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Abstract This study examines the monotonicity properties of expected revenue in a revenue management
problem with respect to the consumers’ choice behavior and the market size. The consumer behavior is
described by a general discrete choice model. The firm decides which subset of fare products to offer at
each time period. An example shows that the usual stochastic order relation in consumers’ preference over
the set of fare products is not sufficient for our naive intuition regarding the monotonicity to hold true. We
provide sufficient conditions under which our intuition is valid. These conditions identify desirable changes
in consumer behavior for the firm.
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1. Introduction

Revenue management (RM) is an important approach of inventory control for perishable
products with capacity constraint. Research on RM has an over 40-year history, covering
a wide range of topics, such as overbooking, pricing, customer segmentation and demand
forecasting, seat inventory control among others. Littlewood’s rule (Littlewood [5]) is widely
recognized as the origin of the research on RM techniques, which proposes a best rule for
solving a single-leg dynamic seat allocation problem with two fare classes. This rule is based
on a booking limit and accepts discount fare bookings as long as their revenue value exceeds
the expected revenue of future full fare bookings. Since the seminal work by Littlewood,
explored are various aspects of the RM problem, including pricing, promotion, overbooking,
and long term contract. In particular, Netessine and Shumsky [8] discuss the issue of
alliance in the airline industry. Overkill competition bring a limit to so called KAIZEN, the
continuous improvement activities for efficient business operation and resource utilization,
in all airline companies. Thus, alliance formation is an important strategic issue for the
airline companies and the industry as a whole. The literature of RM is huge. Readers are
referred to an extensive list of references in Talluri and van Ryzin [12].

RM practice too has a long history. In the early 1970s, BOAC (now British Airways)
offered an early bird program providing discounted low fare tickets to passengers booking 21
days prior to departure. In North America, the intensive development of revenue manage-
ment techniques dates from the launch of Super Saver fares in April of 1977 by American
Airlines, see McGill and van Ryzin [7]. The intensive development and implementation of
RM techniques in Japan has started since the deregulation of the domestic airline market
in 2000, see [9] and Eguchi and Belobaba [2].

In this study, we investigate an RM problem known as a single-leg seat inventory problem.
One may think intuitively that the firm’s revenue increases when non-price promotions raise
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the purchase probability of consumers. We give an example showing that such an intuition
is not necessarily true under a discrete choice model of consumer behavior. This example
makes us have a second thought on the impact of the change in consumer behavior. To
better understand the relationship between the consumer behavior and the firm’s revenue,
we introduce a concept called business orientedness of consumer market. Business travelers
tend to highly value flexibility such as rescheduling and no penalties for cancellation offered
by a high-fare product. For airline companies, it is important to segment business travelers
and more price-sensitive leisure travelers by various fences such as advanced purchase and
booking limit. Such fences cut off business travelers from a low-fare product and prevent
price-sensitive travelers from occupying too many seats. Based on the concept of business
orientedness of consumer market, we provide sufficient conditions for the monotonicity of
expected revenue with respect to the consumer behavior. Also discussed is the monotonicity
of the expected revenue with respect to the market size.

Cooper and Gupta [1] investigate stochastic order relations in RM problem. The firm’s
decision variable is the booking limits in each time period, and the fare class to be offered
at each time period is exogenously given. Here, the booking limit is the number of seats
available in a period. They demonstrate that using a stylized example with dependent
demands, stochastically larger demand can lead to lower expected revenue. They prove
that, with the assumption of i.i.d. demands, the expected revenue increases as the demand
increases in the sense of increasing concave order. Other interesting instances of violation
of intuitively convincing monotonicity properties are reported in Gupta and Cooper [3] and
Masuda [6]. Talluri and van Ryzin [11] incorporate consumer choice behavior such as buy-
up and buy-down when a set of fare products are offered to consumers. Here, the firm is to
decide which subset of fare products to offer at each time period. The probability that a
consumer chooses a specific fare product depends on the set of fare products offered. Under
this setting, they show that the optimal policy is of simple form in that the firm offers only
an “efficient” set of fare products and that the optimal policy is a sequence of “nested” sets.
In addition they develop a procedure for estimating model parameters.

The objective of this study is to explore the monotonicity of the expected revenue with
respect to the consumer behavior such as the business orientedness in an RM problem under
the discrete choice model of consumer behavior as in Talluri and van Ryzin [11]. The spirit
of our analysis parallels that of Cooper and Gupta [1] in that the focus of the study is on
qualitative aspects rather than quantitative/numerical aspects of RM.

The rest of the paper is organized as follows. The next section provides the model and
the main results regarding the monotonicity. Section 3 gives some illustrative numerical
examples. Finally, we give some concluding remarks and summarize managerial insights in
Section 4.

2. Model and Analysis

2.1. RM under a discrete choice model of consumers behavior

We consider a single-leg seat inventory problem of Talluri and van Ryzin [11]. Let T be the
number of time periods in consideration and index t the number of remaining time periods
before the departure of the flight. Suppose that a time period is short enough so that in
every period at most one customer arrives with probability λt > 0, see Lee and Hersh [4].
Let N = {1, 2, . . . , n} be the finite set of fare products and ri > 0 the fare of product i ∈ N .
At the beginning of each period, the firm chooses a subset S ⊂ N of fare products to offer.
Denoted by Pit(S) is the probability that the arriving consumer chooses product i ∈ S in
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period t when the set of fare products S is offered. The arriving consumer in period t does
not purchase any product with probability P0t(S), so that P0t(S) +

∑
i∈S Pit(S) = 1. For

notational convenience, we set Pit(S) = 0 for i /∈ S, S ⊂ N , and r0 = 0. Let C denote the
seat capacity of the flight, and x the number of remaining seats.

It is known that leisure customers tend to make a reservation well in advance while some
business travelers book flights just before the time of departure. Thus, we know that the
customer behavior in RM is intrinsically inhomogeneous in time. Nevertheless, most of the
models in the literature discuss a homogeneous model. This is so because a homogeneous
model keeps the notation simple, as stated explicitly in Talluri and van Ryzin [11]. A major
premise here is that the analysis based on a homogeneous model can be easily carried over
to an inhomogeneous model. As we will see, we need a technical assumption to prove the
main result of the paper. This assumption is necessary only for the case of inhomogeneous
model, i.e., we cannot readily carry over the analysis of the homogeneous model to the
inhomogeneous model. This is the reason why our model incorporates time t explicitly as
in Pit(S) and λt.

The problem of maximizing the firm’s expected revenue is formulated as a discrete time
Markov decision process as follows. We define the value function Vt(x) as the maximum
expected revenue generated from x seats remaining at period t. The optimality equation is
written as

Vt(x) = max
S⊂N

{∑
i∈S

λtPit(S)(ri + Vt−1(x − 1)) + (λtP0t(S) + 1 − λt)Vt−1(x)

}
(1)

with the boundary conditions Vt(0) = 0, t = 1, 2, . . . , T , and V0(x) = 0, x = 1, 2, . . . , C.
Optimal policy is a sequence of St(x), which is a maximizer of Bellman equation (1).

Talluri and van Ryzin [11] introduce the concept of efficient set. Let qt(S) = 1 − P0t(S)
and rt(S) =

∑
i∈S Pit(S)ri. An offer set S ⊂ N of fare products is said to be inefficient at

period t if there exist probabilities α(U), U ⊂ N (including U = ∅) with
∑

U⊂N α(U) = 1
such that

qt(S) ≥
∑
U⊂N

α(U)qt(U) and rt(S) <
∑
U⊂N

α(U)rt(U).

Otherwise, the set S is said to be efficient at period t. Note that by definition S = ∅ is
efficient. Informally speaking, offer set S is inefficient if it is outperformed by a mixture of
other offer sets. Talluri and van Ryzin show that the optimal policy for (1) is a sequence of
efficient offer sets.

2.2. Monotonicity of the expected revenue

In this section, we investigate the impact of market profile on the expected revenue of
the firm. The spirit of our analysis is similar to that of Cooper and Gupta [1]. To be
specific, we consider two monotonicity properties. One intuitively expects that the more
business oriented the customers are, the higher the expected revenue of the firm is. Also
expected is that the larger the market size is, the higher the revenue. Here we shall prove
formally these two monotonicity properties. They however may look so intuitive that one
can hardly imagine a case when they are violated. We give a simple example showing that
the monotonicity involves some twist.

Suppose that the two markets j = 1, 2 are identified by the choice probabilities (P j
it(S) :

i ∈ S ⊂ N). Let V j
t (x), j = 1, 2, be the value function in (1) with Pit(S) replaced by P j

it(S).
In what follows, a superscript indicates the market profile. Recall that random variable
(r.v.) X is stochastically larger than r.v. Y , denoted by X ≥st Y , if FX(x) ≤ FY (x) for all
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x where FX is the distribution function of X. Let Rj
t (S) be a r.v. representing the revenue

generated in period t with choice probabilities (P j
it(S) : i ∈ S ⊂ N), i.e.,

Rj
t (S) = ri with probability P j

it(S)

We assume with no loss of generality that 0 = r0 < r1 ≤ r2 ≤ · · · ≤ rn. One may naturally
wonder if a stochastic order relation:

R1
t (S) ≤st R2

t (S) for every S ⊂ N (2)

is sufficient for V 1
t (x) ≤ V 2

t (x). The following stylized and simple example demonstrates
that this indeed is not the case.

Example 1 Let the set of fare products be N = {1, 2} with fares r1 = 1 and r2 = 2. Let
T be an arbitrary positive integer. For the sake of simplicity, we set λt = 1, t = 1, 2, . . . , T,
and C = 1. The choice probabilities in markets 1 and 2 are given as

P 1
0t({1}) = P 1

0t({2}) = 1, (3)

P 1
0t(N) = 1/2, P 1

1t(N) = 0, P 1
2t(N) = 1/2, (4)

P 2
0t({1}) = P 2

0t({2}) = 1, (5)

P 2
0t(N) = 0, P 2

1t(N) = 1/2, P 2
2t(N) = 1/2. (6)

Clearly, R1
t (S) ≤st R2

t (S) for every S ⊂ N . Simple algebra shows that

V 1
t (1) = 2

(
1 −

(
1

2

)t
)

, t = 1, 2, . . . , T, and

V 2
t (1) = 1.5, t = 1, 2, . . . , T.

Thus, V 1
t (1) > V 2

t (1) for t ≥ 3, violating the plausible monotonicity. The extreme simplicity
of this example help us better see through the problem. We note that Equations (3) and (5)
imply that the firm has to offer fare products 1 and 2 at the same time to induce a purchase.
Thus, in both markets, the firm has no way to “segment” customers while there are two types
of customers. Such choice behavior alone does not cause an anomaly. Complications are
associated with arriving customers making no purchase and the conditional choice behavior
given that a purchase is made, see Equations (4) and (6). In other word, the relation (2)
is the stochastic ordering of “per-period revenue”, which is crucial when there are a few
remaining periods. When the number of remaining periods is large, however, what counts is
the seat capacity and the “per-seat revenue”. The expected per-seat revenues from markets 1
and 2 are (r1P

1
1t(N) + r2P

1
2t(N)) / (1 − P 1

0t(N)) = 2 and 3/2, respectively, when the offer set
is N . Thus, market 1 generates more revenue than market 2 if there are many remaining
time periods. We employ this fact in the definition of business orientedness of a market.
More importantly, this example indicates that if promotional efforts shift arriving customers’
choice from no-purchase to a low-fare product while for whatever the reason it is difficult
to segment business customers and more price-sensitive leisure customers, then the price-
sensitive customers may eat up precious resources, lowering the expected revenue.

We note that the violation of monotonicity arises even in a very simple setting like
Example 1. The following example shows that the outright simplicity (λt = 1, P j

0t({1}) =
P j

0t({2}) = 1 and C = 1) is inessential for the non-monotonicity.

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



Stochastic Comparisons in Revenue Management 211

Example 2 Let the set of fare products be N = {1, 2} with fares r1 = 1 and r2 = 5.
The arrival probability and the capacity are λt = 0.9 and C = 10. Markets 1 and 2 are
characterized by

P 1
0t({1}) = P 2

0t({1}) = 0.8, P 1
1t({1}) = P 2

1t({1}) = 0.2,

P 1
0t({2}) = P 2

0t({2}) = 0.9, P 1
2t({2}) = P 2

2t({2}) = 0.1,

P 1
0t(N) = 0.4, P 1

1t(N) = 0.1, P 1
2t(N) = 0.5,

P 2
0t(N) = 0.1, P 2

1t(N) = 0.4, P 2
2t(N) = 0.5.

Note that the value function V j
t (x) does not depend on T so long as t ≤ T . Thus, we suppose

that the number T of time periods is sufficiently large, so that we can discuss V j
t (x) for large

t. Figure 1 plots the expected revenue V j
t (C) of this example for t = 1, 2, . . . , 50. Clearly

R1
t (S) ≤st R2

t (S) for every S ⊂ N . However, Figure 1 shows V 1
t (C) > V 2

t (C) for t ≥ 14,
violating the plausible monotonicity. Small values of P j

1t({1}) and P j
2t({2}) indicate that if

there are not enough time periods to sell all the seat inventories, the airline company offers
S = N to minimize the inventory overage. Another implication of small values of P j

1t({1})
and P j

2t({2}) is that the airline company has little ability to segment the market. The offer set
S = N generates the best per-period revenue of λt

(
P j

1t(N)r1 + P j
2t(N)r2

)
, which coincides

with the slope of V j
t (C) for small value of t (t ≤ 10) in Figure 1. For this range of t, the

slope for market 2 is larger than that of market 1, resulting in V 2
t (C) > V 1

t (C). For a
moderately large value of t (for t around 14), the time constraint is rather relaxed and the
seat capacity constraint becomes stringent. For this range of t, the offer set S = N yields
more revenue in market 1 than in market 2 because the offer set S = N generates more
revenue per seat in market 1 than in market 2. We note that for a very large value of t, the
airline company tries to maximize the per-seat revenue by offering only the high fare product
(S = {2}), so that both V 1

t (C) and V 2
t (C) approach to r2C = 50 as t increases.

Next we formally define the business orientedness of a market. Let S1t be the family of
all efficient offer sets with respect to market 1 in period t. We say that market 2 is more
business oriented than market 1 if for every S ∈ S1t and t = 1, 2, . . . , T,

E(R1
t (S)|R1

t (S) > 0) ≤ E(R2
t (S)|R2

t (S) > 0). (7)

Note that E(Rj
t (S)|Rj

t (S) > 0) is the conditional expected revenue generated from the
offer set S in one period given that a consumer arrives and makes a purchase, which is the
expected per-seat revenue. Thus, condition (7) states that the expected per-seat revenue
under market 1 is smaller than that under market 2 for every offer set in S1t. In what
follows, we impose the following mild technical assumption:

P 1
nt({n}) > 0. (8)

That is, if only the highest fare product n is offered in market 1, an arriving customer
buys the product with some positive probability. Under this assumption, offer set S = {n}
dominates offer set S ′ ⊂ N with P 1

0t(S
′) = 1 (e.g. S ′ = ∅) in every period whatever the

number x of remaining seats is. Thus, Assumption (8) ensures that S ⊂ N with P 1
0t(S) = 1

never arises in the optimal sequence of offer sets S1
t (x), i.e.,

P 1
0t(S

1
t (x)) < 1 (9)

for every t and x > 0. We need Property (9) to prove the main result of the paper.
Assumption (8) is considered to be mind since the purchase probability P 1

nt({n}) can be
arbitrarily close to zero.
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Figure 1: The number of remaining periods vs expected Revenue

It can be shown that, if the arrival and choice probabilities are temporally homogeneous,
the assumption (8) is not necessary to ensure (9), see Appendix. The temporal homogeneity
of probabilities however is significantly more restrictive than Assumption (8) for practical
applications.

The following theorem states that, if the firm can improve both the purchase probability
of arriving customers and the conditional choice behavior of customers given that a purchase
is made, then firm enjoys a higher expected revenue.

Theorem 3 Under Assumption (8), if
(a) P 1

0t(S) ≥ P 2
0t(S), for every S ∈ S1t and t, and

(b) market 2 is more business oriented than market 1,
then V 1

t (x) ≤ V 2
t (x) for every t and x.

Proof. Let S1
t (x) be the optimal strategy for (1) corresponding to V 1

t (x), and V̄ 2
t (x) the

expected revenue resulting from strategy S1
t (x) under market 2. That is,

V̄ 2
t (x) ≡

∑
i∈S1

t (x)

λtP
2
it(S

1
t (x))(ri + V̄ 2

t−1(x − 1)) + (λtP
2
0t(S

1
t (x)) + 1 − λt)V̄

2
t−1(x).

It is obvious that V̄ 2
t (x) ≤ V 2

t (x). We prove the theorem by showing V 1
t (x) ≤ V̄ 2

t (x)
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inductively. For t = 1, we have

V 1
1 (x) =

∑
i∈S1

1(x)

λtP
1
it(S

1
1(x))ri

=
(
1 − P 1

0t(S
1
1(x))

) ∑
i∈S1

1(x)

λt
P 1

it(S
1
1(x))

1 − P 1
0t(S

1
1(x))

ri

≤
(
1 − P 2

0t(S
1
1(x))

) ∑
i∈S1

1(x)

λt
P 2

it(S
1
1(x))

1 − P 2
0t(S

1
1(x))

ri

=
∑

i∈S1
1(x)

λtP
2
it(S

1
1(x))ri

= V̄ 2
1 (x)

where the inequality follows from S1
t (x) ∈ S1t and (a), and the denominator is non-zero

because of (8), see (9). As an induction hypothesis, suppose that V 1
t−1(x) ≤ V̄ 2

t−1(x) for
every x. The optimality of S1

t (x) implies V 1
t (x) ≥ V 1

t−1(x). Thus,∑
i∈S1

t (x)

λtP
1
it

(
S1

t (x)
) (

ri + V 1
t−1(x − 1)

)
+ λt

(
P 1

0t

(
S1

t (x)
)
− 1
)
V 1

t−1(x) ≥ 0. (10)

Invoking (9) and (a), we multiply Equation (10) by

1 − P 2
0 (S1

t (x))

1 − P 1
0 (S1

t (x))
− 1 ≥ 0.

Then we obtain ∑
i∈S1

t (x) λtP
1
it (S1

t (x))
(
ri + V 1

t−1(x − 1)
)
(1 − P 2

0t (S1
t (x))

1 − P 1
0t(S

1
t (x))

−
∑

i∈S1
t (x)

λtP
1
it

(
S1

t (x)
) (

ri + V 1
t−1(x − 1)

)
−λt

(
(1 − P 2

0t(S
1
t (x))) − (1 − P 1

0t(S
1
t (x)))

)
V 1

t−1(x)≥0

Adding this to the right hand side of

V 1
t (x) =

∑
i∈S1

t (x)

λtP
1
it(S

1
t (x))(ri + V 1

t−1(x − 1)) + (1 + λt

(
P 1

0t(S
1
t (x)) − 1

)
)V 1

t−1(x),

we obtain

V 1
t (x) ≤

∑
i∈S1

t (x)

λt

(
1 − P 2

0t(S
1
t (x)

)
)

P 1
it(S

1
t (x))

1 − P 1
0t(S

1
t (x))

(ri + V 1
t−1(x − 1))

+(1 + λt(P
2
0t(S

1
t (x)) − 1))V 1

t−1(x)

Applying the business orientedness condition (b) and the induction hypothesis, one sees

V 1
t (x) ≤

∑
i∈S1

t (x)

λtP
2
it(S

1
t (x))(ri + V 1

t−1(x − 1)) + (1 + λt

(
P 2

0t(S
1
t (x)) − 1

)
)V 1

t−1(x)

≤
∑

i∈S1
t (x)

λtP
2
it(S

1
t (x))(ri + V̄ 2

t−1(x − 1)) + (1 + λt

(
P 2

0t(S
1
t (x)) − 1

)
)V̄ 2

t−1(x)

= V̄ 2
t (x).

Copyright c⃝ by ORSJ. Unauthorized reproduction of this article is prohibited.



214 H. Miki, D. Cao & Y. Masuda

Hence, the statement holds true.

We note that business orientedness is related to standard stochastic order relations. For
r.v. Z and event A, we denote by [Z | A] a r.v. having a distribution function equal to the
conditional distribution of Z given A. The business orientedness condition is implied by the
following conditional stochastic order:

[R1(S) | R1(S) > 0] ≤st [R2(S) | R2(S) > 0] for all S ∈ S1t, (11)

or equivalently
∑n

i=m P 1
it(S)/ (1 − P 1

0t(S)) ≤
∑n

i=m P 2
it(S)/(1 − P 2

0t(S)) for all S ∈ S1t, t =
1, 2, . . . , T, and m = 1, 2, . . . , n. A sufficient condition for (a) and (b) in Theorem 3 is
phrased by means of likelihood ratio order. For discrete r.v.s X and Y with probability
functions f and g, X is said to be larger than Y in the likelihood ratio order, denoted by
X ≥lr Y , if f(t)/g(t) is non-decreasing on the relevant region. It is known that X ≥lr Y iff
[X | a ≤ X ≤ b] ≥st [Y | a ≤ Y ≤ b] whenever a < b. Thus, the likelihood ratio order

R1
t (S) ≤lr R2

t (S) for all S ∈ S1t and t (12)

implies (a) and (b) in Theorem 3. We note that the usual stochastic order (2) is neither
stronger nor weaker than (a) and (b) in Theorem 3. Also note that the conditional stochastic
order (11) with (a) in Theorem 3 implies the usual stochastic order (2). For the definitions
of various types of stochastic orders and their properties, readers are referred to Shaked and
Shanthikumar [10].

It is worth mentioning that the conditional stochastic order (11) and the likelihood
ratio order (12) are far stronger than the business orientedness condition and the sufficient
condition in Theorem 3, respectively.

We next turn to the monotonicity of the expected revenue with respect to the effective
market size. Technically speaking, this turns out to be a simple consequence of Theorem 3.

Corollary 4 Let V j
t (x), j = 1, 2, be the value function in (1) with λt replaced by λj

t . If
λ1

t ≤ λ2
t , then V 1

t (x) ≤ V 2
t (x) for every t and x.

Proof. Set λt = 1 and P j
it(S), S ⊂ N, as

P j
0t(S) = λj

tP0t(S) + 1 − λj
t ,

P j
it(S) = λj

tPit(S), i ̸= 0.

Consider two markets j = 1, 2, with arrival probability λt = 1 and the choice probabilities(
P j

it(S)
)
. From the construction of λt and P j

it(S), the consumer behavior under market(
λj

t , (Pit(S))
)

is probabilistically identical to that under
(
λt,
(
P j

it(S)
))

so that these two
markets result in the same expected revenue. Furthermore, λ1

t ≤ λ2
t implies P 2

0t(S) ≤ P 1
0t(S).

Also, one sees P 1
it(S)/ (1 − P 1

0t(S)) = P 2
it(S)/ (1 − P 2

0t(S)) for every i ̸= 0, which implies∑n
i=1 riP

1
it(S)

1 − P 1
0t(S)

=

∑n
i=1 riP

2
it(S)

1 − P 2
0t(S)

.

Thus, the market (λt, (P
2
it(S))) is more business oriented than the market (λt, (P

1
it(S))). The

statement now follows from Theorem 3.

Theorem 3 states that, all else alike, if the choice probabilities are more business oriented,
then the Markov decision process will have a greater value function at all states and times.
By combining Theorem 3 with Corollary 4, one can extend the applicability of Theorem 3.
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Table 1: Choice probabilities Pit(S)

S P0t(S) P1t(S) P2t(S) P3t(S)
∑

riPit(S)
1−P0t(S)

∅ 1 0 0 0 —
{1} 0.4 0.6 0 0 100.00
{2} 0.5 0 0.5 0 150.00

0 ≤ t ≤ 200 {3} 0.6 0 0 0.4 250.00
{1, 2} 0.1 0.55 0.35 0 119.44
{1, 3} 0.2 0.55 0 0.25 146.88
{2, 3} 0.3 0 0.5 0.2 178.57
{1, 2, 3} 0 0.5 0.35 0.15 140.00
∅ 1 0 0 0 —
{1} 0.4 0.6 0 0 100.00
{2} 0.55 0 0.45 0 150.00

201 ≤ t ≤ 1000 {3} 0.7 0 0 0.3 250.00
{1, 2} 0.15 0.55 0.3 0 117.65
{1, 3} 0.3 0.55 0 0.15 132.14
{2, 3} 0.45 0 0.45 0.1 168.18
{1, 2, 3} 0.15 0.5 0.3 0.05 126.47

3. Numerical Examples

In this section, we give some numerical examples to illustrate the results in the previous
section. Let the set of fare products be N = {1, 2, 3} with fares r1 = 100, r2 = 150
and r3 = 250. First, we examine the impact of the market size, represented by the arrival
probability λt = λ, on the expected revenue. The consumers’ choice behavior is described by
time-inhomogeneous probabilities Pit(S) in Table 11. The last column of Table 11 provides
the conditional expected revenue given that a consumer makes a purchase. The time horizon
is divided into two time intervals 0 ≤ t ≤ 200 and 201 ≤ t ≤ T = 1000. There are more
business oriented customers arriving per time period in the time interval 0 ≤ t ≤ 200
(just before the departure) than in the interval 201 ≤ t ≤ 1000, so that the probability of
selling an expensive ticket is higher in the former interval than the latter. Figure 2 plots the
expected revenue Vt(x) as a function of arrival probability λ for t = 1000, and the remaining
number of seats x = 5, 10, 15, and 20. For λ close to zero, the arriving customers are more
precious than the remaining seats, so the optimal policy is to offer S = {1, 2, 3} having the
highest per-period revenue

∑
riPit(S) = 140 and 107.5 for 0 ≤ t ≤ 200 and 201 ≤ t ≤ 1000,

respectively. Thus, the slope of Vt(x) for λ ≈ 0 is 140 × 200 + 107.5 × 800 = 114000. As
Corollary 4 states, the expected revenue Vt(x) increases with the market size λ.

Second, we illustrate the monotonicity of the expected revenue with respect to the busi-
ness orientedness. We consider three market profiles. The choice probabilities in market 1
are described in Table 1, and those in markets 2 and 3 are as in Tables 2 and 3. Note that
market 1 (3) is least (most) business oriented and P 1

0t(S) ≥ P 2
0t(S) ≥ P 3

0t(S) for all S ⊂ N ,
so that Theorem 3 is applicable. We set the seat capacity to be C = 10 and the arrival
probabilities

λj
t =

{
0.06, 0 ≤ t ≤ 200
0.04, 201 ≤ t ≤ T = 1000

for j = 1, 2, 3. Figure 3 plots the expected revenue Vt(x) for each market. One sees that
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Figure 2: Arrival probability vs expected revenue

the firm earns the highest revenue from market 3 as predicted in Theorem 3. The value
function Vt(x) has a kink at t = 200 as one may expect.

05001000150020002500

0 200 400 600 800 1000Expected
 revenue V
t (C )

The number of remaining time periods  t
market 1market 2market 3

Figure 3: The number of remaining periods vs expected revenue

4. Conclusions

This paper studies the monotonicity properties of expected revenue in an RM problem with
respect to consumer behavior under a discrete choice model. We give a simple and stylized
example that violates a plausible monotonicity property, and provide a sufficient condition
for the monotonicity. The sufficient condition is implied by some conditions involving well
known stochastic order relations such as the conditional stochastic order and the likelihood
ratio order. These conditions however are far stronger than the sufficient condition given in
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Table 2: Choice probabilities P 2
it(S) for market 2

S P 2
0t(S) P 2

1t(S) P 2
2t(S) P 2

3t(S)
∑

riP
2
it(S)

1−P 2
0t(S)

∅ 1 0 0 0 −
{1} 0.4 0.6 0 0 100.00
{2} 0.5 0 0.5 0 150.00

0 ≤ t ≤ 200 {3} 0.6 0 0 0.4 250.00
{1, 2} 0.1 0.55 0.35 0 119.44
{1, 3} 0.2 0.5 0 0.3 156.25
{2, 3} 0.3 0 0.45 0.25 185.71
{1, 2, 3} 0 0.45 0.35 0.2 147.50
∅ 1 0 0 0 −
{1} 0.4 0.6 0 0 100.00
{2} 0.55 0 0.45 0 150.00

201 ≤ t ≤ 1000 {3} 0.7 0 0 0.3 250.00
{1, 2} 0.15 0.55 0.3 0 117.65
{1, 3} 0.3 0.5 0 0.2 142.86
{2, 3} 0.45 0 0.4 0.15 177.27
{1, 2, 3} 0.15 0.45 0.3 0.1 135.29

the main theorem of the paper.
Summarized below are the resulting managerial insights regarding promotional efforts

that affect the consumer behavior.

1. It is likely that the promotional efforts raise the purchase probability of arriving cus-
tomers. If the promotional efforts shift their choice from no-purchase to a low-fare prod-
uct while it is difficult to segment business customers and more price-sensitive leisure
customers, then the promotional efforts could be damaging to the firm. Related con-
cepts of importance are per-period revenue vs per-seat revenue, as indicated in Example
1, and Example 2.

2. If the promotion improves the conditional choice behavior of customers given that a
purchase is made, then it is beneficial to the firm, see Theorem 3.

3. The improvement of the arrival probability raises the expected revenue, see Corollary 4.
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Appendix

To prove the main result of the paper, we need Property (9), which holds true under the
technical assumption (8). When the probabilities Pit(S) and λt do not depend on time t,
however, Assumption (8) is not necessary to show the main result of the paper, which we
prove in this appendix. Hereafter we drop the index t from Pit(S), λt and S1t.

Lemma 5 (a) If λ < 1, the optimal solution (St(x)) for (1) satisfies P0(St(x)) < 1 for all
t and x > 0. (b) The expected revenue Vt(x) in (1) is continuous with respect to λ.
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Proof. Suppose that P0(Sℓ(y)) = 1 for some ℓ and y. Consider a problem with T = ℓ and
C = y. Let (S ′

t(·))
ℓ
t=1 be a new strategy defined by

S ′
t(x) =

{
St−1(x) if 2 ≤ t ≤ ℓ,
R if t = 1

where R ⊂ N is an offer set generating a positive expected revenue, i.e.,
∑

i∈R Pi(R)ri > 0.
We note that the offer set Sℓ(y) generates no revenue in period ℓ. Since the customers’
behavior (Pi(S)) is temporally homogeneous, the expected revenue generated from (St(·))
in periods t = 1, 2, · · · , ℓ−1, is equal to that generated from (S ′

t(·)) in periods t = 2, 3, · · · , ℓ.
Furthermore, the condition λ < 1 implies that under any strategy the number of remaining
seats at period 1 is positive with some positive probability. Thus, the offer set R yields a
strictly positive expected revenue in period 1. Hence, the expected revenue arising from
(S ′

t(·))
ℓ
t=1 is larger than that arising from (St(·))

ℓ
t=1, which is a contradiction. Part (b) can

be proved by induction with respect to t.
We now see that when the probabilities are homogeneous in time, the main result of the

paper holds true without the technical assumption (8).

Proposition 6 In the absence of (8), if
(a) P 1

0 (S) ≥ P 2
0 (S), for every S ∈ S1, and

(b) market 2 is more business oriented than market 1,
then V 1

t (x) ≤ V 2
t (x) for every t and x.

Proof. Note that λ < 1 implies Property (9) from Lemma 5 (a). Thus, following the
argument identical to the proof of Theorem 3, we see that if λ < 1, (a) and (b) hold true.
This together with Lemma 5 (b) implies the inequalities in (a) and (b) are valid even when
λ = 1.
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