demand pattern of incoming orders in B2B
MTO environments. It is noted that key-account orders are finite, and the displacement
costs of a regular rationing policy in B2B MTO environments are so huge that any errant
decision cannot easily be averaged out. For this reason, managers apparently act somewhat
conservatively when revenue management is suggested. Therefore, product managers may
feel more comfortable if the targeted utilization is treated as a risk control mechanism to
provide a baseline level of earning when adapting the concept of revenue management to
reject an incoming order.

Furthermore, in addition to profit and risk concerns, there are some exogenous factors
that require manufacturers to achieve at least a certain target level of utilization. For exam-
ple, many B2B MTO manufacturers in China or Vietnam are small and medium enterprises,
and they use more labour due to the lower wages in developing countries. Piece-rating pay-
ment, temporary hiring systems, and union forces tend to drive production managers to
remain at a certain utilization level such that employees can earn enough money to support
themselves.

In B2B MTO environments that are discussed in this paper, manufacturers set business
plans periodically. Order management procedure can be split into two stages: order admis-
sion and order fulfilling. The order admission procedure aims to discriminate and identify
the orders which contribute most to the enterprise revenue. The process is for strategic,
rather than operational. By contrast, order fulfilling seeks to formulate explicit manufactur-
ing plans and schedule specific delivery due dates for all accepted orders and corresponding
components; this is an operational requirement. Being a strategic plan, order admission
procedures may be simplified without considering the randomness of the machine service
rate or facility capacity in detail.

This paper discusses a B2B manufacturer who sets order booking period in front of
the production cycle, which is illustrated in Figure 1. During the high season, we suggest
discriminating the incoming orders to improve profitability. This problem is highly related
to single-leg seat control in revenue management. Nevertheless, many theories in revenue
management that use the marginal contribution as the customer-discriminating factor are
inappropriate for B2B MTO environments. In contrast, our work for B2B MTO order ad-
missions is characterised by sequentially realized lumpy demands from a finite heterogeneous
order population. Each realized order requires a random size of capacity to fulfil. Finite
means the set of potential orders has limited components, while heterogeneous implies the
discrete order-size distributions of potential orders are different from each other. Further-
more, the utilization concern leads our model to be risk-averse, a fact that apparently fits
more practical situations.

Production cycle 1 Production cycle 2 Production cycle 3
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Figure 1: Order booking windows and production cycles
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In this research, we use a mathematical model to present the deterministic order admis-
sion problem (DAP) with utilization constraint. It is desirable that the optimization model
will indicate whether a product manager should accept or reject a realized order dynami-
cally according to the system state. The remainder of this paper is organized as follows.
A literature review is conducted in Section 2. The admission problem for limited capacity
with a finite number of potential orders is explicitly modelled in Section 3. In Section 4,
we propose a relaxed model and an auxiliary model in line with the primal model. The
relationship between the primal, the relaxed, and the auxiliary model will be clarified. In
Section 5, the iterative dynamic programming algorithm for the auxiliary model is explicitly
depicted. In Section 6, a numerical example is demonstrated. Finally, concluding remarks
and research extensions appear in Section 7.

2. Literature Review

Problems exist concerning how to make order admission decisions in environments of uncer-
tain demand and limited capacity. There are several lines of literature related to this issue,
such as order promising, resource allocation, extreme queuing control, inventory control in
revenue management, and capacity rationing.

In terms of research on order promising, ATP (Available-to-Promise), and CTP (Capable-
to-Promise) focus on selecting the most profitable orders for a fixed production cycle. For
example, Chen et al. [12,13], Zhao et al. [41], and Christou and Ponis [14] focus on provid-
ing manufacturers with a batch-processing procedure. The orders arriving within an order
booking period are held, and deterministic mixed-integer-programming models are used to
select the orders to be accepted. The batch-processing procedure may not be available in
some industries for which a quick response is required. In contrast, this paper focuses on
providing real-time dynamic admission decisions with respect to sequentially arriving orders.

For resource allocation among multiple items, Evans [17] was the first to discuss the
inventory rationing issue. DeCroix and Arreola-Risa [15] extended the Evans model to one
with an infinite time horizon. Glasserman [18] applied static policy to allocate production
capacity for a multi-product system in multiple periods. Arreola-Risa [1], Perez and Zipkin
[32], and Kogan [23] modelled production rate control problems in a single-server multi-
item queuing system. Sen and Zhang [36] applied a news-vendor model to a single product
with a monotonic pricing function over a multi-period horizon. Bollapragada and Rao [9]
considered supply uncertainty into the multi-product inventory system. Ketzenberg et al.
[20] utilised a margin analysis heuristic to allocate insufficient capacity during peak seasons.
Some literature, such as Glasserman [18], de Kok [24], and Bertsimas and Paschalidis [7],
include the service-level constraint in their models. Although both resource allocation and
order admission discriminate demands, they are different types of strategies. Resource
allocation pre-allocates resources over multiple items; by contrast the admission control
process does not.

Extreme control is one type of queuing control in which the server can accept or deny an
arrival in order to maximize the long-term benefit of systems. Several decades ago, Lippman
[27], Lippman and Ross [28], Miller [29], and Scott [35] constructed the basis for this field.
Models such as M/M/n or Semi Markov Decision Problem (SMDP) are used to present the
problems within an infinite planning horizon. Under the assumption of no pre-emption, the
objectives of extreme queuing control are to find the admission policies which maximize the
average profit or discounted total reward. In recent research, the queuing control has been
concerned with more complicated queuing networks. Ku and Jordan [25] considered a two-
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station multi-server tandem system with no waiting buffer. The type of optimal admission
policies is a threshold policy which maximizes the expected discounted reward by inspecting
the numbers of customers in stations. Carrizosa et al. [11] consider the M/G/n system. The
optimal admission policy here has a structure similar to a conventional cu-rule. Thus, the
optimal decision will depend on the denial surcharge per unit of service time. While previous
research assumes the customer classification is based on deterministic rewards, Ormeci et
al. [30] present the structural policies in the M/M/n system with two classes and random
rewards. The optimal policy admits an arriving job only if the associated reward and the
system load do not violate the threshold rule. Some differences between our problem and
the extreme queuing control are addressed. First, the planning horizon of queuing control is
infinite while, in this paper, it is planned for a finite booking period. Second, the population
of customers mentioned in queuing control is infinite, but this paper models the dynamic
demand structure due to a finite order set faced by a B2B MTO manufacturer.

For conventional inventory control in revenue management (ICRM), the lumpy demand
or batch/group booking issue is neglected if a sufficiently large fraction of demand is from
small groups (size one or two) and the capacity is reasonably large (see Talluri and van
Ryzin [39]). Lee and Hersh [26] may have been the first researchers to discuss the lumpy
demand situation. Their result is adjusted by Brumelle and Walczak [10]. The philosophy
of revenue management has been extended to manufacturing industries by Harris and Pin-
der [19]. Balakrishnan et al. [2,3] and Barut and Sridharan [4,5] use decision trees and
marginal analysis to construct a capacity ration policy for MTO industries. These capacity
rationing approaches are based on the aggregate demand approximation. In fact, this case
should be depicted by a dynamic and stochastic knapsack problem (DSKP). Papastavrou
et al. [31] provide a discrete Markov decision problem on this subject. Their work analyses
a knapsack problem in which objects with random size and reward arrive according to a
stochastic process. Later, this model was extended into continuous-time formulations by
Kleywegt and Papastavrou [21, 22]. However, there are three factors that make our research
different from conventional DSKPs. First, since the reward and demand size of DSKPs are
identically distributed for every period, we may say that all arrivals are still intrinsically
equivalent. A DSKP is originally focused on transportation planning. For transportation
industries that face a huge customer population, using an identical distribution to generate
sequential arrivals may be an efficient approximation method. However, for B2B companies
that focus on finite key-account customers, common analytical functions cannot represent
the dynamics of the demand structure. One of the contributions made by this paper is mod-
elling the demand process of a finite order set. Second, the capacity utilization constraint is
considered in our model. For airline industries, profitability is much more important than
utilization, and revenue management models rarely incorporate this performance measure.
However, in the practice of B2B MTO industries, capacity utilization is an important as-
sessment standard for business operation or personal performance. For industries which
involve costly equipments or employ piece-rating labours, maintain a high utilization level
in the high seasons is a basic requirement. Third, traditional admission controls (e.g.,
revenue management, extreme queuing control, and capacity rationing) include a priority
rule: high-margin orders are better than low-margin orders. Such a priority rule may be
inappropriate in a B2B environment. For instance, a low-margin but large-size order may
benefit the manufacturer more. In this paper, the complex nature of limited capacity, order
margin, and order size is presented. The order evaluation procedure is not reined by the
preconceived priority rule.
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3. Primal Problem Formulation

The order admission problem describes a high-season dilemma faced by sales or product
managers in MTO B2B industries. It is known that many companies use a two-stage mode
for order processing. The first stage, order promising, is an immediate response correspond-
ing to the customers request. The second stage, order fulfilment, is a solid confirmation
with a due date and specific delivery requirements. In this paper, we discuss the admission
problem for order-promising without order-fulfilment procedure. The uncertainty of this
problem is due to two random factors, i.e., stochastic arriving sequence and order size. The
firms we consider have the following characteristics:

e Order set: Enterprises concentrate their attention on key-account orders. The number
of orders in the potential order set is finite.

e Order realization: During a fixed booking window, potential orders arrive in a random
sequence. The probability of simultaneous order arrival is assumed to be zero. For all
the orders in the potential order set, their realization probabilities are equal.

e Order size: Order size means the required capacity to fulfil an order. Order size proba-
bilities estimated by marketing department is assumed to be accurate and measurable.
They follow discrete distributions with finite supports. A special event order size is zero
indicates that the customer cancel their demand plan.

e Simple strategy: A certain accept-or-reject decision must be made whenever an order
request realizes. The rejected request will not reoccur. Orders cannot be partially ac-
cepted and split. Operational managers need substantial guidance in practice; therefore,
this research focuses on deterministic policies.

e
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Figure 2: Deterministic order admission problem

The order admission control process requires product managers to reject undesirable
orders. The controlling process is depicted in Figure 2. Managers need to make accept-or-
reject decision based on some kind of order evaluation procedure. This research will figure
out a policy for the order evaluation which helps the manufacturer to earn a reliable profit.

The information and decision process is illustrated in Figure 3. The initial available
capacity of a production cycle is denoted by 4. At the beginning of the order booking
window, the potential order set U; and all order size distributions are known to the managers.
There are T orders in U;. At the first decision epoch (i.e., the time point that the first order
realizes), the managers observe the order identity /; and the order size X;, and then they
are required to decide whether to accept or reject it. The decision is denoted by a;, and
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a1=1 means accepting the order while a;=0 means rejecting. After making the decision, the
available capacity and potential order set changes accordingly. For instance, the available
capacity at the second epoch will be C; minus the size committed to the first arriving order
if it is accepted (i.e., Cu=C1-X7), and the potential order set shrinks by eliminating /; from
set U; (i.e., Uy=U;-1;). The process continues in this manner until T order decision being
made and potential order set becoming empty. In general, at decision epoch ¢, the manager
can observe the available capacity C, the potential order set U;, the arriving order identity
I;, and its order size X;. Define & = [C}, Uy, I;, X;] as the information state observed at ¢ for
t=1,...,T, and let (; = [C}, U;] be the semi-state for t = 1,...,7 + 1. When the ¢ order
realizes, deterministic admission decision a; must be made immediately. Furthermore, let h;
denote the accumulated information (history) which can be defined in a recursive form, i.e.,
hy = [&], e = [hi-1,00-1,&] for t = 2,..., T, and hryy = [hy,ar, (ri1]. Let Hpyq denote
the collection of hy ;. For the order Iy, f(I;, X;) denotes the probability of order size being
X, and P,(I;) denote the margin per unit of job requirement.

; G0
<— Order Information I, and X,
# Decision a;
2 20 00 00 OE,,U,
<+ 12 and Xz
<4— Decision a,
' W CJ ’IJ:! s,
T | e (o8 =
<— Itand Xy
<— Decision at

TH 00 0 00U OCanUra
Legend

® Decision epoch at which state information [C,,U,L.X;] can be observed.

O Epoch at which semi-state information [C.U,] can be observed.

Figure 3: Tree structure of deterministic admission problem

For a profit-oriented manufacturer, the expected total revenue can be a policy evaluation
criterion. Therefore, in the potential order set, if two orders have the same size distribution,
it is expected that the low-margin order can be rejected easier than the high-margin one.
However, rejecting a realized order to reserve the capacity for future uncertain orders is
actually a highly risky strategy. For instance, if the margin difference is very tiny, and the
size of the realized low-margin order is so large that accepting it may utilize a great portion
of the remained capacity, is it still worthy to preserve the capacity for the uncertain high-
margin order? In our opinion, we say no. Therefore, considering the utilization requirement
in the order evaluation procedure helps the profitability to be more stable. In this paper, the
deterministic admission problem with utilization constraint is considered. Let af (h;) denote
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the admission decision for the ¢ order under policy = when h; is observed. II represents
the collection of all the history-dependent deterministic policies that satisfy the capacity
constraint. Suppose a targeted utilization level « is set by the manager. ETR(w) is the
expected total revenue and Z () is the target achieving rate under policy w. Then II, ETR,
and Z are explicitly defined below.

\
T
N=<{ = > Xixaj(h) <Ci, oaf(hy) €{0,1}, Vhri € Hrp (1)
t=1
L hy C hryq Y
T
ETR(m)=E > B(L) x X, x af (hy) (2)
t=
| he C hrpa ]
d 1, s>«
Z(r)=E |1, Z Xy xaf(hy) | /Ch where 1,(s) = { 0 : s a (3)
=1
L h, C hT+1 ]

It is assumed the manager wishes to have the targeted achieving rate higher than a
specific level 3,0 < 3 < 1. Then the deterministic admission problem (DAP) with utilization
constraint is defined as follows.

DAP: Maz. ETR(r) (4)
st. Z(m) > p (5)
mell (6)

The objective of this problem is to maximize the expected total revenue by employing
a history-dependent deterministic policy. Constraint (6) models the capacity restriction.
Constraint (5) is a chance constraint that reflects the managers’ preference for the utilization.
Both « and  are set according to manufacturing or financial purposes. Managers desire a
rated utilization higher than o and expect the probability of a low-utilization situation to
be less than 1 — . In mathematics, the utilization constraint does not involve margins in
calculation thus mitigates the margin-based discriminating effect. In other words, it prevents
high-margin orders dominating low-margin ones by taking utilization into consideration.
On the other hand, using the chance constraint as the capacity requirement allows decision
flexibility, which avoids the risk concern dominating profit orientation.
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It is inefficient to handle the DAP model directly because the heterogeneous size dis-
tributions and the stochastic arriving sequence jointly induce numerous scenarios. Some
searching tech could be employed to find the approximate solution. For instance, Yoshitomi
et al. [40] proposed genetic algorithm for solving this kind of large-scale stochastic prob-
lem. In this research, by analyzing the model properties, an iterative dynamic programming
algorithm is developed to handle the DAP model.

4. Auxiliary Model

The utilization constraint (5) restricts the decision space for the order admission problem.
It is intuitive to relax this constraint by setting a penalty term in the objective function.
In this section, we will clarify the relationship among the primal DAP model, the relaxed
model, and the auxiliary model. Furthermore, based on the auxiliary model, an optimal
deterministic policy can be achieved for DAP.

Define G(7) = maxz{0, 3 — Z(m)} which represents the deviation from the desired level
(. Arbitrarily choose a nonnegative scalar p as the penalty. In the case of finite scenarios,
the deterministic policy space II is finite, and the relaxed model L(u) follows:

L(p) = max{ETR (7) — p x G ()} (7)
TE
Define G(r) = maz{0,1 — Z(x)}. Obviously, G(r) = 1 — Z(n) because Z(r) < 1 for
all 7. The solution method for problem L(p) can be further simplified by considering the
following auxiliary model L(n) with a nonnegative multiplier :

L(n) = max{ ETR(r) — 1 x G(m)} (8)

In fact, this auxiliary function corresponds to another dual problem shown below which
takes the utilization requirement as a hard constraint.

( 3
T
max ETR(m) |1, Z Xta?(ht)/C'l > 1, Vhry (9)
t=1
L hy C hr /

The managerial interpretation of the auxiliary model is followed: It permits the violation
of the strict utilization requirement as (9) shows, but such a violation will cause a deviation
cost. These relaxed problems have their meaning in practice, while under-time cost is taken
as the multiplier if workforce fails to achieve 100% efficiency.

Because of the finiteness of scenario set and action space, the optimal values of model
L(p) and L(p) are always attainable and the corresponding optimal policies always exist.
In other words, there exist 7, € II, Vu > 0 and 7 € I, Vi > 0 such that:

m, = argmax { ETR (r) — pG (m) [ € [, p >0} (10)

T, = arg max {ETR (7) =G (7) |7 €, > 0} (11)

Lemma 1

i. G(my) is nonincreasing in p, and G(7;) is nonincreasing in 1.
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i. ETR(m;) is nonincreasing in pi, and ETR(7;) is nonincreasing in 1.

iti.  L(u) is nonincreasing in p, and L(n) is nonincreasing in 1.

Lemma 2 If Z(7}) < 3, then 7, is also the optimal policy for the relaved model L(n).

Lemma 1 illustrates the monotonicity and lemma 2 tells the relationship between L(u)
and [A/(n) The proofs of lemmas 1 and 2 are demonstrated in the appendix. Recall that the
primal problem takes the utilization requirement as a chance constraint. With the support
of lemmas 1 and 2, the optimal policy of the primal DAP model could be obtained or found
infeasible by solving the auxiliary model [3(77) The following proposition illustrates the link
and verifies it in the appendix.

Proposition 3

. Given a nonnegative auziliary multiplier n, let %; be the optimal deterministic policy
for the auziliary model. The target achieving rate under this policy is nondecreasing in

n and has an asymptote Z that is equal to or less than 1, i.e., lim, . Z(my) — 7 < 1.

i. If Z < B3, then DAP is infeasible; therefore, an optimal policy which mazimizes the
expected revenue and satisfies the capacity requirement does not exist.

. If there exists a minimal nonnegative auxiliary multiplier 1 such that the target achieving
rate is equal or higher than the specified level 3 under the auziliary policy %;‘7, then DAP
is feasible and /7?% 15 also its optimal policy.

In conclusion, if all the solutions obtained from the auxiliary problems fail to raise the
expected achieving rate up to the specific probability level 3, then there is no feasible policy
for the DAP; If there exists a nonnegative multiplier with it the auxiliary model has an
optimal policy, and the expected achieving rate under this policy is equal or higher than [,
then the optimal policy for the DAP can be obtained.

5. Algorithm

In the previous section it has been clarified that the deterministic admission problem with
utilization constraint can be solved through an auxiliary model with the adequate multiplier.
The auxiliary model can be extended as follows.

L(n) = max{ETR(r) —n x G(r)}

mell

=maxE)> P(L) x X; x af (h) =1 x (1= 10> X, x af (h)/Ch)))]

mell Pl
T
= max B (1) > Xox af () + . (hras) = 1) (12

where w7, (hry1) =1 % 1,((Cy — Cry1)/Ch).

The constant term —7 in (12) does not affect the optimization, thus it can be omitted.
After omitting —7, the terminal value w7}, can be taken as a reward. The managerial
interpretation for the revised auxiliary model is: if the utilization is above a at the end,
then a fixed reward n will be granted.
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Apparently, the auxiliary model can be taken as a dynamic and stochastic knapsack
problem (DSKP) and solved by the backward dynamic programming. According to the
characteristics considered in this paper, the orders in the potential order set have equal
chance for their realization and the order sizes follow distribution f. Thus the transition
probability can be defined below.

Fort =1,
Pr{& |G} = f(1, X1)/T (13)

Fort=2,...,T,
Pr{€t|€t 1, Q¢ 1} = { (J;Eﬁ;i(tl))’ Ci=0Ci 1 —Xi1a4-1 >0 & U =U;_1 — I, 7é 0 (14)

0 , else.

Fort=T +1,
1 . Cpuy = Cp — Xpagp > 0 and Upyy = Uy — Iy = § 15
Pr{Cr1|ér,ar} = { 0 T+1 T rar = elsir.l T+1 T—iT (15)

It should be noted the path transition only depends on its current state, i.e., Pr{h;1|h¢, a;}
= Pr{&1|&,a:} for t = 1,...,T — 1 and Pr{hri1|hr,ar} = Pr{{ri1|&r, ar}. Therefore,
the optimal Markov deterministic policy is also the optimal history-dependent deterministic
policy. Instead of aj(h;), we use a;(&) to represent the optimal admission decision and
let EV,((;) represent the optimal expected accrued revenue for the revised auxiliary model.
The Bellman optimality equation system is followed.

EVri (CTH, UT+1> = 771a<<01 - CTH)/CI)

EVi (Cy, Uy) = B[ max {P,(I;) Xeay + EVipr (Cy — Xyay, Uy — L)}, t=1,...,T.

Xpap<Cy

Fort=1,...,T, the EV,((;) can be extended as follows:

EV, (C,U,) = Z Pr{&|G} x  max {P(l;)Xia + EVigr (Cy — Xyar, Uy — 1)} (17)

& Xiat<Ch
atG{O,l}
L X)/T—t+1) U~ #0
where Pr {6} = { f(Ie t)/g ) U elSte?é

According to (17), we can get the optimal admission decisions for the revised auxiliary
model as shown below.

1 s Xt < Ct and Pt (It) Xt > R(£t>

a; (&) = { 0 . X,>C or P(I)X,<R() (18)

where R (é}) = E‘/;/+1<0t, Ut — [t) — E‘/;+1(Ct — Xt7 Ut — [t>
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In (18) the reward threshold denoted by R(&;) represents the opportunity cost for ac-
cepting an order request. The managerial interpretation of the optimal decision rules is
straightforward: When an order request is accepted, a portion of the capacity is preserved
for this order. Thus, the available capacity decreases and leads to a loss in the opportunity
to accept future uncertain orders. The reward threshold is therefore an opportunity cost.
It can also be taken as a fair price for the arriving order. This price is recognized by the
supplier subjectively, and therefore it cannot become a trading price negotiated between
suppliers and customers. To maximize the expected revenue, a request is accepted if and
only if the capacity is sufficient and the revenue brought by this order covers the opportunity
cost.

Here an iterative dynamic programming algorithm will be illustrated. Define £Z,((;) as
a nonnegative function used for calculating the achieving rate under the reward-threshold
policy. The algorithm encompassing backward induction and multiplier searching is illus-
trated by Figure 4 and explicitly presented below. For the convergence of the iterative
algorithm, see Bazaraa and Shetty [6].

Setk=1,5'=0

v

Initialize Terminal State Value at Decision Epoch T+1
Calculate EV - and EZ " by (19) and (20) for all {r-,

v

Evaluate State Value at Decision Epoch t
Calculate EV} and EZF by (21) and (22) for all .

Stop Stop

Achieve an optimal policy No feasible policy

Figure 4: Algorithm

Algorithm
1. Set k =1, n' = 0. Choose an adequate step size € > 0 and a stopping value § > 0 which
is sufficiently small. Then go to step 2.

2. The expected accrued revenue at stage T+ 1 represents the reward if the requirement
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on capacity utilization is satisfied. Otherwise it will be zero.

EVi (Crin, Upa) = 1" X 1, ((C1 = Cpya) /C1) - VO <G4 (19)

EZ:’FH (Cr41,Ur1) = 14 ((Cy = Cpyq) /C1) VO < Cy (20)
Then go to step 3.

3. Calculate the expected accrued revenue by backward induction for all ¢;.

EVF (G) = Z [P, (I) X¢ + BV, (Cy — Xi, Uy — 1)| x Pr{&|¢}
(11, X1)€ACC(Ge)
+ Z [0+ BV, (C, Uy — )| x Pr{&|¢} (21)
(It,Xt)EREJ(Ct)
EZf ()= Y,  EZL(Co— X, U — L) x Pr{&|¢}
(11, X ) EACC(C)
+ > EZL, (CLU - L) x Pri{&|¢} (22)

(It,Xt)eREJ(Ct)

The accepted zone ACC((;) and rejected zone REJ((;) are classified in line with the
reward-threshold criteria shown in (18). The accepted zone is the collection of orders of
which the revenue is greater than or equal to the reward threshold. It is defined below:

Xt S Ct and

ACC =<|L. X 23
() {[“ N B(L)X, = EVE,(CLU, — 1) — EVEL(Cy — X, Uy — 1) }( )

There are two reasons to reject a request. The first one is insufficient capacity, i.e.,
X; > (. Another reason is that the revenue fails to surpass the reward threshold. Both
of these cases will induce capacity to be the same during the semi-state transition. The
rejected zone is presented below:

REJ(G) = {[It,Xt]

X; > Cior (24)
P,(I;)X: < E‘/;ﬁ1(ct, U — 1) — EVt]L(Ct - X, Uy — 1)

If t =1, then go to step 4. Otherwise, set t =t — 1 and return to step 3.

I BEZE(¢) > B, then let EV; (¢)) = EVF(¢), EZ1(¢) = EZF (¢1), n=n" and stop. The
optimal policy is the reward threshold policy with n*. If EZF((;) < 3, the algorithm
works as follows: if k=1 or EZ¥((,) — EZ¥Y((1) > 6, then set 0! = nF + ¢, k=k+1,
and go to step 2. The evaluation process will repeat again with the greater multiplier;
if k>1 and EZF (¢,) — EZ¥1(¢;) < 6, then stop. It implies no feasible policy satisfying
the capacity requirement.

When the algorithm stops and the optimal policy 77 is attained, EZ,((y) is the target

achieving rate under the policy. EVi(¢1) — 7 is the objective value of the auxiliary model
L(n) and the expected total revenue under the policy follows:

DAP = EVi (G) = x EZ1 (G1) (25)
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Table 1: Input data of the numerical example

Potential Order | Margin | Capacity Requirement

Min. Size ‘ Max. Size
Order 1 1.0 10 15
Order 2 1.05 5 10
Order 3 1.1 5 10
Order 4 1.15 6 10
Order 5 1.2 5 7
Order 6 1.2 4 6
Order 7 1.2 3 3
Order 8 1.25 2 6
Order 9 1.3 0 6
Order 10 1.4 0 4

6. Numerical Example

In section 4, we proved that the optimal deterministic policy is a reward threshold policy
with an adequate multiplier and that this multiplier can be obtained by linear searching as
the algorithm in section 5 shows. Under this policy, the expected total revenue is maximized
while the capacity utilization requirement is satisfied. In this section, a numerical example
is demonstrated.

In this example, we use the sales forecasting data of a saw manufacturer to simulate
the performance of the order admission policy. It supplies saw blade products to home
improvement tool manufacturers such as TTI or Pentair. Shift time is used as the standard
capacity unit. There are two shifts in each working day. The planning horizon is one month
or 48 shifts. The corporation’s sales manager identified 10 potential orders in August for
a factory. The accept/reject decision of each realized order is made jointly by sales and
product managers. The demand estimation is shown in Table 1. The margin here does not
represent the true currency value but only a relative proportionality.

For each order, we assume that the capacity requirement follows a truncated discretized
Normal distribution. Let the mean sizes of orders equal to the average of the maxima and
the minima and let the standard deviations (STD) equal to the range divided by (2.575x2).
The size distributions are then generated. The sum of mean demands is 58.5, larger than
the available 48 shifts. The numerical model is done on a notebook computer (AMD Turion,
1.60 GHz, RAM 480 MB). The algorithm is coded by VBA for Excel. Given a multiplier, the
computing time to obtain the solutions is less than five minutes. For simplicity, we name the
reward-threshold control as Robust DSKP policy. FCFS (First Come, First Serve) strategy
is taken as the contrasting policy. Under FCF'S, the manager rejects a realizing order if and
only if the available capacity is insufficient to handle this job.

When the targeted capacity utilization « is given as 90%, Figure 5 reveals the relationship
between the multiplier and the achieving rate of the targeted utilization. Apparently, robust
DSKP policy dominates FCFS in the achieving rate.

Figure 6 represents the expected total revenue with respect to multiplier. The algorithm
generates robust DSKP policies which make trade off between the expected revenue and the
target achieving rate. As the multiplier increases, the expected total revenue decreases and
the achieving rate of the targeted utilization increases.

Initially, the multiplier is set at zero and the expected total revenue under the robust
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Probability of Utilization = 90%

Robust DSKP

FCFS

o 5 10 15 20 25 30 35 40 as 50

Multiplier n

Figure 5: Multiplier and achieving rate

Expected Total Revenue

Robust DSKP
53.0
FCFS
52.0

o 5 10 15 20 25 30 35 40 as 50

Multiplier n

Figure 6: Multiplier and expected total revenue

DSKP policy is 53.27, while the expected total revenue under the FCFS policy is merely
52.51. The achieving rate under FCFS is 91.6%. The DSKP policy is capable of promot-
ing the achieving rate up to 94.7%. Obviously, the DSKP policy can increase both the
profitability and utilization for this saw manufacturer in the high season. If the product
manager prefers to secure utilization performance and decrease risk exposure, the DSKP
policy with a larger multiplier can be applied. The trade-off is decreasing profitability.

We can see in Figure 5 and Figure 6 that the achieving rate of utilization under the
robust DSKP policy approaches 98%, while the expected revenue shrinks from 53.27 to
51.63. Figure 7 illustrates the trade-off between the achieving rate of targeted utilization
and the expected total revenue under the robust DSKP policy. This figure can be used as
an operation curve for management purposes. Managers are advised to adjust the auxiliary
model according to their desired target for utilization, resulting in a robust guideline for
order admission.

7. Conclusion and Research Extensions

Escalating demand in the peak season provides both a great opportunity and challenge for
MTO B2B companies. The company needs a less-risky decision support model to evaluate
the arriving requests in order to balance the expected total revenue with utilization downside
risk.

In this paper we discuss the deterministic order admission problem with utilization
constraint. The objective is to maximize the expected total revenue while restricting the
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Expected Total Revenue

53.4
53.2

53
52.8
52.6
52.4
52.2

52
51.8
51.6
51.4

0.94 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.98 0.99 0.99

Target Achieving Rate

Figure 7: Target achieving rate and expected total revenue

risk of low utilization. After considering the demand patterns and decision makers’ targets
for capacity utilization, we propose an auxiliary model to deal with this problem. The model
will indicate whether a product manager should accept or reject a realized order according
to the size and margin of current order requests, available capacity in the planning horizon,
and the set of unrealized orders. The optimal solutions with respect to each state then
constitute an order admission policy. The preserved policy may serve a decision support
function in the order-promising procedure.

The major contribution of this paper is the modelling of a deterministic order admission
problem with utilization constraint and proposal of an algorithm for policy evaluation.
Contrary to conventional revenue management, a high-margin order may be rejected because
it includes the risk of lower capacity utilization for the factory. A low-margin order may be
accepted if it fully utilizes the capacity and brings sufficient revenue. The complex nature
of arriving orders means that this issue is more complicated than conventional aggregate
demand planning. The results and managerial interpretations may not be so trivial. It is
possible that decision-makers make mistakes by treating orders intuitively but incorrectly.
This may curb the development of a heuristic requiring less computational effort, but it is
still worth attempting in the future.

This paper provides a fair and quantitative evaluation process to support managers’
decision procedures. It is observed that customer satisfaction is also an important factor
in the MTO B2B order admission problem. Even in a set of key-account customers, some
orders still have higher priority than others due to the salespeople’s subjective judgment.
For future studies, the rate of satisfying these orders up to a targeted level is capable of being
included in a mathematical model and becoming a decision support module in operation
planning systems. It is also noted that the period of the high season usually covers multiple
planning periods. If we take the production capacity of each period as a knapsack, then
the order admission problem will become a multiple knapsack problem. This extension also
helps to relax the assumption of no order splitting applied in this research. Furthermore, if
the planning horizon is a long period of time, then the waiting cost should be considered in
a time-continuous model. It is possible to include these issues in future research.

8. Appendix

Proof of Lemma 1
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Let A < p. The following inequalities hold by the definition of 7.

{ L(X)=ETR(m}) — MG () > ETR(x;) —AG (7)) (2—i-1)
L(p)=ETR (7)) —pG (7)) > ETR(m}) — pG (73) (2—-i-2)
By using (2 —1i—1)+ (2 —1i—2), it can be shown that (A — p) [G (;)—G(*)}>O

)
Because A — < 0, G (W;) < G (7%) must hold. Therefore G ( Z) is nonincreasing in p.

*

,7) can be verified nonincreasing in 7. OJ

In the similar way, G (%
1

(2 —i—1) implies the following inequality.
ETR(m}) — ETR (7)) > MG (7)) — MG (7)) = A [G (7}) — G (77) ]
Because G (w}) — G (m}) > 0, ETR (7}) — ETR (7,) must be nonegative.

Therefore, ETR (7‘(’;) is nonincreasing in p. Similarily, ET R (%;) is nonincreasing in 7.]

(2—1i—1)implies L(A\) > L(u)+

(1) + (= :
Because p1 — A > 0 and G (77) >0, L (A i) is proved. O

Proof of Lemma 2

Let 7' € Il and 7’ # 7. By the definition of 7, the following inference sustains.
ETR (7;) —nmax [0,1—Z ()] > ETR(«') —nmax[0,1— Z ()]

= ETR (7)) —n[l—Z(7;)] > ETR(")—nll—Z (')

= ETR (7)) +n|Z(7;)] > ETR(x)+n[Z ()]

= ETR (%) —n |6 — Z(%;;)} > ETR(r")—n[6—Z(7')

Because Z (77) gﬁand —n[f—Z(n")] > —nmax|0,5 — Z (7')],

ETR (%;;) —nmax [0,5 - Z (A;)} is equal to or higher than

ETR(n') —nmax|[0,8 — Z ()]

Apparently, it implies 7; = argmax{ETR (7) — nmax|[0, 5 — Z ()]} . O
well

Proof of Proposition 3

0

It is intuitive that Z (7 ) is nondecreasing in 7 since G () is nonincreasing in 7.
Because Z (7 ) is nondecreasmg but bounded by 1, there exists an asymptote Z
such that lim, .. Z(7}) = Z < 1. O
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10
We may use contradiction to prove the DAP is infeasible when lim Z(7;) < 3.
1—00

Suppose lim Z(7;) < 8 < 1. Because ETR(7;) is finite and Z(7;) is nondecreasing in 7,
n—o0
it can be shown : lim [-nmax{0, 8 — Z(7;)}| = lim [-n(8 — Z(7}))] = —oo.
1—00

—00

Therefore, lim ETR(%;;) — nmax[0, 3 — Z(%;)]: - 0.
n—o0

According to lemma 2, 7; = arg max{ ET'R(r) — nmax[0, 8 — Z()]} for all nonegative 7.
mell

By definition, L(n) = maﬁ({ETR(ﬂ) —nmax|0, 3 — Z(r)|]} = ETR(7;) — nG(7;)
TE
Therefore it implies lim L(n) approaches to — oo.
100

Suppose DAP has a feasible policy 7”7 € II.

That means Z(n”) > 3, thus nG(n”) =0, and ETR(7") — nG(rn”) = ETR(7") ¥n.

It is contradiction with lim L(n) = —o0. O
1—00

According to previous statement, if DAP is feasible, then 7711—>I£lo Z(my) > B.

Given a nonnegative auxiliary multiplier n', suppose Z (1) < B. Since Z () is
nondecreasing in 7, there exists an increasing sequence {n*} such that Z (Trea) < B

and Z(7y,) = f.

Let n* = 7 and n*~! = 7) — &, then the first part of proposition 3 — iii is proved

since 7, is a feasible policy for DAP.

Because ETR(,) is nonincreasing on ), ETR(7%) is equal to or higher than ET R(7y)
for all n > 7). Therefore it can be easily shown that %\%i is the optimal policy among all

the feasible policies for DAP. O
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