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Abstract We consider the problem of locating a single new facility in the plane in the presence of a bounded
region, where the distance measures are different in the interior and exterior of this region. This is, in fact,
an extension of previous work for unbounded regions separated by a line (Brimberg et al. [2]). We explore
the properties of the problem, propose exact and approximate solution procedures, and examine a special
case.
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1. Introduction

Suppose Ω1 ⊂ �2 is a closed bounded set (region) of polygonal shape, and Ω2 is its exterior.
Suppose also that in each region there are a given number of existing facilities (fixed points)
with known weights, and that the distance measure in Ω1 is induced by a norm k1,and in
Ω2 a different norm k2. We want to find the location of a single new facility so that the sum
of distances from the existing facilities to this new facility is minimized.

Mathematically, the problem can be stated as:

(P1) min
N∑

i=1

wid(X,Pi) =
∑

Pi∈Ω1

wid(X,Pi)+
∑

Pi∈Ω2

wid(X,Pi);

where:
N = total number of fixed points,
Pi = (ai, bi), the coordinates of fixed point i, i = 1, . . ., N ,
wi = the weight of fixed point i, wi > 0, i = 1, . . ., N ,
X = (x, y) the location of the new facility, unknown
d(X,Y ) = the shortest (geodesic) path distance between any two points X, Y ∈ �2.

An application of this problem is the location of a facility within or outside an urban area
where due to the layout of the streets the movement is slow within the city boundary, while
outside this boundary the movement is fast. For mathematical convenience, the movement
along a boundary is always assumed to be the faster of the two modes.

The closed region Ω1 could also be a province, territory, or country with a different
transportation grid. By increasing the number of sides, the polygon representation could
be made as accurate as desired. Furthermore, Ω1 would, in general, be nonconvex in shape.

A related problem with Euclidean distances on one side and rectilinear distances on the
other side of a line has been studied by Parlar [10]. The author shows that the objective
function is not convex in X, and formulates the problem as a mixed integer program. A
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136 J. Brimberg, H. Kakhki & G. Wesolowsky

modified Weiszfeld procedure is proposed to solve the problem, and the results are compared
with those obtained using an adaptive random search procedure for three example problems.
Batta and Palekar [1] examine a modeling framework for a mixed planar/network facility
location problem. They analyze the p-median problem in a region with a network structure
in some parts and a rectilinear structure in some other parts. Carrizosa, and Rodriguez-
Chia [3] also address a p-facility minisum problem but with a metric induced by a gauge
and a finite set of rapid transit lines. Mitchell and Papadimitriou [9] consider the problem
of finding the shortest paths through a planar subdivision with weighted Euclidean metrics.
Brimberg et al. [2] consider locating a facility in regions with varying norms, where the
regions are half spaces, as opposed to the closed region we consider here. The unbounded
half-planes allow some nice mathematical properties.

A related topic considers the location of facilities in the presence of regions that act as
barriers to travel. For example, Dearing [4] examines the single facility location problem with
rectilinear travel distances where specified regions act as barriers; that is travel through these
regions is not permitted. Savas et al. [11] investigate a similar problem where the facility
has a finite size. A global optimization approach is developed in McGarvey and Cavalier [8].
Other related references include Dearing et al. [5] and Wang et al. [12]. The model presented
here may be viewed as a generalization of the location problem with barriers to travel. By
assigning a high inflation factor to the norm k1 in Ω1 (see, e.g., Love et al. [7], ch.10, for
a discussion of distance functions), we may penalize travel within Ω1 to the extent that it
becomes a barrier to travel.

The remainder of the paper is organized as follows. In the next section we examine the
mathematical properties of our model. These general properties are applied in Section 3 to
a simplified case. Section 4 builds a framework for finding exact and approximate solutions
to the problem. We conclude the paper with a short summary and suggestions for future
research.

2. Model Properties

The problem is depicted in Figure 1, which will be used to assist in developing some impor-
tant properties. Here we have a nonconvex bounded polygonal region Ω1 with distance norm
k1, and exterior region Ω2 with norm k2. Fixed points (or existing facilities) are located in
both Ω1 and Ω2. The objective is to find the location X of a new facility that minimizes
the cost function in (P1).

An important aspect of the problem is to determine the geodesic (or shortest) path as
a function of X to each fixed point Pi. For example, consider the shortest distance from
an interior point X1 ∈ Ω1 to exterior point P1 ∈ Ω2, shown in Figure 1. In this case, the
geodesic path intersects the line segment L = [V1, V2] of the boundary at some point Z. We
present the following preliminary result.

Property 1 Consider a fixed point P ∈ Ω2, an X ∈ Ω1, and a fixed (straight) line segment
L of any orientation.

Let

d(X,P ) = min
Z∈L
{k1(X,Z) + k2(Z, P )}. (1)

Then d is a convex function of X.

Proof: The proof follows analogously to the one in Lemma 3 of Brimberg et al. [2] where L
is a line dividing �2 into two half planes. We give it here for completeness.
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Figure 1: An illustration of the problem

Since k1 and k2 are norms, it follows that the composite distance function D(X,Z) =
k1(X,Z) + k2(Z,P ) is a convex function in (X,Z). Therefore,

D(V,W ) ≤ λD(X,Y ) + (1− λ)D(U,Z)

where (X,Y ), (U,Z) are any points in �4 and

(V,W ) = λ(X,Y ) + (1− λ)(U,Z), 0 ≤ λ ≤ 1.

Choose Y, Z ∈ L such that D(X,Y ) = d(X,P ), D(U ,Z) =d(U ,P ). It follows that:

W = λY + (1− λ)Z ∈ L

and
d(V, P ) ≤ D(V,W ) ≤ λd(X,P ) + (1− λ)d(U, P ). �

Due to the nonconvex shape of Ω1, the geodesic path may be more convoluted, passing
through several boundary edges as shown going from X2 ∈ Ω2 to P3 ∈ Ω1 in Figure 1. We
extend the preceding result to handle this case as follows.

Property 2 Consider a fixed point P , fixed (straight) line segments L1, L2, ..., Ln of arbi-
trary orientations and distances induced by arbitrary norms k0, k1, ..., kn. Let

d(X,P ) = min
Zi∈Li,i=1,...,n

{k0(X,Z1) +
n−1∑
i=1

ki(Zi, Zi+1) + kn(Zn, P )}. (2)

Then d is a convex function of X.
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Proof: The proof follows in a similar fashion as before. For example, let n = 2, and define

D(X,Z1, Z2) = k0(X,Z1) + k1(Z1, Z2) + k2(Z2, P ).

Then D is convex in (X,Z1, Z2). Let (X1, Y1, Y2), (X2, Z1, Z2) be any two points in �6, and
(V1, V2, V3) = λ(X1, Y1, Y2) + (1− λ)(X2, Z1, Z2), 0 ≤ λ ≤ 1. It follows that

D(V1, V2, V3) ≤ λD(X1, Y1, Y2) + (1− λ)D(X2, Z1, Z2).

Choose Y1, Z1 ∈ L1, Y2, Z2 ∈ L2, and such that D(X1, Y1, Y2) = d(X1, P ), D(X2, Z1, Z2) =
d(X2, P ). We get: V2 = λY1 + (1− λ)Z1 ∈ L1, V3 = λY2 + (1− λ)Z2 ∈ L2, and

d(V1, P ) ≤ D(V1, V2, V3) ≤ λd(X1, P ) + (1− λ)d(X2, P ). �

The geodesic path between two points may also contain segments of the boundary sep-
arating Ω1 and Ω2. This is shown in Figure 1 for the shortest distance between X3 and P6.
Here,

d(X3, P6) = min
Z∈[V7,V8]

{k1(X3, Z) + k2(Z, V8)}+ k2(V8, P6), (3)

where it is assumed that k1 is the “slow” norm and k2 is the “fast” norm. Such a case is
equivalent to the case examined in Property 2 where one or more edges (Li) degenerate to
single points. It follows again that d(X,P ) is a convex function of X.

Given a point X, we can determine the shortest path to each Pi, and then construct

the objective function, f(X) =
N∑

i=1
wid(X,Pi). From the preceding results, we may conclude

that f(X) is the sum of convex functions, and hence, is itself convex over a subset of �2over
which the shortest path to each Pi is thus defined (see(1) and (2)).

Aside from finding these shortest paths for a given X, the main difficulty in solving
(P1) is that these paths (or combinations of edges used) change as a function of X. For
example consider the fixed point P7 in Figure 1, and let X ∈ Ω1. Depending on the X
chosen, the shortest path to P7 could conceivably intersect any one of the boundary edges
or a combination thereof. Consider, for example, the trajectory of X satisfying the following
equation:

k1(X,Z∗
1 (X)) + k2(Z

∗
1(X), P7) = k1(X,Z∗

2(X)) + k2(Z
∗
2(X), P7) (4)

where Z∗
1(X), Z∗

2(X) are intersection points of the shortest paths through L1 = [V1, V2]
and L2 = [V2, V3], respectively. Along this trajectory, the shortest path from X to P7 is
indifferent to edges L1 and L2; however, L1 is the preferred edge on one side of the trajectory,
and L2 on the other. It follows in this way that Ω1 (and similarly Ω2) can be divided into a
finite number of subsets such that the shortest path from X to Pi uses an identical sequence
of edges, ∀X in each subset.

We see that the functional form of f(X) will change whenever a better sequence of
edges becomes available for constructing the geodesic path to one of the fixed points. The
functional form of f(X) may also change for a second reason: a given sequence of edges (or
path) becomes infeasible. This key property of the model is illustrated in Figure 2. The
shortest path from X to Pi crosses the edge [V3,V4]. The similar path from X ′ to Pi, giving
d(X ′, Pi) = min

Z∈[V3,V4]
{k2(X

′, Z)+k1(Z, Pi)}, is no longer feasible, since the line joining X ′ and

the optimal intersection point, Z∗ ∈ [V3, V4], crosses the Ω1 region (i.e., intersects another
edge first).
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Definition 1 A sequence of edges, Lt, t = 1, ..., n, is said to be feasible between two points
if the corresponding sequence of intersection points, Z∗

t , t = 1, ..., n, giving the shortest path
for that sequence (see (2)), results in a path that does not intersect any edges other than the
specified sequence. The path so constructed is termed a feasible path. Note that a feasible
path in this context always refers to the shortest path for a given sequence of edges.

Consider again the feasible paths from X to Pi in Figure 2. As shown in the figure, let
Z∗

1 denote the intersection point, also referred to as the “gate” point, of the feasible path
with leading edge L1 = [V3, V4]. Note that Z∗

1 is a function of X and Pi. We obtain the
following useful result.
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Figure 2: Infeasible paths and lines of vision

Property 3 Consider the ray, starting at Z∗
1 that joins Z∗

1 to X and continues beyond X
until another boundary edge is reached, and let Y be any point on this ray. The feasible path
from Y to Pi using L1 as the leading edge intersects L1 at the same “gate” point Z∗

1 as for
X.

Proof: Assume without loss of generality that k1 and k2 are differentiable round norms (see
for example, Drezner [6], chapter 1, for a classification of round norms and block norms).
The directional derivative of D(Y, Z) = k2(Y, Z) + k1(Z, Pi) evaluated along the edge L1 at
Z = Z∗

1 is given by:

d

ds
D(Y, Z∗

1) =
d

ds
k2(Y, Z∗

1) +
d

ds
k1(Z

∗
1 , Pi). (5)

But

(Y − Z∗
1) = r(X − Z∗

1), (6)
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where r > 0 since X and Y are on the same ray from Z∗
1 . Thus

d
ds

k2(Y, Z∗
1) = lim

‖δZ‖→0

{
k2(Y,Z∗

1+δZ)−k2(Y,Z∗
1 )

‖δZ‖
}

= lim
‖δZ‖→0

{
r(k2(X,Z∗

1+δZ/r)−k2(X,Z∗
1 ))

‖δZ‖
}

= lim
‖δZ‖→0

{
(k2(X,Z∗

1+δZ/r)−k2(X,Z∗
1 ))

‖δZ/r‖
}

= d
ds

k2(X,Z∗
1)

(7)

We conclude that

d

ds
D(Y, Z∗

1) =
d

ds
k2(X,Z∗

1 ) +
d

ds
k1(Z

∗
1 , Pi) = 0 (8)

and hence Z∗
1 is also on the shortest path from Y to Pi that uses L1. �

Property 3 extends, in a straightforward fashion, to feasible paths that traverse more
than one boundary edge. Furthermore, we may use this property to divide the plane in
polygonal regions for each Pi such that given paths to Pi are feasible only for those X in the
corresponding polygonal regions. For example, referring to Figure 2, we find the gate point
V ′

4 on edge [V3, V4] for the corresponding feasible path from vertex V5 to demand point Pi;
that is,

V ′
4 = arg min

Z∈[V3,V4]
{k2(V5, Z) + k1(Z, Pi)}.

It follows that the path from X to Pi that uses edge L1 = [V3, V4], and only this edge, is
feasible only for those points X belonging to the lower right-hand quadrant formed by [V4, V5]
and [V4, V3] plus the wedge (shaded area) extending below V5 formed by the extensions of
[V4, V5] and the ray from V ′

4 to V5.
We are now ready to state the main result.

Theorem 1 Problem (P1) is equivalent to solving a finite number of convex programs.

Proof: From Property 3 (and the subsequent discussion), it follows that the plane may be
subdivided into a finite number of polygonal regions, Sk, k = 1, ..., K, such that a finite
number of candidate shortest paths exists to each Pi, where each path is feasible, for all
points X ∈ Sk. These regions may be further subdivided into a finite number of convex
polygonal regions, S ′

k, k = 1, ..., K ′, as required.
Furthermore, each alternate form of the objective function obtained by all possible com-

binations of feasible paths is a convex function by Properties 1 and 2. Therefore, we conclude
that the optimal solution of (P1) may be found by solving a finite number of convex pro-
grams and retaining the best solution of all of them. �

The shape of the objective function may now be characterized as follows:

1) In any polygonal region, S ′
k, f(X) is the minimum of a set of convex functions; i.e.,

f(X) = min{f1k(X), ..., fNkk(X)}, ∀X ∈ S ′
k,

where each frk, r = 1, ..., Nk, is a convex function of X. If the unrestricted minimum of
frk given by X∗

rk is an interior point of S ′
k, and f(X∗

rk) = frk(X
∗
rk), with no ties then X∗

rk

is a local minimum of f(X) and a candidate solution.
2) Different sets of functions {f1k, ..., fNkk} apply to different S ′

k. Thus, a local minimum
(and candidate solution) may also occur on the boundary separating adjacent S ′

k.

The characterization of the objective function given above is studied in the next section
for a special case.
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3. A Special Case: Formulation and Analysis

We now consider the case of a rectangular area where distances are rectilinear on the inside
and Euclidean on the outside. This gives Ω1 : �1 and Ω2 : �2, as shown in the Figure 3.
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Figure 3: Labeling regions and vertices

Figure 3 divides the plane into regions. C1, C2, C3, and C4 will be referred to as “corner
regions, and will be of particular interest. As shown in Figure 4, even this simplified case
produces a wide variety of possible distances. Note the path P5 − P6, which was derived in
Brimberg et al. [2].
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For illustrative and conceptual purposes we will simplify the situation further by re-
stricting the facility location to the interior of the rectangle.

Without loss of generality, A1 is set to (0,0) in Figure 5b. This figure illustrates that,
through some algebraic manipulations, applied to the type of relation in (4), a corner region
can be divided into two regions with a curve:

b =

√
y((x− y)

√
x(y − 2a) + 2a2 −√x

√
y(x− y − a))√

x(2y − x)
for x �= 2y (9)

such that in one the shortest path will be through some Z∗
1 on the left side of the rectangle,

and in the other through some point Z∗
2 on the bottom side of the rectangle. This analysis
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can be transferred to the other corner regions by axis translation and rotation. We will call
the curve in (9) the corner demarcation curve.

Each point in the corner region similarly creates an interior demarcation curve,

y =
x((a− b)

√
x2 − 2ax + a2 + b2 + x(b− a) + a2 − ab + b2)

a2 − 2ax(a− b)
(10)

which is illustrated for point (-4,-3) in Figure 6.

(-4,-3)

0,0

For facility in this 

region, gate for   (-4,-3) 
is on this side

For facility in this region, gate for (-4,-3) 

is on this side

Figure 6: Example of interior demarcation curve

A set of curves for different corner points is shown in Figure 7.

The exterior of the rectangle can now be divided into four regions R1, R2, R3 and R4,
which determine the paths through the sides of the rectangle for each exterior point as
shown in Figure 8. Unfortunately, the Rj’s are functions of (x,y).

The objective function for minimizing the sum of weighted distances (for X ∈ Ω1) is
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given by:

f(x, y) =
∑

Pi∈R1

wi

(
(x− α1) +

√
(ai − α1)2 + (bi − y)2

)

+
∑

Pi∈R2

wi

(√
(ai − x)2 + (bi − β2)2 + (β2 − y)

)

+
∑

Pi∈R3

wi

(
(α2 − x) +

√
(ai − α2)2 + (bi − y)2

)

+
∑

Pi∈R4

wi

(√
(ai − x)2 + (bi − β1)2 + (y − β1)

)

+
∑

Pi∈Ω1

wi (|x− ai|+ |y − bi|)

(11)

If we ignore that the Rj’s are functions of (x,y), we can obtain a ‘false separability’:

f1(x) =
∑

Pi∈R1

wi(x− α1)+
∑

Pi∈R2

wi

√
(ai − x)2 + (bi − β2)2 +

∑
Pi∈R3

wi(α2 − x)

+
∑

Pi∈R4

wi

√
(ai − x)2 + (bi − β1)2 +

∑
Pi∈Ω1

wi|x− ai|,
(12a)

f2(y) =
∑

Pi∈R1

wi

√
(ai − α1)2 + (bi − y)2 +

∑
Pi∈R2

wi(β2 − y)

+
∑

Pi∈R3

wi

√
(ai − α2)2 + (bi − y)2 +

∑
Pi∈R4

wi(y − β1)+
∑

Pi∈Ω1

wi|y − bi|.
(12b)

This leads us to the idea that the objective function is both ‘neighborhood convex’ and
separable within regions created by the interior demarcation curves. This is illustrated in
Figure 9. Note that the convexity derives directly from Properties 1 and 2 from the previous
section.

2 corner points

2 corner points

3 corner points

4 corner points

Figure 9: Interior area segments created by the interior demarcation curves

Referring to Figure 5b, we see that there are two feasible paths to be considered between
any X ∈ Ω1 and corner point Pi. This implies, in compliance with Theorem 1, that up to
O(2N) convex programs of the form

min ft(x), s.t. X ∈ Ω1, (13)

must be solved to find the optimal solution in the rectangle. However, from Figure 9 it is
seen that each interior demarcation curve intersects no more than N other ones, so that
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Figure 10b: Surface plot of objective function

the number of convex programs to be solved may be reduced to O(N2). From a practical
point of view, obtaining the complete set of (convex) objective functions corresponding to
the interior area segments (see Figure 9), and minimizing each of these functions over the
rectangle, may be an onerous task.

The shape of the objective function along any slice (or cross section) is seen to be
piecewise convex with ‘ridges’ defined by the demarcation lines. The optimal solution within
the rectangle is thus either an unrestricted minimum of one of the convex functions if it
occurs in the interior of the rectangle, or it is a minimum on the boundary of the rectangle.
This follows the characterization of the objective function discussed in Section 2. Also, note
that the demarcation lines (as shown in Figure 9) are not needed explicitly in the solution
process, but serve the purpose of identifying a smaller number of candidate sub-problems
(convex programs) to solve.

A simple example with four corner points is given in Figure 10.

The optimal location in the rectangle is: (3.949,0), (6.051,0), (3.949,5), or (6.051,5),
which may also be shown to be globally optimal.

4. Optimization Strategies

A general framework for solving (P1) may be summarized as follows:

Algorithm 1
Step 1: Divide the plane into the minimum number of convex polygonal regions (S ′

k, k =
1, ..., K ′) such that all candidate shortest paths, defined as sequences of edges, are identified
for each S ′

k, and are feasible, ∀X ∈ S ′
k.

Step 2: For each S ′
k, construct a representative number of objective functions (frk(X))

using the alternate feasible paths for S ′
k identified in Step 1. Solve separately each of the

corresponding convex programs (min frk(X), s.t. X ∈ S ′
k).

The final solution is given by the best one obtained above. �

The representative objective functions may be selected in different ways in Step 2 of the
algorithm. For example, a local search procedure may be implemented as follows.

1) Choose a random starting point, X0 ∈ S ′
k; set t = 0.

2) Construct the objective function ft(X) using shortest paths from Xt to all Pi.

3) Solve the convex program min{ft(X); X ∈ S ′
k}, to obtain solution X∗

t .

4) If the shortest paths to X∗
t are unchanged from Xt (i.e., f(X∗

t ) = ft(X
∗
t )), stop; else,

t← t + 1, Xt ← X∗
t , and return to Step 2.
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The local search descends to a local minimum in S ′
k and stops. The procedure would be

repeated for each S ′
k or a representative number of them. Also note that in the rare event

X∗
t falls on a demarcation curve in Step 3, the tied shortest paths should be investigated as

possible means of further descent.
To guarantee a global solution, an exhaustive search needs to be carried out in Step 2

of Algorithm 1. One possible strategy is use the Big Square-Small Square approach which
is also frequently used in barrier and forbidden region problems (McGarvey et al. [8]). For
example, in the special case examined in Section 3, we can divide the rectangle into ‘bricks’.
A lower bound on each brick is easily found by using the distance to the nearest corner or
edge for each demand point, Pi, outside the rectangle. The optimal point inside the brick
is easily obtained for those Pi within the rectangle.

Also, for bricks small enough, the exact solution can be found by solving a small number
of associated sub-problems (see Figure 11). In this way, a branch-and-bound process may
be implemented in an efficient manner.

All C1 corner 

points with 

demarcation 

curves 

passing 

through the 

brick can be 

identified. 

Repeat for 

the other 3 

corners

Figure 11: Finding the exact minimum inside a brick

5. Conclusions

In this paper we present a model for locating a single facility in the continuous plane where a
closed bounded polygonal region exists with distance induced by one norm applying inside
the region and distance induced by a different norm applying outside the region. The
bounded region could represent, for example, a populated area where travel is slow compared
to outside the area. By making travel very slow within the bounded region, this model may
be viewed as a generalization of existing models in the literature where barriers to travel
are examined. The analytical results and general solution approach presented are readily
extended to problems with several bounded regions and several norms. We also illustrate
the concepts by examining a special case.

Future research venues may include design, implementation, and testing of different
solution approaches, and extension to the multi-facility problem.
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