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Abstract To integer programming, algebraic approaches using Gröbner bases and standard pairs via toric
ideals have been studied in recent years. In this paper, we consider a unimodular case, e.g., network flow
problems, which enables us to analyze primal and dual problems in an equal setting. By combining existing
results in an algebraic approach, we prove a theorem that the maximum number of dual feasible bases
is obtained by computing the normalized volume of the convex hull generated from column vectors of a
coefficient matrix in the primal standard form. We apply the theorem, partly with Gröbner bases theory, to
transportation problems and minimum cost flow problems on acyclic tournament graphs. In consequence,
we show new algebraic proofs to the Balinski and Russakoff’s result on the dual transportation polytope
and Klee and Witzgall’s result on the primal transportation polytope. Similarly results for the primal case
of acyclic tournament graphs are obtained by using Gelfand, Graev and Postnikov’s result for nilpotent
hypergeometric functions. We also give a bound of the number of feasible bases for its dual case.

Keywords: Network flow, computational algebra, Gröbner basis, standard pair, nor-
malized volume

1. Introduction

Computational algebraic approaches by Gröbner bases [4] and standard pairs [8] to integer
programming reveal various new properties, which can be used to obtain its combinato-
rial complexity bounds, especially tight ones in the unimodular and graphical cases. This
paper investigates the numbers of primal and dual feasible bases of such cases via these
computational algebraic methods.

For a linear programming problem whose coefficient matrix A is unimodular, all the
feasible basic solutions are integral. The unimodularity are also satisfied in its dual problem,
thus these two dualistic pair of problems can be regarded as integer programming problems.
Then, computational algebra provides the following type of characterizations.

(1) Dual feasible bases are bases which do not contain any element in the initial ideal of the
Gröbner basis for toric ideal of A with respect to a cost vector.

(2) The maximum number of dual feasible bases is equal to a certain volume of a polytope
formed by column vectors of A.

Furthermore, from the unimodularity of the dual problem, primal feasible bases can be
analyzed similarly. This paper introduces above characterizations about duality, together
with their proofs where necessary, to unimodular and network-flow problems. Specifically,
we obtain the following results:

• A complete proof of (2) in the unimodular case, which was originally communicated by
Ohsugi and Hibi [7], based on an earlier result of the authors [12] in the graphical case.

• Another algebraic proofs of existing results on the numbers of primal [13] and dual [2]
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feasible bases of the transportation problem.

• The maximum number of dual feasible bases of the minimum-cost flow problem on an
acyclic tournament graph with d vertices is the (d − 1)-th Catalan number 1

d

(
2d−2
d−1

)
by

using (2) with a result for hypergeometric functions [6], while a lower bound for the
number of primal feasible bases is Ω(2�d/6�).
For the Lawrence lifting Λ(A) of A (see [16]), some relations between dual feasible bases

and bases of a vector matroid were obtained. As applications of them, the number of dual
feasible bases for capacitated minimum cost flow problems on an acyclic tournament graph
and that of dual and primal feasible bases for multidimensional transportation problems
have been analyzed [10, 11], based on the theorem in this paper.

2. Preliminaries

2.1. Gröbner bases and standard pairs

We concern the family IPA,c of all integer programs

IPA,c(b) := minimize{cTx | Ax = b, x ∈ N
n}

(A ∈ Z
d×n and row full rank, b ∈ Z

d, c ∈ R
n and N is the set of non-negative integers) as

b varies in NA := {Au | u ∈ N
n} ⊆ Z

d. We assume that c is generic, i.e., each program in
IPA,c has a unique optimal solution. Let Oc ⊆ N

n denote the set of optimal solutions for
an integer program in IPA,c, and Nc := N

n \ Oc the set of non-optimal solutions.
To deal with above programs, we introduce two tools of computational algebra, which

are Gröbner bases and standard pair decompositions of toric ideals. The former works as
a test set for IPA,c, which means that we can obtain an optimal solution of IPA,c(b) by
transforming any feasible solution with elements of test set. Roughly speaking, we can regard
a Gröbner basis as the set Nc of non-optimal solutions. On the other hand, the latter is
introduced in order that we cover the set Oc of optimal solutions of integer programs IPA,c
with a set of vectors and enumerate its number. Consequently we can say that the two tools
correspond to a pair of complement sets in N

n, and in this sense, are dual to each other.
Let k be a field and k[x] := k[x1, . . . , xn] the polynomial ring where x = {x1, . . . , xn}

be the set of variables. For an exponent vector a = (a1, . . . , an) ∈ N
n, we denote xa =

xa1
1 xa2

2 · · ·xan
n . We define toric ideal IA of A ∈ Z

d×n as a binomial ideal IA := 〈xu−xv|Au =
Av, : u, v ∈ N

n〉. Every vector u ∈ Z
n can be written uniquely as u = u+ − u− where

u+ and u− are non-negative and have disjoint supports, hence IA = 〈xu+ −xu−|Au = 0〉.
For f ∈ IA we define the initial term inc(f) of f as the largest term of f by a term
order �c which is determined with respect to the inner product of an exponent vector
and generic c. Then we define the initial ideal inc(IA) as inc(IA) := 〈inc(f)|f ∈ IA〉.
A finite subset Gc = {g1, . . . , gs} ⊆ IA is a Gröbner basis for IA with respect to c if
inc(IA) = 〈inc(g1), . . . , inc(gs)〉. By fixing a term order and adding some conditions,
Gröbner basis is determined uniquely [16].

We consider to cover the set Oc of optimal solutions by pairs which contain a starting
point u and a set of direction σ. For u ∈ N

n and an index set σ ⊆ [n] ≡ {1, . . . , n}, let
(u, σ) :=

{
u +

∑
i∈σ kiei | ki ∈ N

}
.

Definition 2.1 (u, σ) is a standard pair of Oc if it satisfies the following:

(i) supp(u) ∩ σ = ∅, where supp(u) is {i | ui 
= 0}.
(ii) Any point represented as (u, σ) is contained in Oc, i.e. (u, σ) ⊆ Oc.

(iii) (u, σ) 
⊂ (v, τ) for any other (v, τ) that satisfies (i) and (ii).
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Let S(Oc) denote the set of all standard pairs of Oc. The cardinality of S(Oc) is called
the arithmetic degree of Oc [17].

At a first glance, standard pairs might look strange, but they have natural meanings
in combinatorial optimization. In computational algebra, regular triangulations are used
to analyze polytopal structures of standard pairs. Regular triangulations have the same
structures with the dual polytope of the linear relaxation of IPA,c(b), and here we introduce
regular triangulation in preparation for the algebraic proofs in the next section.

Definition 2.2 Let A ∈ Z
d×n be a matrix with rank d and c be a cost vector. We define

the regular triangulation Δc of cone(A) as follows:

(i) σ is called a face of Δc if and only if there exists a vector y ∈ R
d such that yTai =

ci (i ∈ σ) and yTaj < cj (j /∈ σ).

(ii) σ is called a facet of Δc if σ is maximal face of Δc with respect to inclusion.

Faces of Δc have a reciprocal inclusive relationship with faces of a dual polyhedron
{y|yA ≤ c}, more exactly, a feasible basis of the dual problem. Examples of such relation-
ships are as follows:

face of Δc dual polyhedron
∅ ⇐⇒ polytope itself

{i | i is one arbitrary element} ⇐⇒ facets
facets ⇐⇒ vertices

When vertices of conv(A) are in an m-dimensional lattice L � Z
m, we define the nor-

malized volume of a facet σ of Δc by the volume of σ with normalization such that the
volume of the convex hull of 0, b1, . . . , bm is 1. Here, {bi}1≤i≤m are the basis of the lattice
L.

Lemma 2.3 ([16, 17])

(i) If Oc has (∗, σ), where ∗ denotes any point in N
n, then σ is a face of Δc.

(ii) Oc has (0, σ) as a standard pair if and only if σ is a facet of Δc.

(iii) If a1, . . . , an span an affine hyperplane, the number of standard pairs (∗, σ) for a facet
σ of Δc equals the normalized volume of σ.

In this paper, we consider unimodular integer programs, i.e., integer programs whose
coefficient matrices are unimodular.

Definition 2.4 Let A ∈ Z
d×n be a matrix with rank d. A is unimodular if each nonsingular

submatrix of order d has determinant ±1.

Proposition 2.5 ([16]) If A is unimodular, any reduced Gröbner basis of IA is square-free.

The best known examples of unimodular matrices are obtained from incidence matrices
of directed graphs by deleting one row [14].

If A is unimodular, then all standard pairs are obtained from all facets of Δc.

Proposition 2.6 ([9]) If A is unimodular, then S(Oc) = {(0, σ) | σ is a facet of Δc}.
2.2. Transform of IPA,c
In this paper, we also consider the dual problem of the linear relaxation of IPA,c(b) which
corresponds to some basis B. With non-basis N and basis B, A is represented as (N B)
and we rewrite the integer program as follows:

IP(N B),c(b) := minimize{cTx | Nx′ + Bx′′ = b, x ∈ N
n}

c© Operations Research Society of Japan JORSJ (2005) 48-3
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Therefore primal and dual integer problems are:

P(M I),ec(b̃) max (−c̃)Tx′ D
(I −MT),

eb
(c̃) min b̃

T
y′′

s.t. Mx′ + Idx
′′ = b̃, s.t. In−dy

′ − MTy′′ = c̃,
x′, x′′ ≥ 0 y′, y′′ ≥ 0

where M = B−1N ∈ Z
d×(n−d), b̃ = (̃bi)i∈B = B−1b ∈ Z

d, x′′ (resp. x′) is a basic (resp.

non-basic) variable for P(M I),ec(b̃), y′ (resp. y′′) is a basic (resp. non-basic) variable for

D
(I −MT),

eb
(c̃), and c̃ = cN − NT(B−1)TcB ∈ Z

n−d is a reduced cost for B. By considering

integer programs by such forms, both primal and dual problems come to be expressed in
standard forms, hence it enables us to analyze their toric ideals of (M Id) and (In−d −MT)
in a dual setting.

3. Maximum Number of Dual Feasible Bases

For a matrix A ∈ Z
d×n, the homogenized matrix A′ ∈ Z

(d+1)×(n+1) of A is

A′ :=

⎛⎜⎜⎜⎝
1 1 · · · 1 1

A

0
...
0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1 1 · · · 1 1

a1 a2 · · · an

0
...
0

⎞⎟⎟⎟⎠ .

Let a′
i =

(
1
ai

)
for 1 ≤ i ≤ n and a′

n+1 be the (n + 1)-th column vector of A′. We remark
that a′

1, . . . , a
′
n, a′

n+1 span an affine hyperplane. If column vectors of A themselves span an
affine hyperplane, then the normalized volume of conv(A′) is equal to that of conv(A).

We consider another integer program

IPA′,(c,0)(b, M) := minimize
{
cTx

∣∣∣ A′( x
xn+1

)
=
(

M
b
)
,
( x

xn+1

) ∈ N
n+1
}

for M ∈ Z, and the family IPA′,(c,0) of integer programs IPA′,(c,0)(b, M) as
(

M
b
)

varies in
{A′u | u ∈ N

n+1}. If c is generic, (c, 0) is also generic. Let O′
(c,0) be the set of all the

optimal solutions of all programs in IPA′,(c,0).

Proposition 3.1 ([17]) (a, σ) ∈ S(Oc) if and only if
((a

0

)
, σ ∪ {n + 1}) ∈ S(O′

(c,0)).

As a′
1, . . . , a

′
n+1 span an affine hyperplane, the normalized volume of conv(A′) gives the

number of standard pairs of in(c,k)(IA′), which correspond to the maximal faces of Δ′
(c,k)

by Lemma 2.3 (iii), for any k ∈ R such that (c, k) becomes homogeneous. Therefore, using
Proposition 3.1, the maximum arithmetic degree of inc(IA) can be obtained via conv(A′).

Theorem 3.2 ([7]) If A is unimodular, then there exists a cost vector c such that the
number of dual feasible bases for IPA,c(b) is equal to the normalized volume of conv(A′).

Proof: For any c, the set of standard pairs of Oc is {(0, σ) | σ is a maximal face of Δc}, and
each (0, σ) corresponds to the standard pair (0, σ∪{n+1}) of O′

(c,0). Especially, σ∪{n+1}
is a facet of Δ′

(c,0). Therefore,

|Oc| = |{σ | (0, σ) ∈ S (Oc)}|
=

∣∣{σ | (0, σ ∪ {n + 1}) ∈ S
(O′

(c,0)

)}∣∣
≤ ∣∣{(∗, τ) ∈ S

(O′
(c,0)

) | τ : maximal face of Δ′
(c,0)

}∣∣
= normalized volume of conv(A′).

c© Operations Research Society of Japan JORSJ (2005) 48-3



Numbers of Bases of Unimodular Integer Programs 187

We show there exists a vector c which satisfies above equality. Let IA ⊂ k[x1, . . . , xn]

and IA′ ⊂ k[x1, . . . , xn, xn+1]. Then, xa − xbxk
n+1 ∈ IA′ (xa, xb ∈ k[x1, . . . , xn]) if and

only if
∑n

i=1 ai =
∑n

i=1 bi + k and xa − xb ∈ IA. We consider that c = (1, 1, . . . , 1) and �
is any term order. For any g in the reduced Gröbner basis G for IA′ with respect to �(c,0),
in�(c,0)

(g) does not contain xn+1, and in�(c,0)
(g) is square-free as {in�(c,0)

(g) | g ∈ G}
minimally generates in�′

c(IA) where �′ is the restriction of � to k[x1, . . . , xn]. Thus, the

corresponding triangulation Δ′
�(c,0) is unimodular [16], and each maximal face for Δ′

�(c,0)

corresponds to a standard pair of inc(IA) bijectively. Then, the arithmetic degree of inc(IA)
is equal to the number of maximal faces of Δ′

�(c,0), which is the normalized volume of

conv(A′). �

4. Number of Feasible Bases of Several Network Problems

4.1. Maximum number for the transportation problem on Km,n

Let A be a matrix obtained by deleting redundant rows of the incidence matrix of the
bipartite graph Km,n. Then IPA,c(b) is the transportation problem on Km,n:

PA,c(b) := minimize {cTx | Ax = b, x ≥ 0}.
We give another proof for the following result by Balinski and Russakoff [2].

Theorem 4.1 ([2]) The maximum number of vertices for the dual polyhedron of the trans-
portation problem on Km,n is equal to

(
m+n−2

m−1

)
.

As column vectors of A span an affine hyperplane, the normalized volume of conv(A′)
is equal to that of conv(A). To show the theorem, we show a unimodular triangulation of
conv(A), i.e., a triangulation such that the normalized volume of any facet is 1.

Lemma 4.2 ([16]) Let � be the reverse lexicographic order induced from the variable or-
dering

x1,1 ≺ x1,2 ≺ · · · ≺ x1,n ≺ x2,1 ≺ · · · ≺ xm,n.

Then the reduced Gröbner basis of IA with respect to � equals

G� = {xi,lxj,k − xi,kxj,l | 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n},
where underlined term is the initial term.

Corollary 4.3 ([16]) Let c ∈ R
mn be a cost vector that satisfies

ci,l + cj,k > ci,k + cj,l for any 1 ≤ i < j ≤ m, 1 ≤ k < l ≤ n.

Then σ ⊂ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a facet of the regular triangulation for c of
conv(A) if and only if, for any pair (p, q) and (r, s) in σ, p ≤ r and q ≤ s. Furthermore,
the normalized volume of σ is 1.

Let us consider the table of size m × n as below.
(1, 1) (1, 2) · · · (1, n)
(2, 1) (2, 2) · · · (2, n)

...
...

. . .
...

(m, 1) (m, 2) · · · (m, n)

Then Corollary 4.3 implies that each path from (1, 1) to (m, n) of length m+n−2 corresponds
to a facet for c. Therefore, the normalized volume of conv(A) is equal to the total number
of such paths, which is

(
m+n−2

m−1

)
.
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4.2. Maximum number for the dual transportation problem on K2,n

Now we consider the dual problem of the transportation problem on K2,n. Our results in
previous sections give another proof for the following result by Klee and Witzgall [13].

Theorem 4.4 ([13]) The maximum number of vertices for the feasible region of the trans-
portation problem on K2,n is equal to (n − �n/2�)( n

�n/2�
)
.

As one constraint of the transportation problem PA,c(b) on K2,n is redundant, we can
consider the problem PA,c(b), which is obtained from PA,c(b) by deleting the second con-
straint.

For the basis B := {(1, n), (2, 1), (2, 2), . . . , (2, n)}, the coefficient matrix of the dictionary
of PA,c(b) is ⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1 0 0 · · · 0 0
1 0 · · · 0 0 1 0 · · · 0 0
0 1 · · · 0 0 0 1 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 · · · 1 0 0 0 · · · 1 0
−1 −1 · · · −1 0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and the coefficient matrix D for its dual problem is

D :=

⎛⎜⎜⎜⎝
−1 −1 0 · · · 0 1 1 0 · · · 0
−1 0 −1 · · · 0 1 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
−1 0 0 · · · −1 1 0 0 · · · 1

⎞⎟⎟⎟⎠ .

Therefore, conv(D′) is a linear transformation of the convex hull of
{e1, . . . , en−1,−e1, . . . , −en−1, 1,−1, 0}, where e1, . . . , en−1 are unit vectors of R

n−1, 1 ∈
R

n−1 is the vector all of whose elements are 1, and 0 ∈ R
n−1 is the origin. Let Pn denote

the convex hull of {e1, . . . , en−1,−e1, . . . ,−en−1, 1,−1, 0}.

−1

1

−1

1

Figure 1: Polytope P3 and P4

Let p = (p1, . . . , pn) ∈ R
n be a point outside a polytope P ⊂ R

n, and F be a facet of P
whose supporting hyperplane is a1x1 + · · · + anxn = a0. F is visible from p if a1p1 + · · · +
anpn > a0. Then conv(P ∪ {p}) = P ∪ {conv(F ∪ {p}) | F is visible from p} (see [3]).

Proof of Theorem 4.4: We calculate the normalized volume of Pn. We decompose Pn to
Vn := conv(e1, . . . , en−1,−e1, . . . ,−en−1) and its outside.

First, we show that the normalized volume of Vn is equal to 2n−1 by induction for n.
Clearly, the normalized volume of V2 is 2. As Vn is the convex hull of Vn−1, en−1 and
−en−1, the normalized volume of Vn is twice that of conv(Vn−1, en−1). By the hypothesis of
induction, the normalized volume of conv(Vn−1, en−1) is 2n−2, and that of Vn is shown to be
2n−1.
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Numbers of Bases of Unimodular Integer Programs 189

We next calculate the normalized volume of outside of Vn. As Vn is an (n−1)-dimensional
crosspolytope, a hyperplane a1x1 + · · · + an−1xn−1 = a0 is a supporting hyperplane of some
facet of Vn if and only if a0 = 1 and |ai| = 1 for any i = 1, . . . , n−1 [18]. Let F (a1, . . . , an−1)
be a facet of Vn whose supporting hyperplane is a1x1 + · · · + an−1xn−1 = 1. Then, if
F (a1, . . . , an−1) is visible from 1, F (−a1, . . . ,−an−1) is visible from −1, and the sets of
facets of Vn that are visible from 1 and that are visible from −1 are disjoint. Therefore, we
need to consider only the facets that are visible from 1.

F (a1, . . . , an−1) is visible from 1 if and only if a1 + · · · + an−1 > 1. We compute the
normalized volume of conv(F ∪{1}) for a facet F of Pn that is visible from 1. As vertices of
Pn lie on the lattice generated by e1, . . . , en−1, the normalized volume of conv(F ∪{1}) is k
if the Euclidean distance between 1 and the hyperplane of F is k/

√
n − 1. Thus, for a facet

F (a1, . . . , an−1) of Vn visible from 1, the normalized volume of conv(F (a1, . . . , an−1) ∪ {1})
is p−1 if and only if |{i | ai = 1}|−|{i | ai = −1}| = p. Therefore, for k = 0, . . . , �n−2

2
�, the

number of facets F (a1, . . . , an−1) such that the normalized volume of conv(F (a1, . . . , an−1)∪
{1}) = n − 2k − 2 is equal to

(
n−1

k

)
, and the normalized volume of Pn is equal to 2n−1 +

2
∑�(n−2)/2�

k=0

(
n−1

k

)
(n − 2k − 2) = (n − �n/2�)( n

�n/2�
)
. �

4.3. Maximum number for the minimum-cost flow problem on the acyclic tour-
nament graph

A matrix A denotes an incidence matrix of a graph. As one constraint of PA,c(b) is redun-
dant, we can consider the problem PA,c(b), which is obtained from PA,c(b) by deleting the

last constraint. Then inc(IA) = inc(IA), and A is row-full rank. In addition, for two dual
polyhedra {y|Ay ≤ c} and {y| yA ≤ c} there exists a surjection from y to y and both
triangulations come to be identical. Let Δc denote both triangulations.

As any initial ideal inc(IA) is generated by square-free monomials(Proposition 2.5) , the
standard pairs S(inc(IA)) are (0, σ) where σ ranges among all maximal faces for c.

The arcs in the optimum flow of uncapacitated minimum cost flow problems form a
forest [1]. Therefore, as the rank of A equals d − 1, the next proposition is implied by
Lemma 2.3, Proposition 2.5, and Proposition 2.6.

Proposition 4.5 (a, σ) is a standard pair of inc(IA) if and only if xa = 1 and σ is a
spanning tree of Gd such that xσ /∈ inc(IA).

The results shown in Section 3 indicate that there is a one-to-one correspondence be-
tween the standard pairs (1, ∗),where ∗ means any vector ⊆ [n], of inc(IA) and the dual
feasible bases of PA,c(b). Therefore, the Hoşten-Thomas algorithm for the minimum cost
flow problem PA,c(b) is a variant of the enumeration of dual feasible bases.

The Gröbner bases shown in the previous section give upper and lower bounds for the
arithmetic degree (i.e., bounds for the number of vertices of the dual polyhedron). The
genericity of c implies that the arithmetic degree of inc(IA) is equal to or greater than 1.

Theorem 4.6 The minimum arithmetic degree of inc(IA) in which c varies all generic cost
vectors is equal to 1.

Proof: For a cost vector c = (c1,2, . . . , c1,d, c2,3, . . . , cd−1,d) satisfying ci,j > ci,i+1+ci+1,i+2 · · ·+
cj−1,j for any i < j − 1, inc(IA) = 〈xi,j | j − i > 1〉. Then xa /∈ inc(IA) if and only
if ai,j = 0 for any (i, j) such that j − i > 1. The set of all such monomials is equal to
(1, {(1, 2), (2, 3), . . . , (d − 1, d)}). Thus, only this pair is a standard pair of inc(IA). �

In order to show the upper bound, we use the next result based on the study of hyper-
geometric systems on unipotent matrices reported by Gelfand et al. [6].
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Lemma 4.7 ([6]) Let A′ be the homogenized matrix (3) for the incidence matrix A of the
acyclic tournament graph with d vertices, and conv(A′) be the convex hull of a′

1, . . . , a
′
n+1.

Then, the normalized volume of conv(A′) is equal to the (d − 1)-th Catalan number Cd−1.

Therefore, by Theorem 3.2, we obtain the upper bound for the arithmetic degree.

Theorem 4.8 The maximum arithmetic degree of inc(IA) in which c varies all generic cost
vectors equals Cd−1 := 1

d

(
2(d−1)

d−1

)
, which is the (d − 1)-th Catalan number.

The Catalan number equals 4n√
πn3/2

(
1 + O

(
1
n

))
(e.g., see [5]). This number is exponential

for n.
We show an example of a cost vector which achieves the maximum arithmetic degree in

Theorem 4.8.

Theorem 4.9 For the cost vector satisfying ci,j+cj,k > ci,k for any i < j < k and ci,k+cj,l >
ci,l + cj,k for any i < j < k < l, the arithmetic degree of inc(IA) is the (d − 1)-th Catalan
number.

Proof: (0, σ) is a standard pair of inc(IA) if and only if σ is a spanning tree of the acyclic
tournament graph that satisfies the following two conditions, which is called standard tree
in [6]:

(a) there are no 1 ≤ i < j < k ≤ d such that both (i, j) and (j, k) are arcs in σ, and
(b) there are no 1 ≤ i < j < k < l ≤ d such that both (i, k) and (j, l) are arcs in σ.

The number of such spanning trees is the (d− 1)-th Catalan number (e.g., see [6, 15]). �

4.4. Lower bound for the dual minimum-cost flow problem on the acyclic tour-
nament graph

Similar to Section 4.3, we assume here that b̃ is generic. As any initial ideal in
eb
(I(I −MT))

is generated by square-free monomials, any standard pair in S(in
eb
(I(I −MT))) is of the form

(1, ∗). Moreover, the support of each optimal solution of D(I −MT),ec(b̃) does not include a
cutset.

Proposition 4.10 For a cost vector b̃ such that the linear system (M I)x = b̃B has a

non-negative solution, I(I −MT) has a reduced Gröbner basis with respect to b̃.

Proposition 4.11 (a, σ) is a standard pair of in
eb
(I(I −MT)) if and only if xa = 1 and σ

is a co-tree of Gd such that xσ /∈ in
eb
(I(I −MT)).

Theorem 4.12 For any b̃ that satisfies the condition in Proposition 4.10, there exists S ⊂
{1, . . . , d − 1} with |S| ≥ �(d − 1)/6� such that, for any σ ⊆ S, there exists a spanning tree
Tσ of Gd which satisfies the following:

(A) Tσ contains the arc set {(i, i + 1) | i ∈ S\σ} and does not contain any arc in
{(j, j + 1) | j ∈ σ}

(B) (1, Tσ) is a standard pair of in
eb
(I(I −MT)), where Tσ := E\Tσ is a co-tree of Tσ.

In particular, as Tσ 
= Tτ for any σ, τ ⊆ S (σ 
= τ), in
eb
(I(I −MT)) has at least Ω(2�d/6�)

standard pairs for any generic b that satisfies the condition in Proposition 4.10.

Proof: We divide {1, . . . , d − 1} into the following four subsets.

M0 := {i ∈ {1, . . . , d − 1} | xi,i+1 ∈ in
eb
(I(I −MT))}

Mk := {i ∈ {1, . . . , d − 1} | i /∈ M0, i ≡ k − 1 (mod 3)} for k = 1, 2, 3.
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Lemma 4.13 |M0| ≤ �(d − 1)/2�.
Proof of Lemma 4.13: We consider a cutset D which corresponds to (V +, V −) such that
fD contains xi,j as a term of degree 1. Without loss of generality, we set i ∈ V +. On the
assumption that j − i > 1, for any k (i < k < j), if k ∈ V + then fD contains xk,j and xi,j

in the same term, otherwise fD contains xi,k and xi,j in the same term, which contradicts
that xi,j is a term of fD of degree 1. Thus, j = i +1. In addition, k ∈ V − for any k < i and
k ∈ V + for any k > i+1. Therefore, V + = {i, i+2, i+3, . . . , d} and V − = {1, . . . , i−1, i+1}.

We consider that in
eb
(f) = xi,i+1 for some f ∈ I(I −MT). If xi−1,i ∈ in

eb
(I(I −MT)), then

f can be reduced by the binomial corresponding to the cutset between {i− 1 , i + 1, . . . , d}
and {1, . . . , i − 2, i} to

f ′ := xi,i+1 −
{( ∏

k≤i−2

xk,i

)( ∏
k≥i+2

xi+1,k

)
⎛⎜⎝ ∏

k≤i−1,
l≥i+2

xk,l

⎞⎟⎠( ∏
k≤i−2

xk,i−1

)( ∏
k≥i+1

xi,k

)⎛⎜⎝ ∏
k≤i−2,
l≥i+1

xk,l

⎞⎟⎠
⎫⎪⎬⎪⎭ ,

and its initial term is xi,i+1. As both terms of this binomial contain xi,i+1, this implies that

in
eb
(f ′/xi,i+1) = 1. As b̃ defines a term order by Proposition 4.10, this is a contradiction. �

Thus, at least one of M1, M2, M3 has at least �(d− 1)/6� elements. Let S be one such
Mi (i = 1, 2, 3). For any σ := {i1 > i2 > · · · > ir} ⊆ S, we construct the desired spanning
trees T∅, T{i1}, T{i1,i2}, . . . , Tσ inductively.

· Initial step:
Let T∅ := {(1, 2), (2, 3), . . . , (d − 1, d)}. Clearly, T∅ is a spanning tree. As the reduced

Gröbner basis corresponds to a subset of cutsets, the initial term of any element of the
reduced Gröbner basis contains a variable xi,i+1 for some i. Thus, xT∅ /∈ in

eb
(I(I −MT)).

· Induction step:
Let Tσ\{ir} be the desired spanning tree for σ \ {ir}. We define two edge sets

T 1 :=
{
Tσ\{ir} \ {(ir, ir + 1)}} ∪ {(ir, ir + 2)} ,

T 2 := {T 1 \ {(ir + 1, ir + 2)}} ∪ {(ir − 1, ir + 1)} .

Then, both T 1 and T 2 are spanning trees and satisfy the condition (A). We show here that
either T 1 or T 2 satisfies the condition (B).
(a) The case where T 1 satisfies the condition (ii).

T 1 is the desired spanning tree Tσ.
(b) The case where T 1 does not satisfy the condition (ii).

In this case, xT 1 ∈ in
eb
(I(I −MT)). Let G be the reduced Gröbner basis for I(I −MT) with

respect to b̃. Then, xT 1
can be reduced by some binomial g ∈ G, and such g is of the

following form (See Figure 3).

(i) g
(1)
(p), which corresponds to the cutset for (V +, V −), V + = {p, p + 1, . . . , ir, ir + 2, ir +

3, . . . , d} and V − = {1, 2, . . . , p − 1, ir + 1} for some p ≤ ir, and its initial term is a
product of variables corresponding to arcs from V + to V −, or
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i r
ri +1

ri +2
ri −1

i r
ri +1
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T 1
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ri +1

ri +2
ri −1

2T

1 n−1
n

2

1 n−1
n

2

σcurrent T

1 n−1
n

2

Figure 2: Two trees T 1 (middle) and T 2 (right) for the current spanning tree (left)

(ii) (The case of r > 1) g
(2)
(p,t), which corresponds to the cutset for (V +, V −), V − = {1,

2, . . . , p−1, ir +1, iq(1) +1, . . . , iq(t) +1} and V + = V \V − for 1 ≤ ∃q(t) < · · · < ∃q(1) < r
such that (iq(k) + 1, iq(k) + 2) ∈ Tσ\{ir} for k = 1, . . . , t and 1 ≤ ∃p ≤ ir, and its initial
term is a product of variables corresponding to arcs from V + to V −.

(i) (ii)

:
:

:
: :

:

:
:

:
:

:
:

:
:

:
:

:
:

−
V

−
VV

+
V

+

11
2

p−1

p

d
d

p−1

q(t)

i  +2r

i  +3r
i  +1r

p

r

q(1)

q(1)

q(2)
q(2)

q(1)

i  +2

ir

i  +1r

i     +1

i     +1

i    +1

i  

i     +2

i  

ir

Figure 3: Cutsets corresponding to binomials g
(1)
(p) (left) and g

(2)
(p,t) (right)

Lemma 4.14 g
(1)
(p) ∈ G for some p and xT 1

can be reduced by g
(1)
(1), i.e., the initial term of

g
(1)
(1) corresponds to the set of arcs {(k, ir + 1) : k ≤ ir}.

Proof of Lemma 4.14: The case of r = 1 is trivial.

We suppose that r > 1 and xT 1
cannot be reduced by any g

(1)
(p). Then, xT 1

can be reduced

by some g
(2)
(p,t), which is an element of G, and xT 1

can also be reduced by g
(2)
(1,t) (otherwise,

g
(2)
(p,t) is reduced by g

(2)
(1,t) and g

(2)
(p,t) cannot be an element of G).

Suppose that xT 1
can be reduced by g

(2)
(1,t) with t = 1. Let m1 be the monomial obtained

by reducing xT 1
by g

(2)
(1,t). Then m1 can be reduced to the monomial m2 by g

(1)
(1) (the initial

term of g
(1)
(1) is a product of variables corresponding to arcs from V − to V + by assumption).

For a binomial fD ∈ I(I −MT), which corresponds to the cutset D for (V +
D , V −

D ) such that
V −

D = {iq(1) +1} and V +
D = V \V −

D , in
eb
(fD) corresponds to arcs from V −

D to V +
D (otherwise,

xTσ\{ir} can be reduced by fD, which contradicts the assumption of the induction). Then, m2

can be reduced by fD, and the resulting monomial is xT 1
, which contradicts the definition

of term order by b̃.
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Table 1: Divided and multiplied variables while reducing by g
(2)
(1,1) and g

(1)
(1)

reduce by g
(2)
(1,1) reduce by g

(1)
(1)

divided variables multiplied variables divided variables multiplied variables
{xk,ir+1 : k ≤ ir}, {xir+1,l : l ≥ ir + 2, {xir+1,l : {xk,ir+1 : k ≤ ir}
{xk,iq(1)+1 : l 
= iq(1) + 1}, l ≥ ir + 2}

k ≤ iq(1), k 
= ir + 1} {xiq(1)+1,l : l ≥ iq(1) + 2}

Similarly, in the case that in which xT 1
can be reduced by g

(2)
(1,t) for some t > 1, using

fD ∈ I(I −MT), which corresponds to the cutset D for (V +
D , V −

D ) such that V −
D = {iq(1) +

1, iq(2) +1, . . . , iq(t) +1}, and V +
D = V \V −

D , we can show a contradiction. Thus, there exists

some p such that g
(1)
(p) ∈ G.

If xT 1
cannot be reduced by g

(1)
(1), i.e., the initial term of g

(1)
(1) corresponds to the set of

arcs {(ir + 1, l) : l ≥ ir + 2}, then g
(1)
(p) can be reduced by g

(1)
(1) , which contradicts that g

(1)
(p)

is an element of reduced Gröbner basis G. Thus, the second statement follows. �

If xT 1 ∈ in
eb
(I(I −MT)), then xT 2

cannot be reduced by any binomial in G. If xT 2
can be

reduced by some g ∈ G, then g is of the following form.

(i) the binomial g
(1)
(ir), and its initial term is xir ,ir+1,

(ii) any binomial that corresponds to the cutset for (V +, V −) such that ir + 1 ∈ V + and
1, 2, . . . , ir, ir + 2 ∈ V −, and its initial term is a product of variables corresponding to
arcs from V + to V −, or

(iii) (The case of r > 1) g
(2)
(ir ,t), and its initial term is a product of variables corresponding

to arcs from V + to V −.

If case (i) occurs, the initial term of g
(1)
(ir) is xir ,ir+1, which contradicts ir /∈ M0. On the

other hand, a binomial of type (ii) can be reduced by g
(1)
(1) by the above lemma, and cannot

be contained in G.

Let us consider that case (iii) occurs. If xT 2
can be reduced by g

(2)
(ir ,t) with t = 1, then

the monomial to which xT 2
is reduced by g

(2)
(ir ,1) can be reduced by a binomial fD ∈ I(I −MT),

for the cutset D which corresponds to (V +
D , V −

D ) where V +
D = {1, 2, . . . , ir − 1, ir + 1} and

V −
D = V \ V +

D , to some monomial m (the initial term of fD is a product of variables
corresponding to arcs from V +

D to V −
D since ir /∈ M0).

Table 2: Divided and multiplied variables while reducing by g
(2)
(ir ,1) and fD

reduce by g
(2)
(ir ,1) reduce by fD

divided variables multiplied variables divided variables multiplied variable
xir ,ir+1, xir,iq(1)+1, {xk,ir : k ≤ ir − 1}, {xk,ir : k ≤ ir − 1}, xir ,ir+1

xir+2,iq(1)+1, {xk,l : k ≤ ir + 1, k 
= ir, {xk,l : k ≤ ir + 1,

xir+3,iq(1)+1, l ≥ ir + 2, l 
= iq(1) + 1}, k 
= ir, l ≥ ir + 2}
. . . , xiq(1),iq(1)+1 {xiq(1)+1,l : l ≥ iq(1) + 2}

For a binomial fD′ ∈ I(I −MT), which corresponds to the cutset D′ for (V +
D′ , V

−
D′) such that

V −
D′ = {iq(1) +1} and V +

D′ = V \V −
D′, in

eb
(fD′) corresponds to arcs from V −

D′ to V +
D′ (otherwise,
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xTσ\{ir} can be reduced by fD′ , which contradicts the assumption of the induction). Then, m

can be reduced by fD′, and the resulting monomial is xT 2
, which contradicts the definition

of a term order by b̃.

Similarly, in the case in which xT 2
can be reduced by g

(2)
(ir ,t) for some t > 1, using the

same fD and fD′ ∈ I(I −MT), which corresponds to the cutset D′ for (V +
D′, V

−
D′) such that

V −
D′ = {iq(1) + 1, iq(2) + 1, . . . , iq(t) + 1}, and V +

D′ = V \ V −
D′, we can show a contradiction.

Therefore, xT 2
/∈ in

eb
(I(I −MT)), and T 2 is the desired spanning tree Tσ. �

5. Concluding Remarks

In this paper, we proposed a unified approach to count the maximum number of dual feasible
bases by computing a normalized volume of the convex hull of column vectors generated by
a homogenized matrix. Then we applied the approach to the maximum number of dual and
primal feasible bases of network flow problems and obtained following results:

Table 3: The number of dual and primal feasible bases

primal problem dual problem
(dual feasible bases) (primal feasible bases)

transportation problem for Km,n

(
m+n−2

m−1

)
(n − �n/2�)( n

�n/2�
) · · · (m = 2)

minimum cost flow problem for d
Catalan number Cd−1 Ω(2�d/6�) · · · (∗)vertices acyclic tournament graph

We gave new algebraic proofs to existing results on transportation problems, moreover
the maximum numbers of dual feasible bases on minimum cost flow problem were newly
obtained. However, for primal feasible bases on minimum cost flow problem (∗), we showed
only an exponential lower bound. Furthermore, other interesting optimization problems
may be analyzed through computing its number of feasible bases by algebraic methods.
With these points, following open problems are left:

• Compute the normalized volume of primal polyhedra (i.e. a tight bound of the number
of primal feasible bases) for minimum cost flow problem on acyclic tournament graph.

• Characterize the number of feasible bases of general integer programs by the approach
using normalized volume.
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