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Abstract Knowing the distribution of the number of handovers during a call session of a given user is
particularly important in cellular mobile communication networks in order to make appropriate dimensioning
of virtual circuits for wireless cells. In this paper, we study the probability distributions and statistical
moments for the number of handovers per call for a variety of combinations of the call holding time (CHT)
and cell residence time (CRT) distributions. We assume that the first CRT in the originating cell has
different statistics from the CRTs in the subsequent cells. In particular, we consider circular cells. Based on
the formulation in terms of delayed renewal processes, we obtain analytical expressions for the probability
mass functions and moments of the handover number distribution. We also include some numerical results
for the mean number of handovers.

Keywords: Telecommunication, cellular network, handover, renewal theory, delayed
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1. Introduction

In cellular wireless communication networks, the wireless cells have limited coverage range,
which means that mobile users will be crossing several cell boundaries during his call du-
ration. Each boundary crossing may need switching of a communication channel, whether
it is a frequency band, a time slot or a code, which is necessary in order to maintain the
connectivity with the network as well as the tracking of the location of the user. This cell
switching, or handover, tends to cause connectivity disruption and/or extra transmission
delay if it is not handled properly. In multimedia service environment, the connectivity and
timely transmission are essential. For instance, real-time audio and video information is less
tolerant to both overall delay and delay variation than traditional voice calls. Thus, the
traffic disruption/delay, as a result of handover failure, can seriously affect the Quality of
Service (QoS) of the network.

Wireless multimedia networks are intended to be direct extension of the fixed/wireline
broadband ATM networks with uniform end-to-end QoS guarantee. The handover traffic
in cellular wireless networks is a complex function of many factors such as the size of
wireless cells, user’s mobility and call patterns, etc. However it has a direct impact on the
signaling traffic, the call admission policy for new users, and also the QoS for the admitted
users. Therefore, the study of the handover process is a fundamental issue in the design of
multimedia cellular wireless communication networks.

In this paper, we study the statistical characteristics of the number of handovers that a
mobile user makes during a call session in a cellular network for a variety of combinations
of the call holding time (CHT) and cell residence time (CRT) distributions. In the past,
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Nanda [11] considered the case of exponentially distributed CHT and CRT. The same case
has been extensively studied by Lin et al. [9]. However, the CHT cannot be assumed as
an exponentially distributed random variable in multimedia services which typically have
long tail in distribution. The CRT is not exponentially distributed either. Recently, Fang et
al. [3, 4] have derived a set of recursive equations for the Erlang distributed CHT. Rodŕıguez-
Dagnino [13] has initiated an innovative method based on the renewal theory for obtaining
the distribution and moments of the number of handovers explicitly for a mixture of Erlang
(including exponential) distributions for the CHT; this work is elaborated later in [15,
17]. However, these studies only consider a homogeneous environment where the same
distribution is assumed for the CRTs in all the wireless cells. Recently, Orlik and Rappaport
[12] have presented some results for a mixed platform where there are several kinds of mobile
users with different speeds such as bicycle, pedestrian, and automobile simultaneously in
the network.

In the present paper, we extend the methodology of [13, 15, 17] to the case where the
first CRT and the subsequent CRTs may have different distributions. We derive closed-form
expressions for the probability distribution and the moments of the number of handovers
per call [14]. In our previous paper [16] we have demonstrated that the CHT is more influ-
ential than the CRT in location management applications. Thus we consider the number of
handovers when the CHT is generally distributed and the CRT is exponentially distributed.
We also extend our methodology to the case in which the third and further subsequent cells
have different CRT distributions.

Our approach is based on the renewal theory. Let N(t) be the number of renewals in a
fixed time interval [0, t], and the interrenewal times occur according to a sequence of random
variables {X1, X2, . . . , Xi, . . .}, where X1 is started at time 0. This represents the sequence
of CRTs that a mobile user experiences during a call such that Xi is the CRT in the ith cell
(i = 1, 2, . . .). Now, let T be a random variable representing a CHT; throughout the paper
we do not take into account the forced termination of calls due to the blocking of handover
process. Let us also assume that T is independent of {X1, X2, . . . , Xi, . . .}. Hence N(T ) is a
random variable which represents the number of renewals (handovers) in a random interval
[0, T ] (a CHT). The problem of finding the probability distribution of N(T ) has been solved
in several specific cases by Cox in his monograph [2, sec. 3.4] under the title “The number
of renewals in a random time.” Most of the results presented by Cox are based on the
ordinary renewal process, i.e., all the random variables Xi; i = 1, 2, . . ., come from the same
distribution [2, p.25]. However, a common situation in cellular networks is that a mobile
user begins his call somewhere inside a cell. Thus it is more appropriate to consider the
case in which only Xi; i = 2, 3, . . ., come from the same distribution as a random variable
X2 while X1 may come from a different distribution. Such a case is called the modified or
delayed renewal process [2, p.28]. This is just the process that we will use as a model of the
sequence of CRTs in this paper. As a special case of the delayed renewal process, if X1 is
a residual life of X2, we have the equilibrium renewal process [2, p.28]. This case has been
studied by Lin [8] and the present authors [13, 15, 17]. As a generalization of the delayed
renewal process, we may assume that each CRT X1, X2, . . . may have different distribution.
See Figure 1 for the diagram of a CHT and CRTs associated with a mobile user in a cellular
network.

The remainder of this paper is organized as follows. In Section 2 we present the basic
methodology to calculate the probability generating function (pgf) for N(T ) for the CHT
with Erlang distribution and for the CRT with any distribution. We consider special cases
in which the CHT is exponentially distributed. We derive explicit expressions for the prob-
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Figure 1: User mobility in a cellular network

ability mass function (pmf) P [N(T ) = j] as well as the binomial moments E[
(

N(T )
�

)
] of

N(T ) in terms of the Laplace transforms of the probability density function (pdf) for X1

and X2. In particular, we give simple results for the case of exponentially distributed CRTs.
In Section 3, we extend the method of Section 2 to the CHT with a mixture of several
exponential distributions, and present closed-form expressions for the pmf and the binomial
moments of N(T ) when the CRT has exponential, gamma, and generalized gamma distri-
butions. We also analyze the case of circular cells such that the first CRT X1 corresponds
to the distance from an arbitrary point in a circle to its perimeter in an arbitrary direction
and the subsequent CRTs X2, X3, . . . correspond to the length of a straight line segment
cut by a circle. We call this case the circularly distributed CRT. In Section 4 we treat
the case in which each CRT X1, X2, . . . may have different distribution, which we call the
generalized delayed renewal process. We study the case in which the CHT is exponentially
distributed as well as the case in which the CHT is general and the CRTs are exponentially
distributed. We also consider as a special case the delayed renewal process in which the
the first CRT X1 is exponentially distributed with parameter µ1 and the subsequent CRTs
X2, X3, . . . have the same exponential distribution with parameter µ2, while the CHT has
arbitrary distribution. In such a case, the pmf and the binomial moments of N(T ) can be
expressed in terms of the Laplace transform of the pdf for T . In Section 5 some numerical
values are shown for E[N(T )], the mean number of handovers, for a representative set of
parameter values. Finally, concluding remarks are made in Section 6.

2. The pgf Method for Erlang CHT

Let GN(T )(z) be the pgf for N(T ), the number of handovers in a random interval [0, T ],
where T represents a CHT. It is given by

GN(T )(z) =
∫ ∞

t=0
GN(T )(t, z) fT (t) dt, (2.1)

where fT (t) is the pdf of the random variable T , and

GN(T )(t, z) := E
[
zN(t)

]
=

∞∑
j=0

P [N(T ) = j|T = t]zj (2.2)
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is the pgf of N(t), the number of handovers in a fixed interval [0, t]. Once GN(T )(z) is
obtained, the pmf of N(T ) is given by

P [N(T ) = j] =
1

j!

dj

dzj
GN(T )(z)

∣∣∣∣∣
z=0

; j = 0, 1, 2, . . . . (2.3)

The �th binomial moment of N(T ) is given by

E

[(
N(T )

�

)]
=

1

�!

d�

dz�
GN(T )(z)

∣∣∣∣∣
z=1

; � = 0, 1, 2, . . . . (2.4)

Let us consider a special case in which the CHT can be fitted by a k-stage Erlang pdf,
say

fT (t) =
λktk−1e−λt

(k − 1)!
; t ≥ 0 (2.5)

with mean E[T ] = k/λ. In this case the relation between GN(T )(z) and GN(t)(t, z) has been
solved by Cox [2, p.43, eq.(4)] as

GN(T )(z) =
λk

(k − 1)!

(
− ∂

∂s

)k−1 {
G∗

N(T )(s, z)
} ∣∣∣∣∣

s=λ

, (2.6)

where G∗
N(T )(s, z) is the Laplace transform of GN(T )(t, z) defined by

G∗
N(T )(s, z) :=

∫ ∞

t=0
e−stGN(T )(t, z)dt. (2.7)

For the delayed renewal process {X1, X2, . . .} of CRTs, we have [2, p.38, eq.(5)]

G∗
N(T )(s, z) =

1

s
+

(z − 1)f ∗
X1

(s)

s[1 − zf ∗
X2

(s)]
, (2.8)

where f ∗
X(s) is the Laplace transform of the pdf fX(x) for the random variable X. Hence

we get

GN(T )(z) =
λk

(k − 1)!

(
− ∂

∂s

)k−1 {
1

s
+

(z − 1)f ∗
X1

(s)

s[1 − zf ∗
X2

(s)]

} ∣∣∣∣∣
s=λ

= 1 +
λk(z − 1)

(k − 1)!

(
− ∂

∂s

)k−1
f ∗

X1
(s)

s[1 − zf ∗
X2

(s)]

∣∣∣∣∣
s=λ

. (2.9)

From this we can express the pmf of N(T ) as

P [N(T ) = j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 − λk

(k − 1)!

(
− ∂

∂s

)k−1
f ∗

X1
(s)

s

∣∣∣∣∣
s=λ

; j = 0

λk

(k − 1)!

(
− ∂

∂s

)k−1
f ∗

X1
(s)

s
[1 − f ∗

X2
(s)][f ∗

X2
(s)]j−1

∣∣∣∣∣
s=λ

; j = 1, 2, . . .

.

(2.10)
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We can also express the �th binomial moment of N(T ) as

E

[(
N(T )

�

)]
=

λk

(k − 1)!

(
− ∂

∂s

)k−1
f ∗

X1
(s)[f ∗

X2
(s)]�−1

s[1 − f ∗
X2

(s)]�

∣∣∣∣∣
s=λ

� = 1, 2, . . . . (2.11)

We note that if f ∗
X1

(s) ≡ f ∗
X2

(s), we have an ordinary renewal process for the sequence
of CRTs. On the other hand, if

f ∗
X1

(s) ≡ 1 − f ∗
X2

(s)

E[X2]s
, (2.12)

we have the equilibrium renewal process. The latter case has been studied extensively by
the authors in [17].

2.1. Exponentially distributed CHT and general CRT

Assume that the CHT T is modeled by an exponential pdf, say

fT (t) = λe−λt; t ≥ 0 (2.13)

with mean E[T ] = 1/λ. Then the pgf of N(T ) is given by

GN(T )(z) = λ
{
G∗

N(T )(s, z)
} ∣∣∣∣∣

s=λ

= 1 +
(z − 1)f ∗

X1
(λ)

1 − zf ∗
X2

(λ)
. (2.14)

The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) =

j!f ∗
X1

(λ)[1 − f ∗
X2

(λ)][f ∗
X2

(λ)]j−1

[1 − zf ∗
X2

(λ)]j+1
; j = 1, 2, . . . . (2.15)

Substituting (2.15) into (2.3), we obtain the pmf of N(T ) as

P [N(T ) = j] =

{
1 − f ∗

X1
(λ) ; j = 0

f ∗
X1

(λ)[1 − f ∗
X2

(λ)][f ∗
X2

(λ)]j−1 ; j = 1, 2, . . .
. (2.16)

Substituting (2.15) into (2.4), we obtain the �th binomial moment of N(T ) as

E

[(
N(T )

�

)]
=

f ∗
X1

(λ)[f ∗
X2

(λ)]�−1

[1 − f ∗
X2

(λ)]�
� = 1, 2, . . . . (2.17)

In particular, we have the mean

E[N(T )] =
f ∗

X1
(λ)

1 − f ∗
X2

(λ)
. (2.18)

The variance is given by

Var[N(T )] =
2f ∗

X1
(λ)f ∗

X2
(λ)

[1 − f ∗
X2

(λ)]2
+ E[N(T )] − E2[N(T )]. (2.19)

We can study several interesting cases by specifying the pdf for both types of CRTs.
However, let us defer the most results until Section 3 where we deal with a mixture of
exponential distributions for the CHT. In the following subsection, we only consider the
case of exponentially distributed CRTs as it reduces to a particularly simple result.
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2.2. Exponentially distributed CHT and CRTs

Let us assume that the first CRT X1 is exponentially distributed with mean E[X1] = 1/µ1,
and the subsequent CRTs, each being represented by X2, are also exponentially distributed
with mean E[X2] = 1/µ2. The corresponding Laplace transforms are given by

f ∗
Xr

(s) =
µr

s + µr

; r = 1, 2. (2.20)

In this case we have

G∗
N(T )(s, z) =

s + µ2 + (µ1 − µ2)z

(s + µ1)(s + µ2 − µ2z)
(2.21)

and

GN(T )(z) =
1 + ρ2 + (ρ1 − ρ2)z

(1 + ρ1)(1 + ρ2 − ρ2z)
, (2.22)

where ρr = E[T ]/E[Xr] = µr/λ for r = 1, 2. Hence, the pmf in (2.16) reduces to

P [N(T ) = j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + ρ1

; j = 0(
ρ1

1 + ρ1

)(
1

1 + ρ2

)(
ρ2

1 + ρ2

)j−1

; j = 1, 2, . . .
. (2.23)

The �th binomial moment of N(T ) is given by

E

[(
N(T )

�

)]
= ρ1

(
1 + ρ2

1 + ρ1

)
ρ2

�−1; � = 1, 2, . . . . (2.24)

Therefore, we have

E[N(T )] = ρ1

(
1 + ρ2

1 + ρ1

)
; Var[N(T )] =

ρ1(1 + ρ2)(1 + 2ρ2 + ρ1ρ2)

(1 + ρ1)2
. (2.25)

3. Hyperexponentially Distributed CHT and General CRT

Let us first assume that the CHT T is well modeled by a mixture of M Erlang distributions,
say

fT (t) =
M∑
i=1

pi
λki

i tki−1e−λit

(ki − 1)!
; t ≥ 0, (3.1)

where
∑M

i=1 pi = 1, and ki; i = 1, 2, . . . , M , is a positive integer. This model may represent
a situation such that there are several applications each user can choose from, such as
the voice conversation, data transmission for making ticket reservation, and browsing www
information on his mobile phone. Application i is chosen with probability pi; i = 1, 2, . . . , M .
The pgf of N(T ) is then given by

GN(T )(z) =
M∑
i=1

pi
λki

i

(ki − 1)!

(
− ∂

∂s

)ki−1 {
G∗

N(T )(s, z)
} ∣∣∣∣∣

s=λi

, (3.2)

where G∗
N(T )(s, z) is given by (2.8). Thus we can obtain the expressions for the pmf and

moments of N(T ) similar to (2.10) and (2.11).
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If we consider a mixture of exponential distributions for the CHT, or ki = 1 for all i in
(3.1), we have a hyperexponential pdf

fT (t) =
M∑
i=1

piλie
−λit; t ≥ 0, (3.3)

where
∑M

i=1 pi = 1. In this case, the coefficient of variation for T is larger than unity, which
is typical for data communication. Then the pgf of N(T ) is given by

GN(T )(z) =
M∑
i=1

piλi

{
G∗

N(T )(s, z)
} ∣∣∣∣∣

s=λi

, (3.4)

where G∗
N(T )(s, z) is still given in (2.8). Thus we get

GN(T )(z) = 1 + (z − 1)
M∑
i=1

pi

f ∗
X1

(λi)

1 − zf ∗
X2

(λi)
, (3.5)

where T =
∑M

i=1 piTi is the mixture of M exponentially distributed random variables Ti with
mean E[Ti] = 1/λi. The jth derivative of this pgf is given by

dj

dzj
GN(T )(z) = j!

M∑
i=1

pi

f ∗
X1

(λi)[1 − f ∗
X2

(λi)][f
∗
X2

(λi)]
j−1

[1 − zf ∗
X2

(λi)]j+1
; j = 1, 2, . . . . (3.6)

Hence, the pmf of N(T ) is given by

P [N(T ) = j] =

{
1 −∑M

i=1 pif
∗
X1

(λi) ; j = 0∑M
i=1 pif

∗
X1

(λi)[1 − f ∗
X2

(λi)][f
∗
X2

(λi)]
j−1 ; j = 1, 2, . . .

. (3.7)

The �th binomial moment of N(T ) is given by

E

[(
N(T )

�

)]
=

M∑
i=1

pi

f ∗
X1

(λi)[f
∗
X2

(λi)]
�−1

[1 − f ∗
X2

(λi)]�
� = 1, 2, . . . . (3.8)

Thus we have the mean

E[N(T )] =
M∑
i=1

pi

f ∗
X1

(λi)

1 − f ∗
X2

(λi)
. (3.9)

The variance is given by

Var[N(T )] = 2
M∑
i=1

pi

f ∗
X1

(λi)f
∗
X2

(λi)

[1 − f ∗
X2

(λi)]2
+ E[N(T )] − E2[N(T )]. (3.10)

We can obtain several interesting cases by specifying the Laplace transforms of the pdf
for both types of CRTs, as shown in the following subsections [14].

3.1. Gamma distributed CRT

We can apply the above formulas to any distribution for X1 and X2 with closed-form Laplace
transforms. For instance, we can assume that CRTs X1 and X2 are gamma distributed with
different scale parameters, namely, X1 is gamma distributed with parameters (µ1, α1), and
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X2 has the parameters (µ2, α2). Their mean values are given by E[Xr] = αr/µr, r = 1, 2,
and their Laplace transforms are as follows:

f ∗
Xr

(s) =

(
µr

s + µr

)αr

; r = 1, 2. (3.11)

Hence the pmf for N(T ) is given by

P [N(T ) = j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 −
M∑
i=1

pi

(
ρ1,i

α1
−1 + ρ1,i

)α1

; j = 0

M∑
i=1

pi

(
ρ1,i

α1
−1 + ρ1,i

)α1
[
1 −

(
ρ2,i

α2
−1 + ρ2,i

)α2
](

ρ2,i

α2
−1 + ρ2,i

)α2(j−1)

j = 1, 2, . . . .
(3.12)

The �th binomial moment of N(T ) is given by

E

[(
N(T )

�

)]
=

M∑
i=1

pi

(
ρ1,i

α1
−1 + ρ1,i

)α1

(
ρ2,i

α2
−1 + ρ2,i

)α2
[(

α2
−1 + ρ2,i

ρ2,i

)α2

− 1

]� ; � = 1, 2, . . . . (3.13)

Therefore, the mean value is given by

E[N(T )] =
M∑
i=1

pi

(
ρ1,i

α1
−1 + ρ1,i

)α1

1 −
(

ρ2,i

α2
−1 + ρ2,i

)α2 . (3.14)

Let us assume that CRTs are exponentially distributed as in (2.20). This is just a
particular case of the previous gamma distributed CRTs when α1 = α2 = 1 in (3.11). The
pmf in (3.12) then reduces to

P [N(T ) = j] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 −
M∑
i=1

pi
ρ1,i

1 + ρ1,i

; j = 0

M∑
i=1

pi

(
ρ1,i

1 + ρ1,i

)(
1

1 + ρ2,i

)(
ρ2,i

1 + ρ2,i

)j−1

; j = 1, 2, . . .

, (3.15)

where ρr,i = E[Ti]/E[Xr] = µr/λi for r = 1, 2. The �th binomial moment of N(T ) is given
by

E

[(
N(T )

�

)]
=

M∑
i=1

piρ1,i

(
1 + ρ2,i

1 + ρ1,i

)
ρ�−1

2,i ; � = 1, 2, . . . . (3.16)

Therefore, the mean value is given by

E[N(T )] =
M∑
i=1

piρ1,i

(
1 + ρ2,i

1 + ρ1,i

)
, (3.17)

and the variance is given by

Var[N(T )] = 2
M∑
i=1

piρ1,iρ2,i

(
1 + ρ2,i

1 + ρ1,i

)
+ E[N(T )] − E2[N(T )]. (3.18)
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3.2. Generalized gamma distributed CRT

According to Zonoozi and Dassanayake [19], the CRT for the first cell and that for the
subsequent cells can be modeled by generalized gamma distributions with the pdf

fXr(x) =
crx

αrcr−1

br
αrcrΓ(αr)

e−(x/br)cr
; x ≥ 0, αr, br, cr > 0; r = 1, 2, (3.19)

where Γ(α) =
∫∞
0 uα−1e−udu, α > 0, is the gamma function. In fact, by simulations of mobile

patterns, a good matching has been produced by assuming that α1 = 0.62, b1 ≈ 1.85R, and
c1 = 1.88 for the first cell, and that α2 = 2.31, b2 ≈ 1.22R, and c2 = 1.72 for the subsequent
cells, where R is the radius of circular cells. It is interesting to note that these values
remain unchanged even for more general assumptions in the simulation such as the changes
in velocity and direction of the user movement [19].

The pdf in (3.19) may not have a rational Laplace transform, but its kth moment about
the origin is given by

E[Xk
r ] =

br
kΓ(αr + k/cr)

Γ(αr)
; k = 0, 1, 2, . . . . (3.20)

We can obtain several special cases of (3.19) by selecting the corresponding parameters. For
instance, we can obtain the gamma distribution by choosing cr = 1 and br = 1/µr, and from
here the exponential distribution by letting αr = 1.

We should remember that for a random variable X with pdf fX(x), its Laplace transform
f ∗

X(s) can be expanded in the moments of X as follows:

f ∗
X(s) =

∞∑
k=0

(−1)k sk

k!
E[Xk]. (3.21)

Hence, by using the moments in (3.20), we can expand f ∗
Xr

(λi) as

f ∗
Xr

(λi) = 1 +
∞∑

k=1

(−1)k Gk,r

k!ρr,i
k
; r = 1, 2, (3.22)

where

Gk,r =
Γk−1(αr)Γ(αr + k/cr)

Γk(αr + 1/cr)
; r = 1, 2 (3.23)

and

ρr,i =
E[Ti]

E[Xr]
=

Γ(αr)

λibrΓ(αr + 1/cr)
; r = 1, 2. (3.24)

Note that the dependence on the parameters λi and br is concentrated only in the relative
mobility ratio ρr,i given in (3.24). The expansion in (3.22) can be substituted into (3.7) and
(3.8) to obtain the pmf and the moments of N(T ), respectively. We also note that the series
expansion for f ∗

X(s) in (3.21) is useful to obtain the pmf and the moments of N(T ) for those
distributions of X that do not have closed-form expression for the Laplace transform.

3.3. Circularly distributed CRT

The hexagonal geometry for the wireless cells has been approximated by circles by Hong
and Rappaport [5] and Yeung and Nanda [18]. They have derived the CRT distributions
under the assumptions that the mobile users are uniformly distributed in the system and
that they move in straight lines with direction uniformly distributed over [0, 2π). The pdf
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for the distance Z1 from an arbitrary interior point of a circle with radius R to its boundary
in an arbitrary direction is given by [5, eq.(46)]

fZ1(z) =
2

πR2

√
R2 −

(
z

2

)2

; 0 ≤ z ≤ 2R. (3.25)

Hence the CRT in the first cell is given by the random variable X1 := Z1/V , where V is the
velocity of the user, which we will assume to be constant in the rest of this paper. In fact,
this is a typical assumption also made in [5] and [18]. Under this assumption of constant
velocity, the kth moment of X1 about the origin is given by

E[X1
k] = E

[
Z1

k

V k

]
=

1

V k

∫ 2R

z=0
zkfZ1(z)dz, (3.26)

or equivalently

E[X1
k] =

2

πR2V k

∫ 2R

z=0
zk
√

R2 − (z/2)2dz =
Γ
(

k+1
2

)
√

πΓ
(

k
2

+ 2
) (2R

V

)k

. (3.27)

Substituting (3.27) into (3.21), we obtain

f ∗
X1

(λi) =
∞∑

k=0

(−1)k Mk,1

k!ρ1,i
k
, (3.28)

where

Mk,1 = πk− 1
2

(
3

4

)k Γ
(

k+1
2

)
Γ
(

k
2

+ 2
) ; ρ1,i =

E[Ti]

E[X1]
=

3πV

8Rλi

. (3.29)
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Figure 2: Plots of Gk,1/k! and Mk,1/k! as a function of k
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Figure 3: Plots of Gk,2/k! and Mk,2/k! as a function of k

Similarly, the pdf for the distance Z2 from an arbitrary point on the boundary of a circle
with radius R at which the mobile user enters the cell to another point on the boundary in
a random direction at which he exits from the cell in a straight line is given by [5, eq.(51)]

fZ2(z) =
2

π
√

4R2 − z2
; 0 ≤ z < 2R. (3.30)

We note that the path of a user in this case is equivalent to the random chord of a circle
which has been studied in the field of geometrical probability [10, p.198]. There are several
ways to define the randomness of the chord which lead to different probability measures.
The most appropriate one in the modeling of user movement in cellular systems seems to
be that the direction of the path is uniformly distributed over [0, 2π), which is called S-
randomness [1]. In fact, the pdf in (3.30) is exactly the same as the pdf for the length of a
random chord of a circle with radius R in the sense of S-randomness [10, eq.(2.3.41), p.198].
Then the kth moment of the CRT X2 := Z2/V for the second and subsequent cells is given
by

E[X2
k] =

Γ
(

k+1
2

)
√

πΓ
(

k+2
2

) (2R

V

)k

. (3.31)

Substituting (3.31) into (3.21), we obtain

f ∗
X2

(λi) =
∞∑

k=0

(−1)k Mk,2

k!ρ2,i
k
, (3.32)

where

Mk,2 =
πk− 1

2

2k

Γ
(

k+1
2

)
Γ
(

k
2

+ 1
) ; ρ2,i =

E[Ti]

E[X2]
=

πV

4Rλi

. (3.33)

Let us call the above distributions for X1 and X2 the circular distributions.
We note that the dependence of f ∗

Xr
(λi) on the parameters λi, V, and R is all concen-

trated in the relative mobility ratios ρr,i given in (3.29) and (3.33). We also observe that
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the series expansions in the above for the circular distributions are similar to the series
expansion of the generalized gamma distribution in (3.22). In the above derivation, the
parameter Mk,r is a function of only k for r = 1, 2. Thus we can match the series expansion
for the generalized gamma distribution in (3.22) with those in (3.28) and (3.32) for the
circular distributions. We have found that the parameters reported in [19] for αr and cr

produce reasonable matching, as shown in Figures 2 and 3. We can present better matching
to the circularly distributed case by adjusting the parameters of the generalized gamma
distribution. While many combinations of the values for αr and cr are possible, we show in
Figure 2 only one of them by fixing c1 = 1.88 and finding α1 = 1.0. Similarly, in Figure 3 we
fix c2 = 1.72 and find α2 = 1.85 for the best matching. We may call the generalized gamma
distribution with these parameter values the adjusted circular distribution. In Figure 2 the
generalized gamma case assumes α1 = 0.62 and c1 = 1.88, whereas α2 = 2.31 and c2 = 1.72
in Figure 3.

It may also be interesting to compare the pdf fZ1(z) for Z1 given in (3.25) and the pdf
for Ẑ2, the residual life of Z2, which is given by

fẐ2
(z) =

1

E[Z2]

[
1 −

∫ z

0
fZ2(x)dx

]
=

π

4R

[
1 − 2

π
arcsin

(
z

2R

)]

=
1

2R
arccos

(
z

2R

)
; 0 ≤ z ≤ 2R. (3.34)

As shown in Figure 4, they are different. This fact justifies the analysis of considering a
distribution for the first CRT different from the distribution of the subsequent CRTs in this
paper.
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Figure 4: Plots of the pdf fZ1(z) for Z1 and the pdf for the residual life of Z2

4. Generalized Delayed Renewal Process for CRTs

Let us generalize the delayed renewal process of CRTs so that each CRT X1, X2, . . . may
have different distribution.
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Suppose that the first R CRTs X1, X2, . . . , XR may have different distributions for which
the Laplace transforms of the pdf are given by f ∗

X1
(s), f ∗

X2
(s), . . . , f ∗

XR
(s), respectively, and

that the subsequent CRTs XR+1, XR+2, . . . have the same distribution as XR. As special
cases of this process, we have an ordinary renewal process for R = 1, a delayed renewal
process for R = 2, and the case in which all CRTs are distinct for R = ∞.

For this process, from [2, p.37,eq.(3)], we have

G∗
N(T )(s, z) =

1

s
+

z − 1

s

⎡
⎣R−1∑

j=1

zj−1
j∏

r=1

f ∗
Xr

(s) +
∞∑

j=R

zj−1F ∗
R(s)

[
f ∗

XR
(s)

]j−R

⎤
⎦

=
1

s
+

z − 1

s

R−1∑
j=1

zj−1
j∏

r=1

f ∗
Xr

(s) +
(z − 1)zR−1F ∗

R(s)

s
[
1 − zf ∗

XR
(s)

] , (4.1)

where we have introduced for notational convenience

F ∗
R(s) :=

R∏
r=1

f ∗
Xr

(s). (4.2)

This result is a generalization of (2.8).

4.1. Exponentially distributed CHT

If the CHT T is exponentially distributed with mean E[T ] = 1/λ as in (2.13), we have the
pgf for N(T ) as

GN(T )(z) = λG∗
N(T )(s, z)

∣∣∣∣∣
s=λ

= 1 + (z − 1)
R−1∑
j=1

zj−1
j∏

r=1

f ∗
Xr

(λ) +
(z − 1)zR−1F ∗

R(λ)

1 − zf ∗
XR

(λ)
. (4.3)

It is straightforward as before to obtain the pmf and moments of N(T ) from (4.3). As
the coefficient of zj in the expansion of (4.3) in powers of z, the pmf of N(T ) is given by

P [N(T ) = j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − f ∗
X1

(λ) ; j = 0

[
1 − f ∗

Xj+1
(λ)

] j∏
r=1

f ∗
Xr

(λ) ; 1 ≤ j ≤ R − 1

F ∗
R(λ)

[
1 − f ∗

XR
(λ)

] [
f ∗

XR
(λ)

]j−R
; j ≥ R

. (4.4)

As the coefficient of (z − 1)� in the expansion of (4.3) in powers of z − 1, the �th binomial
moment of N(T ) is given by

E

[(
N(T )

�

)]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R−1∑
j=�

(
j − 1

� − 1

) j∏
r=1

f ∗
Xr

(λ) + F ∗
R(λ)

�−1∑
j=0

(
R − 1

� − j − 1

)
[f ∗

XR
(λ)]j

[1 − f ∗
XR

(λ)]j+1
;

1 ≤ � ≤ R − 1

F ∗
R(λ)

�−1∑
j=�−R

(
R − 1

� − j − 1

)
[f ∗

XR
(λ)]j

[1 − f ∗
XR

(λ)]j+1
; � ≥ R

.

(4.5)
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In particular, the mean is given by

E[N(T )] =
R−1∑
j=1

j∏
r=1

f ∗
Xr

(λ) +
F ∗

R(λ)

1 − f ∗
XR

(λ)
. (4.6)

All the above expressions reduce to those in Section 2 when R = 2.
For R = ∞, by assuming that limR→∞ F ∗

R(λ) = 0 for λ > 0, the pgf of N(T ) is given by

GN(T )(z) = 1 + (z − 1)
∞∑

j=1

zj−1
j∏

r=1

f ∗
Xr

(λ). (4.7)

Thus we have

P [N(T ) = j] =

⎧⎪⎪⎨
⎪⎪⎩

1 − f ∗
X1

(λ) ; j = 0[
1 − f ∗

Xj+1
(λ)

] j∏
r=1

f ∗
Xr

(λ) ; j = 1, 2, . . .
(4.8)

and

E

[(
N(T )

�

)]
=

∞∑
j=�

(
j − 1

� − 1

) j∏
r=1

f ∗
Xr

(λ); � = 1, 2, . . . . (4.9)

4.2. General CHT and exponentially distributed CRTs

Now, we consider a general pdf for the CHT and exponentially distributed CRTs as

f ∗
Xr

(s) =
µr

s + µr

; r = 1, 2, . . . , R. (4.10)

Let us assume for simplicity that all µr’s are distinct. Substituting (4.10) into (4.1) and
expanding in partial fractions in s yields

G∗
N(T )(s, z) = (1 − z)

R−1∑
r=1

Br(z)

s + µr

+
C(z)

s + µR(1 − z)
, (4.11)

where

Br(z) :=

(µr − µR + µRz)
R−2∑
j=r

zj−1

⎡
⎣ j∏

i=1

µi

⎤
⎦
⎡
⎣ R−1∏

i=j+1

(µi − µr)

⎤
⎦ + zR−2(µr − µR)

R−1∏
j=1

µj

µr(µr − µR + µRz)
R−1∏

j=1(j �=r)

(µj − µr)

;

r = 1, 2, . . . , R − 1 (4.12)

and

C(z) := zR−1
R−1∏
j=1

µj

µj − µR + µRz
. (4.13)

Substituting the inversion of (4.11) into (2.1), we obtain the pgf of N(T ) as

GN(T )(z) = (1 − z)
R−1∑
r=1

Br(z)f ∗
T (µr) + C(z)f ∗

T [µR(1 − z)], (4.14)
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where f ∗
T (s) is the Laplace transform of the pdf for the generally distributed CHT T .

It is possible to derive the pmf and moments of N(T ) from (4.14). For example, the
mean is given by

E[N(T )] = −
R−1∑
r=1

Br(1)f ∗
T (µr) + R + µR

(
E[T ] −

R∑
r=1

1

µr

)
, (4.15)

where

Br(1) =

µr

R−2∑
j=r

⎡
⎣ j∏

i=1

µi

⎤
⎦
⎡
⎣ R−1∏

i=j+1

(µi − µr)

⎤
⎦ + (µr − µR)

R−1∏
j=1

µj

µr
2

R−1∏
j=1(j �=r)

(µj − µr)

;

r = 1, 2, . . . , R − 1. (4.16)

4.3. General CHT and exponentially distributed delayed renewal process for
CRTs

In this section, we consider a general pdf for the CHT and the delayed renewal process for
the CRTs that are exponentially distributed as in (2.20). This is a special case of the Section
4.2 for R = 2.

The pgf for N(T ) is given by

GN(T )(z) =
(µ2 − µ1)(z − 1)

µ1 + µ2(z − 1)
f ∗

T (µ1) +
µ1z

µ1 + µ2(z − 1)
f ∗

T [µ2(1 − z)], (4.17)

which follows by substituting R = 2 into (4.14).
We need the jth derivative of GN(T )(z) in order to find the pmf and the moments of

N(T ). It is given by

djGN(T )(z)

dzj
=

(−1)j−1j!µ1(µ2 − µ1)µ2
j−1

[µ1 + µ2(z − 1)]j+1
f ∗

T (µ1)

+ (−1)jj!µ1(µ2 − µ1)µ2
j−1

j−1∑
i=0

f
∗(i)
T [µ2(1 − z)]

i![µ1 + µ2(z − 1)]j−i+1

+
(−1)jµ1µ2

jz

µ1 + µ2(z − 1)
f
∗(j)
T [µ2(1 − z)]; j = 1, 2, . . . , (4.18)

where

f
∗(j)
T (s) :=

djf ∗
T (s)

dsj
= (−1)j

∫ ∞

t=0
tje−stfT (t)dt; j = 1, 2, . . . . (4.19)

From (4.18), we find the pmf for N(T ) as

P [N(T ) = j] =

⎧⎪⎪⎨
⎪⎪⎩

f ∗
T (µ1) ; j = 0

µ1µ2
j−1

(µ2 − µ1)j

⎡
⎣f ∗

T (µ1) −
j−1∑
i=0

(µ1 − µ2)
i

i!
f
∗(j)
T (µ2)

⎤
⎦ ; j = 1, 2, . . .

. (4.20)

The �th binomial moment of N(T ) is given by

E

[(
N(T )

�

)]
=

(
1 − µ1

µ2

)(
µ2

µ1

)� {
(−1)�−1f ∗

T (µ1) +
�−1∑
i=0

(−1)�−i

i!
µ1

iE[T i]

}

+
µ2

�

�!
E[T �]; � = 1, 2, . . . . (4.21)
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For example, the mean is given by

E[N(T )] =
µ2 − µ1

µ1

[f ∗
T (µ1) − 1] + µ2E[T ]. (4.22)

If the CHT is exponentially distributed as in (2.13), we recover the results in Section 2.1.

5. Numerical Results

In previous sections we have obtained many closed-form solutions for the pmf and statistical
moments of the handover distribution for a variety of CHT and CRT combinations. Now, we
will present some numerical examples of E[N(T )] to gain some insights into the mean value
of handovers as a function of the mobility ratio ρ. There are many parameters involved in
some of the models, so we only analyze a representative sample of all of them.

In Figure 5 we plot E[N(T )] for the EE model, i.e., exponential CHT and exponential
CRTs, where ρ2 = 3ρ1. We have also plotted four types of the HE model (hyperexponential
CHT and exponential CRT). In all the cases, we only consider a mixture of two exponentials,
i.e., M = 2 in (3.1). For the HE1 model, we have set p1 = 0.1, ρ11 = ρ1, ρ12 = 3ρ1, ρ21 = 2

3
ρ1,

and ρ22 = 2ρ1. In the HE2 model we have changed p1 to 0.5, and in the HE3 model it has
been set to 0.9. The HE4 model has the same parameters as HE2 except that ρ12 = 3

10
ρ1

and ρ22 = 2
10

ρ1. It is easily seen from (2.25) that E[N(T )] � Kρ1 when ρ2 = Kρ1 and
ρ1 	 1 for the EE model. A similar analysis of (3.17) shows that E[N(T )] � ρ1(2 − 4

3
p1)

for the HE1, HE2, and HE3 models and that E[N(T )] � ρ1(
1
5

+ 7
15

p1) for the HE4 model,
meaning the linear growth of E[N(T )] as ρ1 increases.
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Figure 5: Plots of E[N(T )] as a function of ρ1 for the EE and HE models

We also plot the EE model in Figure 6 in order to make some comparisons with the HC
model, i.e., hyperexponential CHT and circular CRTs. We consider the cases of p1 = 0.1, 0.5
and 0.9. In addition, we set the mobility rates to ρ11 = ρ1, ρ21 = 2

3
ρ1, ρ12 = 3ρ1, and

ρ22 = 2ρ1. It is interesting to notice that E[N(T )] is a linear function of ρ1 and that the
slope decreases as p1 increases. We have not shown E[N(T )] for the hyperexponential CHT
and generalized gamma CRTs model with the parameter values adjusted for the circular
CRTs as discussed in Section 3.3. However, there is a very good matching with the HC
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model for all cases of p1 (the plots overlap) as a result of the good matching shown in
Figures 2 and 3.
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Figure 6: Plots of E[N(T )] as a function of ρ1 for the EE and HC models

Finally, we define the GE model by assuming the gamma distributed CHT and the
exponential CRTs. The Laplace transform of the gamma pdf for the CHT is given by

f ∗
T (s) =

(
λ

s + λ

)α

. (5.1)

Thus, by substituting (5.1) into (4.22) we obtain

E[N(T )] =

(
ρ2

ρ1

− 1

)[(
α

ρ1 + α

)α

− 1

]
+ ρ2, (5.2)

where ρi = αµi/λ, (i = 1, 2). In Figure 7, we plot E[N(T )] in (5.2) for ρ2 = 0.1ρ1 and
α = 1 (EE model), 1.5, 2.5, and 5.5. For all these cases E[N(T )] grows as ρ1 increases, but
the plots almost overlap, meaning that the influence of α in the gamma distribution for the
CHT is negligible. This is because E[N(T )] � 1 − (ρ2/ρ1) + ρ2 when ρ1 	 1 in (5.2).

6. Conclusions

In this paper, we have derived explicit forms for the pmf and the statistical moments of
the number of handovers during a random call holding time (CHT) when the CHT distri-
bution is well-fitted by a mixture of exponential distributions while the cell residence time
(CRT) is arbitrarily distributed. As specific distributions for the CRT, we have dealt with
exponential, gamma, and generalized gamma distributions as well as the distribution that
comes from the length of a random chord of a circle for a model of circular cells. We have
provided good numerical matching between the generalized gamma distribution and the
circular distribution, which improves the result in [19]. We have also considered the case of
a general CHT and exponentially distributed CRTs.

In the present study, we have assumed that the first wireless cell has a different CRT
distribution from those for the subsequent cells. This model may be interesting for situa-
tions where the call originates in a picocell and the portable moves into the microcellular
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Figure 7: Plots of E[N(T )] as a function of ρ1 for the EE and GE models

environment or vice versa. Our mathematical framework is the delayed renewal process [14]
as a generalization of the equilibrium renewal process studied in [13, 15, 17] in the homo-
geneous environment. This means that all but the first CRTs have the same probability
distribution while the first CRT corresponds to its residual life. We have also presented the
case of an irregular topology, which means that the CRT distributions may be different for
all cells.

Many other interesting combinations of the CHT and CRT distributions can be handled
in the same framework. We also remark that obtaining the pmf and the moments for
the number of handovers during a call session is an important step for obtaining other
performance measures, including the probability of completing a call and the handover traffic
rate, for mobile communication networks [9, 14, 15]. In addition, this analysis is important
to obtain performance measures in dynamic mobility management, e.g., movement-based
schemes [6, 7, 16].
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[14] R.M. Rodŕıguez-Dagnino, G. Hernández-Lozano and H. Takagi: Wireless handover
distributions in mixed platforms with multimedia services. SPIE Conference on Internet
Quality and Performance and Control of Network Systems, 4211 (2000), 59–69.
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