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Abstract The same kind of n jobs are processed one by one sequentially by a single machine and any
number k of them may be processed as a batch. A setup time is necessary before the processing of the first
job in a batch. The completion times of all the jobs in a batch are the same as the completion time of the
last job in the batch and the processing time of the batch is the sum of a setup time and k times of the
processing time of a job. The processing time of the job is known, but the setup time is the random variable
which is distributed in the gamma distribution with the parameter whose value is unknown a priori. A
conjugate prior distribution for the value is considered. The first batch size is decided by using the prior
distribution, the setup time is observed, and then the second batch size is decided by using the posterior
distribution revised by using the observed value of the setup time in the first batch. This process is repeated
until all the jobs have been processed. The objective is to minimize the expected total completion times.
This problem is formulated by using dynamic programming and both the several properties derived from
the recursive equations and the critical values for the optimal strategy are derived.

Keywords: Dynamic programming, Bayesian, sequential decision, single machine, setup
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1. Introduction

The batch size decision problem considered in this paper is described as follows: There
are n jobs which have to be processed by a single machine sequentially one by one. All
the jobs are the same and have the same processing time. Any number of jobs may be
processed as a batch, but a setup time is necessary in order to begin the processing of the
first job in each batch. The processing time has a predetermined value, but the setup time
is the random variable which has some distribution with the parameter whose true value
is unknown. We can consider that there is a conjugate prior distribution for the unknown
value of the parameter as a prior distribution. All the jobs in each batch has the same
completion time that is equal to that of the last job in the batch. For n jobs problem, the
batch size k is decided first and then k jobs are processed after observing the value of the
setup time X and the posterior distribution is calculated by using X. The processing time
of this batch is the sum of the setup time and k times of the processing time. Now, the
problem becomes n−k jobs problem and the batch size is decided again by using the revised
new prior distribution. The objective is to minimize the expected total completion times of
n jobs.

The batch size decision in the scheduling problems have been studied mainly in these
twenty years and many papers have been published. When several jobs are processed as a
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batch, the setup time has an important role in the scheduling problems. If the setup time is
much larger than the processing time, the optimal batch size is large, but if the setup time
is small enough to neglect, the optimal batch size is 1. The ratio of setup time to processing
time is very important in this kind of problem. There are many papers which discussed
scheduling problem with the batch size, for example, Santos and Magazine [11], Dobson,
Karmarker and Rummel [4], Naddef and Santos [9], Coffman, Yannakakis, Magazine, and
Santos [2], Shallcross [12], Potts and Kovalyov [10], and so on. The problems discussed in
these papers are deterministic problems. Since the setup is sometimes done by the worker,
it is important to consider the setup time not as the predetermined value but as the random
variable whose parameter is unknown.

A stochastic scheduling problem with batching was discussed in Koole and Righter [8]
whose objective is to minimize the total completion time where the completion time of each
batch is the maximum completion time of all the jobs in the batch. This kind of problem
occurs in the deterministic cases and there are applications in semiconductor manufacturing
and was discussed in Ikura and Gimple [7], Chandru, Lee and Uzsoy [1], Hochbaum and
Landy [6], and so on.

The deterministic or the stochastic batch size decision problems whose parameters are
known are the interesting problems as the static problems in which batch sizes are de-
termined at once. The stochastic batch size decision problem with at least one unknown
parameter is the sequential decision problems with learning. This kind of Bayesian sequen-
tial decision was discussed in Hamada and Glazebrook [5] in the single machine scheduling
problem. In the scheduling problem with batching, Yanai [13] considered the case that the
setup time is distributed in the exponential distribution with an unknown parameter which
has the gamma distribution as a prior distribution, formulated it as the recursive equations
of the dynamic programming, and solved them directly for the cases that n = 1, 2, 3 and
4. He has not solved the cases of 5 or more jobs because of the complication of considering
many cases.

In this paper, the case that the processing time is distributed in the gamma distribution
with one unknown parameter is not solved directly but is discussed from the different point
of view and the several properties which are important in the analysis of the problem are
derived. The main results of this paper is to derive the important properties of the critical
values which describes the optimal solutions of the recursive equations. The optimal strategy
is also derived as the result.

2. Formulation by Dynamic Programming

A sequential batch-size decision problem considered in this paper is described as follows:
There are n identical jobs whose processing time is 1 and it is possible to begin the processing
of any job at time 0. Since all the jobs have the same processing time, the total completion
time, the sum of completion times of n jobs, is indifferent from the sequence of jobs. Once
the processing of each job begins, preemption is not allowed until completion. Several jobs
are processed as a batch and a setup time is necessary before the processing of the first job
of the batch. The length of the setup time is assumed to be the random variable X which
is distributed in the gamma distribution with parameter vector (u, s), that is, X has the
density function

f(x | u, s) =

{
Γ(s)−1usxs−1e−ux, if x ≥ 0,
0, if x < 0,
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where Γ(s) =
∫ ∞
0 ts−1e−tdt. For example, if we know X is the exponentially distributed

random variable with unknown mean, then s = 1 and the mean is 1/u. By the same way,
we assume that the true value of s is known, but the true value of u is unknown and it has a
conjugate prior distribution with parameter vector (w, α) as a prior distribution. Since the
gamma distribution is the conjugate prior distribution of u, the posterior distribution after
observing that X = x is the gamma distribution with parameter vector (w + x, α + s) (See,
for example, DeGroot [3]). Let (n; w, α) be called the current prior information when there
are n jobs remaining and the current prior distribution has the parameter vector (w, α).
Also, let (n− k; w + x, α + s) be called the posterior information after deciding a batch size
k and observing the length x of the setup time, where n− k jobs are remaining. The batch
size is decided sequentially after observing the current prior information. Since the setup
time is a random variable, the completion time of each job is also a random variable. Let
Cj (j = 1, 2, · · · , n) be the completion time of j-th job. The completion times of all the jobs
in a batch are the same as that of the last job in the batch, that is, Ci = Cj if i-th and
j-th jobs are in the same batch. The total completion time is C1 + C2 + · · · + Cn, the sum
of completion times of n jobs. The objective is to decide sequentially how many jobs are
processed as a batch in order to minimize the expected total completion times.

Let Gn(w, α) be the minimum expected total completion times when the current prior
knowledge is (n; w, α) and the optimal strategy is followed thereafter. Also, let Gk

n(w, α)
be the the minimum expected total completion times when the current prior information is
(n; w, α), k jobs are processed as a batch, and the optimal strategy is followed thereafter.
For any function f(x), let

EX [f(X) | u, s] =
∫ ∞

0
f(x)Γ(s)−1usxs−1e−uxdx,

EU [f(U) | w, α] =
∫ ∞

0
f(u)Γ(α)−1wαuα−1e−wudu,

and
E[f(X) | w, α] = EU [EX [f(X) | U, s] | w, α].

Then,

E[f(X) | w, α] =
∫ ∞

0
f(x){B(α, s)}−1wαxs−1(w + x)−α−sdx,

where
B(α, s) = Γ(α)Γ(s)/Γ(α + s).

The problem is formulated by dynamic programming and the recursive equations are derived
as follows:

Gn(w, α) = min
1≤k≤n

Gk
n(w, α) (1)

for n = 1, 2, 3, · · · and
G0(w, α) ≡ 0, (2)

where
Gk

n(w, α) = EU [EX [n(X + k) + Gn−k(w + X, α + s) | U, s] | w, α], (3)

that is, (3) is rewritten as follows:
(Gn,k): Gk

n(w, α) = nsw(α − 1)−1 + nk + E[Gn−k(w + X, α + s) | w, α].
In (3), n(X+k) is the contribution of n jobs to the total completion time in the time interval
(0, X + k) and Gn−k(w +X, α+ s) is also that of n− k jobs in the time interval (X + k,∞).
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From (1), (2), (G1,1), (G2,1) and (G2,2),

G1(w, α) = G1
1(w, α) = sw(α − 1)−1 + 1, (4)

G2(w, α) =

{
G1

2(w, α), if 0 < w < r2,1(α),
G2

2(w, α), if r2,1(α) ≤ w,
(5)

where

G1
2(w, α) = 3sw(α − 1)−1 + 3, (6)

G2
2(w, α) = 2sw(α − 1)−1 + 4, (7)

and

r2,1(α) = (α − 1)/s.

Also,

G3(w, α) =

⎧⎪⎨
⎪⎩

G1
3(w, α), if 0 < w < r3,1(α),

G2
3(w, α), if r3,1(α) ≤ w < r3,2(α),

G3
3(w, α), if r3,2(α) ≤ w,

where

G1
3(w, α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

6sw(α − 1)−1 + 6

+
s∑

i=1

{
−sr2,1(α + s)

α + i − 2
+ 1

}
Γ(α + i − 1)

Γ(α)Γ(i)

wα{r2,1(α + s) − w}i−1

{r2,1(α + s)}α+i−1
,

if 0 < w < r2,1(α + s),
5sw(α − 1)−1 + 7, if r2,1(α + s) ≤ w,

G2
3(w, α) = 4sw(α − 1)−1 + 7,

G3
3(w, α) = 3sw(α − 1)−1 + 9,

r3,2(α) = 2(α − 1)/s,

and r3,1(α) is a unique root of the equation

−1 + 2sw(α − 1)−1 +
s∑

i=1

{
−sr2,1(α + s)

α + i − 2
+ 1

}
Γ(α + i − 1)

Γ(α)Γ(i)

wα{r2,1(α + s) − w}i−1

{r2,1(α + s)}α+i−1
= 0

of w in the interval (0, r2,1(α + s)). The main purpose of this paper is to derive the several
properties of the optimal strategy for n ≥ 4.

.

3. Optimal Strategy

In this section, several properties of Gk
n(w, α) for 1 ≤ k ≤ n and Gn(w, α) for n ≥ 1 are

derived.

Lemma 3.1 For w > 0 and α > 1, if f(x) is a continuous and strictly monotone increasing
function of x, E[f(X) | w, α] is continuous and strictly monotone increasing in w and
strictly monotone decreasing in α.
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Proof. For 0 < w1 < w2,

E[f(X) | w1, α] − E[f(X) | w2, α]

=
∫ ∞

0
f(x){B(α, s)}−1{wα

1 xs−1(w1 + x)−α−s − wα
2 xs−1(w2 + x)−α−s}dx.

Let the solution of the equation wα
1 xs−1(w1 + x)−α−s − wα

2 xs−1(w2 + x)−α−s = 0 of x be c,
then

c = w2

{
1 −

(
w1

w2

) s
α+s

} {(
w2

w1

) α
α+s − 1

}−1

.

As wα
1 xs−1(w1 + x)−α−s − wα

2 xs−1(w2 + x)−α−s > 0 if 0 < x < c and wα
1 xs−1(w1 + x)−α−s −

wα
2 xs−1(w2 + x)−α−s < 0 if c < x,

E[f(X) | w1, α] − E[f(X) | w2, α]

=
∫ c

0
f(x){B(α, s)}−1{wα

1 xs−1(w1 + x)−α−s − wα
2 xs−1(w2 + x)−α−s}dx

+
∫ ∞

c
f(x){B(α, s)}−1{wα

1 xs−1(w1 + x)−α−s − wα
2 xs−1(w2 + x)−α−s}dx

<
∫ c

0
f(c){B(α, s)}−1{wα

1 xs−1(w1 + x)−α−s − wα
2 xs−1(w2 + x)−α−s}dx

+
∫ ∞

c
f(c){B(α, s)}−1{wα

1 xs−1(w1 + x)−α−s − wα
2 xs−1(w2 + x)−α−s}dx

= f(c)
∫ ∞

0
{B(α, s)}−1wα

1 xs−1(w1 +x)−α−sdx−f(c)
∫ ∞

0
{B(α, s)}−1wα

2 xs−1(w2 +x)−α−s}dx.

Since both integrals of this right hand side are 1, the monotonicity of E[f(X) | w, α] is
derived. Also for 0 < α1 < α2,

E[f(X) | w, α1] − E[f(X) | w, α2]

=
∫ ∞

0
f(x)

[
{B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s

]
dx.

Let the solution of the equation {B(α1, s)}−1wα1xs−1(w+x)−α1−s−{B(α2, s)}−1wα2xs−1(w+
x)−α2−s = 0 of x be c′, then

c′ =

⎡
⎣

{
Γ(α1)

Γ(α2)

Γ(α2 + s)

Γ(α1 + s)

} 1
α2−α1 − 1

⎤
⎦ w.

As {B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s < 0 if 0 < x < c′

and {B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s > 0 if c′ < x,
E[f(X) | w, α1] > E[f(X) | w, α2] is derived from the monotonicity of f(x) and

E[f(X) | w, α1] − E[f(X) | w, α2]

=
∫ c′

0
f(x)

[
{B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s

]
dx

+
∫ ∞

c′
f(x)

[
{B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s

]
dx

>
∫ c′

0
f(c′)

[
{B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s

]
dx

+
∫ ∞

c′
f(c′)

[
{B(α1, s)}−1wα1xs−1(w + x)−α1−s − {B(α2, s)}−1wα2xs−1(w + x)−α2−s

]
dx,

where this right hand side reduces to 0 and the proof is completed.�

c© Operations Research Society of Japan JORSJ (2005) 48-3



Bayesian Sequential Batch-Size Decision 261

Lemma 3.2 For w > 0 and α > 1, (An,k) for 1 ≤ k ≤ n holds for n ≥ 2 and (An) holds
for n ≥ 1, where

(An,k) : Gk
n(w, α) is continuous and strictly monotone increasing in w and strictly mono-

tone decreasing in α and
(An) : Gn(w, α) is continuous and strictly monotone increasing in w and strictly mono-

tone decreasing in α.

Proof. (A1,1) and (A1) is trivial. For n ≥ 2, assume that both (Am,k) for 1 ≤ k ≤ m and
(Am) hold for 1 ≤ m < n. For 1 ≤ k ≤ n − 1, (An,k) is derived from (Gn,k), (An−k), and
Lemma 3.1. Also, (An,n) is derived from

Gn
n(w, α) = nsw(α − 1)−1 + n2

and as the result (An) holds.�
Five lemmas are derived as follows:

Lemma 3.3 For n ≥ 2, 2 ≤ k ≤ n, 1 ≤ m ≤ k − 1, w > 0 and α > 1,
(Bn,k,m) : Gk

n(w, α) − Gk−m
n−m(w, α) = msw(α − 1)−1 + m(n + k − m).

Proof. (Bn,k,m) is derived from (Gn,k) and (Gn−m,k−m).�

Lemma 3.4 For n ≥ 3, 2 ≤ k ≤ n − 1, w > 0 and α > 1, Gk
n(w, α) − Gk+1

n (w, α) satisfies
two equations:

(Cn,k) : Gk
n(w, α) − Gk+1

n (w, α) = Gk−1
n−1(w, α) − Gk

n−1(w, α) − 1, and

(Dn,k) : Gk
n(w, α) − Gk+1

n (w, α) = −n
+E[Gn−k(w + X, α + s) − Gn−k−1(w + X, α + s) | w, α].

Proof. (Cn,k) is derived from (Bn,k,1) and (Bn,k+1,1). Also, (Dn,k) is derived from (Gn,k)
and (Gn,k+1).�

Lemma 3.5 For n ≥ 3, 1 ≤ k ≤ n − 1, w > 0 and α > 1,
(En,k) : Gk

n(w, α) − Gk
n−1(w, α) = sw(α − 1)−1 + k

+E[Gn−k(w + X, α + s) − Gn−k−1(w + X, α + s) | w, α].

Proof. (En,k) is derived from (Gn,k) and (Gn−1,k).�

Lemma 3.6 For n ≥ 2, w > 0 and α > 1,

sw(α − 1)−1 + n ≤ Gn(w, α) − Gn−1(w, α) ≤ nsw(α − 1)−1 + n.

Proof. Let S(n; w, α) be the optimal strategy in the state (n; w, α). Also, let GS(n;w,α)
n (w, α)

and G
S(n;w,α)
n−1 (w, α) be the expected total completion times by using the same strategy

S(n; w, α) when the current prior informations are (n; w, α) and (n − 1; w, α), respectively.

Then, Gn(w, α) = GS(n;w,α)
n (w, α) and Gn−1(w, α) ≤ G

S(n;w,α)
n−1 (w, α) are derived. Therefore,

Gn(w, α) − Gn−1(w, α) ≥ GS(n;w,α)
n (w, α) − G

S(n;w,α)
n−1 (w, α) ≥ sw(α − 1)−1 + n,

where the last inequality means that the difference, GS(n;w,α)
n (w, α) − G

S(n;w,α)
n−1 (w, α), is the

completion time of the n-th job which contains n processing times and at least 1 setup
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time. Also, let S(n − 1; w, α) be the optimal strategy in the state (n − 1; w, α), then

Gn(w, α) ≤ GS(n−1;w,α)
n (w, α) and Gn−1(w, α) = G

S(n−1;w,α)
n−1 (w, α), from which

Gn(w, α) − Gn−1(w, α) ≤ GS(n−1;w,α)
n (w, α) − G

S(n−1;w,α)
n−1 (w, α) ≤ nsw(α − 1)−1 + n,

where the last inequality means that the difference, GS(n−1;w,α)
n (w, α)−G

S(n−1;w,α)
n−1 (w, α), is

the completion time of the n-th job which contains n processing times and at most n setup
times. This completes the proof.�

Lemma 3.7 For n ≥ 2, 1 ≤ k ≤ n − 1, w > 0 and α > 1,

sw(α − 1)−1 − k ≤ Gk
n(w, α) − Gk+1

n (w, α) ≤ (n − k)sw(α − 1)−1 − k. (8)

Proof. By taking conditional expectation E[· | w, α] of each terms of the inequalities

s(w + X)(α + s − 1)−1 + (n − k) ≤ Gn−k(w + X, α + s) − Gn−k−1(w + X, α + s)

≤ (n − k)s(w + X)(α + s − 1)−1 + (n − k)

which is derived from Lemma 3.6 and using

E[Gn−k(w + X, α + s) − Gn−k−1(w + X, α + s) | w, α] = Gk
n(w, α) − Gk+1

n (w, α) + n

which is derived from (Dn,k),

E[s(w + X)(α + s − 1)−1 | w, α] + (n − k) ≤ Gk
n(w, α) − Gk+1

n (w, α) + n

≤ E[(n − k)s(w + X)(α + s − 1)−1 | w, α] + (n − k).

(8) is derived by using E[s(w + X)(α + s− 1)−1 | w, α] = sw(α− 1)−1 and subtracting n.�
Now the following theorem is derived.

Theorem 3.1 (Pn) and (Qn) hold for n ≥ 2, (Rn), (Sn), and (Tn) hold for n ≥ 3, (Un)
holds for n ≥ 4 with

(U3): G3(w, α) − G2(w, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

G1
3(w, α) − G1

2(w, α), if 0 < w < r3,1(α),
G2

3(w, α) − G1
2(w, α), if r3,1(α) ≤ w < r2,1(α),

G2
3(w, α) − G2

2(w, α), if r2,1(α) ≤ w < r3,1(α),
G3

3(w, α) − G2
2(w, α), if r3,1(α) ≤ w,

(Vn) holds for n ≥ 1, and (Wn) holds for n ≥ 2, where
(Pn): for 1 ≤ k ≤ n − 1, Gk

n(w, α) − Gk+1
n (w, α) is continuous and strictly monotone

increasing in w and strictly monotone decreasing in α,
(Qn): for 1 ≤ k ≤ n− 1, the equation Gk

n(w, α)−Gk+1
n (w, α) = 0 of w has a unique root

rn,k(α) such that Gk
n(w, α)−Gk+1

n (w, α) < 0 if 0 < w < rn,k(α), Gk
n(w, α)−Gk+1

n (w, α) > 0
if rn,k(α) < w, and rn,k(α) < rn,k(α + 1),

(Rn): for 2 ≤ k ≤ n − 1, rn−1,k−1(α) < rn,k(α),
(Sn): for 1 ≤ k ≤ n − 2, rn,k(α) ≤ rn−1,k(α),

(Tn): Gn(w, α) =

⎧⎪⎨
⎪⎩

G1
n(w, α), if 0 < w < rn,1(α),

Gk
n(w, α), if rn,k−1(α) ≤ w < rn,k(α) (2 ≤ k ≤ n − 1),

Gn
n(w, α), if rn,n−1(α) ≤ w,

(Un): Gn(w, α) − Gn−1(w, α)
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1
n(w, α) − G1

n−1(w, α), if 0 < w < rn,1(α),
G2

n(w, α) − G1
n−1(w, α), if rn,1(α) ≤ w < rn−1,1(α),

Gk
n(w, α) − Gk

n−1(w, α), if rn−1,k−1(α) ≤ w < rn,k(α),
Gk+1

n (w, α) − Gk
n−1(w, α), if rn,k(α) ≤ w < rn−1,k(α),

(2 ≤ k ≤ n − 2)
Gn−1

n (w, α) − Gn−1
n−1(w, α), if rn−1,n−2(α) ≤ w < rn,n−1(α),

Gn
n(w, α) − Gn−1

n−1(w, α), if rn,n−1(α) ≤ w,
(Vn): Gn(w, α)−Gn−1(w, α) is strictly monotone increasing in w and strictly monotone

decreasing in α,
(Wn): Gn(w, α) − Gn−1(w, α) ≥ Gn−1(w, α) − Gn−2(w, α) + 1.

Proof. (P2), (Q2), (V1), (V2), and (W2) are easily derived from the explicit formula of (2),
(4), (5), (6) and (7) given in Section 2. (P3) is derived from Lemma 3.1, (D3,1), (D3,2),

G2(w + x, α + s) =

{
3s(w + x)(α + s − 1)−1 + 3, if 0 < w + x < r2,1(α + s),
2s(w + x)(α + s − 1)−1 + 4, if r2,1(α + s) ≤ w + x,

G1(w + x, α + s) = s(w + x)(α + s − 1)−1 + 1

and
G0(w + x, α + s) = 0.

For 1 ≤ k ≤ 2, it is derived from Lemma 3.7 that Gk
3(w, α)−Gk+1

3 (w, α) < 0 if 0 < w < (α−
1)k/{(3−k)s} and Gk

3(w, α)−Gk+1
3 (w, α) > 0 if (α−1)k/s < w. As Gk

3(w, α)−Gk+1
3 (w, α) is

continuous and strictly monotone increasing in w, the equation Gk
3(w, α) − Gk+1

3 (w, α) = 0
of w has a unique root r3,k(α) in the closed interval [(α − 1)k/{(3 − k)s}, (α − 1)k/s],
and r3,k(α) < r3,k(α + 1) is derived from the property that Gk

3(w, α)−Gk+1
3 (w, α) is strictly

monotone decreasing in α, from which (Q3) is derived. (R3) is directly derived from r2,1(α) =
(α − 1)/s and r3,2(α) = 2(α − 1)/s. By considering the case of 0 < w < r2,1(α + s), the
inequality G1

3(w, α) − G2
3(w, α) > sw(α − 1)−1 − 1 is easily derived and G1

3(r2,1(α), α) −
G2

3(r2,1(α), α) > 0 holds, which means r3,1(α) < r2,1(α) and (S3) is derived. (T3) is the
immediate consequence of r3,1(α) < r2,1(α) < r3,2(α) and (Q3), and as the results (U3) is
derived from (5) and (T3). As

G3(w, α) − G2(w, α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E[G2(w + X, α + s) | w, α], if 0 < w < r3,1(α),
sw(α − 1)−1 + 4, if r3,1(α) ≤ w ≤ r2,1(α),
2sw(α − 1)−1 + 3, if r2,1(α) < w < r3,2(α),
sw(α − 1)−1 + 5, if r3,2(α) ≤ w,

(9)

and G2(w + x, α + s) is strictly increasing in x, (V3) is derived by using Lemma 3.1. Also

G2(w + X, α + s) ≥ 2s(w + X)(α + s − 1)−1 + 3

and

G2(w, α) − G1(w, α) + 1 =

{
2sw(α − 1)−1 + 3, if 0 < w < r2,1(α),
sw(α − 1)−1 + 4, if r2,1(α) ≤ w,

with (9) means G3(w, α)−G2(w, α) ≥ G2(w, α)−G1(w, α) + 1 and (W3) holds. For n ≥ 4,
suppose that (Pm), (Qm), (Rm), (Sm), (Tm), (Um), (Vm), and (Wm) hold for 3 ≤ m ≤ n−1.
From (Dn,k) and the monotone increasing property of Gn−k(w+x, α+s)−Gn−k−1(w+x, α+s)
in x obtained in (Vn−k) for 1 ≤ k ≤ n − 1, (Pn) is proved in the same way as the proof of
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Lemma 3.1. From Lemma 3.7, for 1 ≤ k ≤ n − 1 Gk
n(w, α) − Gk+1

n (w, α) < 0 if 0 < w <
(α−1)k{(n−k)s}−1 and Gk

n(w, α)−Gk+1
n (w, α) > 0 if (α−1)k/s < w, which with (Pn) means

the existence of the unique root rn,k(α) of the equation Gk
n(w, α) − Gk+1

n (w, α) = 0 of w.
Also, rn,k(α) < rn,k(α+1) is derived from the property that Gk

n(w, α)−Gk+1
n (w, α) is strictly

monotone decreasing in α, and therefore (Qn) is derived. (Rn) is derived from the continuity
and monotone increasing properties of Gk

n(w, α)−Gk+1
n (w, α) in w, the definition of rn,k(α),

and Gk
n(rn−1,k−1(α), α) − Gk+1

n (rn−1,k−1(α), α) = −1 which is obtained by the definition of
rn−1,k−1(α) and (Cn,k). (Sn) is derived from the definitions of rn−1,k(α) and rn,k(α) and the
inequality Gk

n(w, α)−Gk+1
n (w, α) ≥ Gk

n−1(w, α)−Gk+1
n−1(w, α) which is obtained from (Dn,k)

and (Wn−k). (Tn) is derived from the definitions of rn,k(α) for 1 ≤ k ≤ n − 1 and the
inequalities

rn,1(α) < rn,2(α) < rn,3(α) < · · · < rn,n−2(α) < rn,n−1(α)

obtained by (Rn) and (Sn). (Un) is derived from (Tn) and (Tn−1) by using (Rn) and
(Sn). To prove (Vn), the continuous and monotone properties of Gk

n(w, α)−Gk
n−1(w, α) for

1 ≤ k ≤ n−1 in w and α are derived from (En,k) with Lemma 3.1 and those of Gk+1
n (w, α)−

Gk
n−1(w, α) for 1 ≤ k ≤ n − 1 are obtained from (Bn,k+1,1). To prove (Wn), rn−1,k(α) for

1 ≤ k ≤ n − 2 in (Un) and (Un−1) have the important roles in both Gn(w, α) − Gn−1(w, α)
and Gn−1(w, α) − Gn−2(w, α). When 0 < w < rn−1,1(α), two cases, 0 < w < rn,1(α) and
rn,1(α) ≤ w < rn−1,1(α), have to be considered. In the case of 0 < w < rn,1(α),

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {G1

n(w, α) − G1
n−1(w, α)} − {G1

n−1(w, α) − G1
n−2(w, α)}

from which (Wn) is derived by using (En,1), (En−1,1) and (Wn−1). In the case of rn,1(α) ≤
w < rn−1,1(α), (Wn) is derived from

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {G2

n(w, α) − G1
n−1(w, α)} − {G1

n−1(w, α) − G1
n−2(w, α)}

≥ {G2
n(w, α) − G2

n−1(w, α)} − {G1
n−1(w, α) − G1

n−2(w, α)}
by using (En,2) and (En−1,1). When rn−1,k−1(α) ≤ w < rn−1,k(α) for 2 ≤ k ≤ n − 2,
three cases, rn−1,k−1(α) ≤ w < min{rn,k(α), rn−2,k−1(α)}, min{rn,k(α), rn−2,k−1(α)} ≤ w <
max{rn,k(α), rn−2,k−1(α)}, and max{rn,k(α), rn−2,k−1(α)} ≤ w < rn−1,k(α), have to be con-
sidered if rn,k(α) �= rn−2,k−1(α) and the first and third cases have to be considered if
rn,k(α) = rn−2,k−1(α). In the case of rn−1,k−1(α) ≤ w < min{rn,k(α), rn−2,k−1(α)}, (Wn)
is derived from

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {Gk

n(w, α) − Gk
n−1(w, α)} − {Gk

n−1(w, α) − Gk−1
n−2(w, α)}

≥ {Gk
n(w, α) − Gk−1

n−1(w, α)} − {Gk
n−1(w, α) − Gk−1

n−2(w, α)}
by using (Bn,k,1) and (Bn−1,k,1). In the case of max{rn,k(α), rn−2,k−1(α)} ≤ w < rn−1,k(α),
(Wn) is derived from (En,k+1), (En−1,k) and

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {Gk+1

n (w, α) − Gk
n−1(w, α)} − {Gk

n−1(w, α) − Gk
n−2(w, α)}

≥ {Gk+1
n (w, α) − Gk+1

n−1(w, α)} − {Gk
n−1(w, α) − Gk

n−2(w, α)}.
In the case of min{rn,k(α), rn−2,k−1(α)} ≤ w < max{rn,k(α), rn−2,k−1(α)}, two cases, rn,k(α) ≤
rn−2,k−1(α) and rn,k(α) > rn−2,k−1(α), have to be considered. (Wn) is derived in the former
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case by using (Bn,k+1,1), (Bn−1,k,1) and

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {Gk+1

n (w, α) − Gk
n−1(w, α)} − {Gk

n−1(w, α) − Gk−1
n−2(w, α)}

and it is also derived in the latter case by using (En,k), (En−1,k), (Wn−k) and

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {Gk

n(w, α) − Gk
n−1(w, α)} − {Gk

n−1(w, α) − Gk
n−2(w, α)}.

When rn−1,n−2(α) ≤ w, two cases, rn−1,n−2(α) ≤ w < rn,n−1(α) and rn,n−1(α) < w, have to
be considered and (Wn) is derived from

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {Gn−1

n (w, α) − Gn−1
n−1(w, α)} − {Gn−1

n−1(w, α) − Gn−2
n−2(w, α)}

≥ {Gn−1
n (w, α) − Gn−2

n−1(w, α)} − {Gn−1
n−1(w, α) − Gn−2

n−2(w, α)},

(Bn,n−1,1) and (Bn−1,n−1,1) in the former case and it is also derived from

{Gn(w, α) − Gn−1(w, α)} − {Gn−1(w, α) − Gn−2(w, α)}
= {Gn

n(w, α) − Gn−1
n−1(w, α)} − {Gn−1

n−1(w, α) − Gn−2
n−2(w, α)},

(Bn,n,1) and (Bn−1,n−1,1) in the later case. This completes the proofs of both (Wn) and this
theorem.�

From this theorem, the optimal strategy for the state (n, w, α) is described as follows:
(i) In the case of n = 1, perform 1 job as a batch.
(ii) In the case of n = 2, perform 1 job as a batch if 0 < w < r2,1(α) and perform 2 jobs

as a batch if r2,1(α) ≤ w.
(iii) In the case of n ≥ 3, perform 1 job as a batch if 0 < w < rn,1(α), perform k jobs

as a batch if rn,k−1(α) ≤ rn,k(α) for 2 ≤ k ≤ n − 1, and perform n jobs as a batch if
rn,n−1(α) ≤ w.

If there are some jobs remaining after performing k jobs and observing X = x, then the
new state becomes (n − k; w + x, α + s), where 1 ≤ k ≤ n − 1. The optimal strategy is
applied for this new state again. This process is repeated until there is no job remaining.

Example 1. In the case of n = 5, w = w0, and α = α0, the initial state is (5, w0, α0).
(I) If 0 < w0 < r5,1(α0), let the first batch size be 1 and observe X = x1. There are 4

jobs remaining and the new state becomes (4, w0 + x1, α0 + s). We have to consider four
cases, (i), (ii), (iii), and (iv):

(i) If 0 < w0 +x1 < r4,1(α0 + s), let the second batch size be 1 and observe X = x2. The
new state becomes (3, w0 + x1 + x2, α0 + 2s) and we have to consider 3 cases (a), (b), and
(c):

(a) If 0 < w0 +x1 +x2 < r3,1(α0 +2s), let the third batch size be 1, observe X = x3, and
the new state becomes (2, w0 +x1 +x2 +x3, α0 +3s). If 0 < w0 +x1 +x2 +x3 < r2,1(α0 +3s),
let the forth batch size be 1 and observe X = x4, and let the fifth batch size be 1, observe
X = x5, and stop. Otherwise, let the forth batch size be 2, observe X = x4, and stop.

(b) If r3,1(α0 + 2s) ≤ w0 + x1 + x2 < r3,2(α0 + 2s), let the third batch size be 2, observe
X = x3, and the new state becomes (1, w0 + x1 + x2 + x3, α0 + 3s). Then, the forth batch
size be 1, observe X = x4, and stop.
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(c) If r3,2(α0 + 2s) ≤ w0 + x1 + x2, let the third batch size be 3, observe X = x3, and
stop.

(ii) If r4,1(α0+s) ≤ w0+x1 < r4,2(α0+s), let the second batch size be 2, observe X = x2,
and the new state becomes (2, w0 + x1 + x2, α0 + 2s). Now, we have to consider two cases,
(a) and (b):

(a) If 0 < w0 + x1 + x2 < r2,1(α0 + 2s), let the third batch size be 1, observe X = x3,
and the new state becomes (1, w0 + x1 + x2 + x3, α0 + 3s). Then, let the forth batch size be
1, observe X = x4 and stop.

(b) Otherwise, let the third batch size be 2, observe X = x3, and stop.
(iii) If r4,2(α0 + s) ≤ w0 + x1 < r4,3(α0 + s), let the second batch size be 3, observe

X = x2, and the new state becomes (1, w0 + x1 + x2, α0 + 2s). Let the third batch size be
1, observe X = x3, and stop.

(iv) If r4,3(α0 + s) ≤ w0 + x1, let the second batch size be 4 and observe X = x2. There
is no job remaining and stop.

(II) If r5,1(α0) ≤ w0 < r5,2(α0), let the first batch size be 2 and observe X = x1. There
are 3 jobs remaining and the new state is (3, w0 + x1, α0 + s). We have to consider three
cases (i), (ii) and (iii):

(i) If 0 < w0 + x1 < r3,1(α0 + s), let the second batch size be 1, observe X = x2, and the
new state becomes (2, w0+x1+x2, α0+2s). Furthermore, if 0 < w0+x1+x2 < r2,1(α0+2s),
let the third batch size be 1 and observe X = x3, then let the forth batch sizes be 1, observe
X = x4, and stop. Otherwise, let the third batch size be 2, observe X = x3, and stop.

(ii) If r3,1(α0+s) ≤ w0+x1 < r3,2(α0+s), let the second batch size be 2, observe X = x2,
and the new state becomes (1, w0 + x1 + x2, α0 + 2s). Let the third batch size be 1, observe
X = x3, and stop.

(iii) If r3,2(α0 + s) ≤ w0 + x1, let the second batch size be 3, observe X = x2, and stop.
(III) If r5,2(α0) ≤ w0 < r5,3(α0), let the first batch size be 3 and observe X = x1. There

are 2 jobs remaining and the new state is (2, w0 + x1, α0 + s). We have to consider two
cases: (i) 0 < w0 + x1 < r2,1(α0 + s) and (ii) r2,1(α0 + s) ≤ w0 + x1. In the former case, let
the second batch size be 1 and observe X = x2, then let the third batch size be 1, observe
X = x3, and stop. In the later case, let the second batch size be 2, observe X = x2, and
stop.

(IV) If r5,3(α0) ≤ w0 < r5,4(α0), let the first batch size be 4 and observe X = x1. There
is 1 job remaining and the new state is (1, w0 + x1, α0 + s). Let the second batch size be 1,
observe X = x2, and stop.

(V) If r5,4(α0) ≤ w0, let the first batch size be 5 and observe X = x1. There is no job
remaining and stop.�

Example 2. Let n = 7, s = 2, w = w0, and α = 2, that is, we consider the case that
7 jobs have to be processed by single machine and the setup time is distributed in the
gamma distribution with parameters (u, 2), where the true value of u is unknown and we
assume that u has the gamma distribution with parameters (w0, 2) as the prior distribution.
The processing times of all the jobs are assumed to be 1. Let Cj (j = 1, 2, · · · , 7) be the
completion time of j-th job. In this case, if r7,1(2) ≤ w0 < r7,2(2), we decide that 2 jobs have
to be processed as the first batch. After observing the setup time X1 = x1 of the first batch
composed of the first and the second jobs, we have C1 = C2 = x1 + 2. Now, the posterior
distribution of u is the gamma distribution with parameters (w0 + x1, 4) and the number of
remaining jobs is 5. From Theorem 3.1, r7,1(2) ≤ r6,1(2) ≤ r5,1(2) < r5,1(3) < r5,1(4), and we
assume that w0 + x1 < r5,1(4). As the optimal second batch size for the state (5;w0 + x1, 4)
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is 1, the second batch is composed of only one job and we observe the setup time X2 = x2.
The completion time of the third job is C3 = (x1 + 2) + (x2 + 1) = x1 + x2 + 3. The new
state is (4; w0 + x1 + x2, 6). From Theorem 3.1, we have r5,1(4) ≤ r4,1(4) ≤ r4,1(5) ≤ r4,1(6),
and if w0 + x1 + x2 < r4,1(6), the optimal third batch size is 1. After observing the setup
time X3 = x3, C4 = x1 + x2 + x3 + 4. For the new state (3; w0 + x1 + x2 + x3, 8), if
r3,2(8) < w0 + x1 + x2 + x3, the optimal forth batch size is 3 and after observing the forth
setup time X4 = x4, all the jobs have been completed. The completion time of the last
three jobs are the same and the value is C5 = C6 = C7 = x1 + x2 + x3 + x4 + 7. The total
completion time for 7 jobs is

7∑
j=1

Cj = 2(x1 + 2) + (x1 + x2 + 3) + (x1 + x2 + x3 + 4) + 3(x1 + x2 + x3 + x4 + 7)

= 7(x1 + 2) + 5(x2 + 1) + 4(x3 + 1) + 3(x4 + 3)

= 7x1 + 5x2 + 4x3 + 3x4 + 32.
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