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Abstract In this paper, we give the series expansion for the stationary probabilities πn of the queue length
of an M/D/1 queue based on analytic properties of the probability generating function π(z). We determine
the poles and their associated residues of π(z), then give the partial fraction expansion of π(z). The series
expansion of πn are given by the poles and residues. We also give an upper bound and a lower bound for
πn.

Keywords: Queue, M/D/1, stationary distribution, series expansion, complex function
theory

1. Introduction

We study the stationary probabilities πn of the queue length of an M/D/1 queue. We
determine the poles and their associated residues of the probability generating function
π(z) of πn. Then we have the series expansion of πn represented by the poles and residues.
Moreover, we give an upper and lower bounds for πn.

2. The Stationary Distribution of an M/D/1 Queue

The state transition probability matrix P of an M/D/1 queue with arrival rate λ and service
rate 1 is given by

P =




a0 a1 a2 a3 . . .
a0 a1 a2 a3 . . .
0 a0 a1 a2 . . .
0 0 a0 a1 . . .
...

...
...

...
. . .



, an =

λn

n!
e−λ, n = 0, 1, . . . . (2.1)

For the stability of the queue, λ < 1 is assumed. Let π = (π0, π1, . . .) denote the stationary
distribution of P , and define the probability generating function π(z) of π by

π(z) ≡
∞∑

n=0

πnz
n. (2.2)

By the Pollaczek-Khinchin formula [2], we have

π(z) =
(1 − λ)(z − 1) exp(λ(z − 1))

z − exp(λ(z − 1))
. (2.3)
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112 K. Nakagawa

It is well known [1] that the explicit form of πn is given by the Taylor expansion of π(z),
i.e.,

π0 = 1 − λ

π1 = (1 − λ)(eλ − 1)

πn = (1 − λ)
(
enλ +

n−1∑
k=1

ekλ(−1)n−k
[ (kλ)n−k

(n− k)!
+

(kλ)n−k−1

(n− k − 1)!

])
, n ≥ 2. (2.4)

But, it is not good to use this formula for calculation because it includes alternating additions
of positive and negative numbers of very large absolute value.

We will have a series expansion of πn by investigating analytic properties of π(z), espe-
cially the poles and their associated residues. Our series expansion is interesting from both
theoretical and numerical point of view. Theoretically, all the poles and their associated
residues of π(z) are first determined in this paper. Numerically, our formula gives very
stable computation of πn because each term of the series decreases very quickly.

We first determine all the poles of π(z) in |z| <∞. Denote by ψ(z) ≡ z− exp(λ(z− 1))
the denominator of π(z). We show in Figure 1 the zeros of ψ(z) with λ = 0.5 obtained
by numerical computation. In Figure 1, the x-coordinate is the real part of z and the
y-coordinate is the imaginary part.
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Figure 1: The zeros of ψ(z) = z − exp(λ(z − 1)), λ = 0.5, z = x+ iy

We can see that there are infinitely many zeros and among them the real zeros are z = 1
and z = 3.512. Since ψ(z) is a function of real coefficients, if a complex number is a zero
of ψ(z), then so is its complex conjugate. Further, the difference of the imaginary part of
adjacent zeros seems nearly constant.
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3. On the Position of the Zeros of ψ(z)

In order to study the position of the zeros of ψ(z) = z − exp(λ(z − 1)), we define sets
Sk, k ∈ Z by

Sk = {z = x+ iy| −∞ < x <∞,
2πk − π

λ
≤ y <

2πk + π

λ
}, k ∈ Z, (3.1)

where Z is the set of integers. Sk is a horizontal strip. We see Sk ∩ Sk′ = φ, k �= k′ and⋃
k∈Z

Sk = C, the whole finite complex plane.

We have the following theorem.

Theorem 3.1 (i) ψ(z) has two zeros z = 1 and z = ζ0 > 1 in S0, both of which are simple
zeros.
(ii) For k �= 0, ψ(z) has a unique zero ζk in Sk, which is a simple zero. ζk and ζ−k are
complex conjugate.

Proof: (i) From the graphs of Y = x and Y = exp(λ(x− 1)), we see that ψ(z) has two real
zeros x = 1 and x = ζ0 > 1. We show that these are the only zeros in S0. We will apply
the argument principle of complex function theory.

For sufficiently large R > 0, consider four points

z1 = R + i
π

λ
, z2 = −R + i

π

λ
, z3 = −R− i

π

λ
, z4 = R− i

π

λ

on the boundary of S0. (zj belongs to the jth orthant, j = 1, . . . , 4.) Let C1 denote the
line segment whose starting point is z1 and ending point z2. Similarly, let Cj denote the
line segment from zj to zj+1, j = 1, . . . , 4, with regarding z5 = z1. Let C denote the closed
curve which is made by connecting C1, . . . , C4. The images of zj, Cj, and C by the mapping
ψ(z) are denoted by z′j, C

′
j, and C ′, respectively. We have

z′1 = R + eλ(R−1) + i
π

λ
, z′2 = −R + eλ(−R−1) + i

π

λ
,

z′3 = −R + eλ(−R−1) − i
π

λ
, z′4 = R + eλ(R−1) − i

π

λ
.

(z′j belongs to the jth orthant, j = 1, . . . , 4.) We see that C ′
1 is the line segment with

starting point z′1 and ending point z′2, and C ′
3 is the line segment with starting point z′3 and

ending point z′4. For sufficiently large R, ψ(z) is nearly the identity mapping on C2, hence
C ′

2 is contained in a sufficiently small neighborhood of the line segment connecting z′2 and
z′3. Thus, C ′

1C
′
2C

′
3 is a curve which starts from z′1 in the first orthant, passes through z′2

in the second orthant and z′3 in the third orthant, and finally ends at the z′4 in the fourth
orthant. In other words, C ′

1C
′
2C

′
3 nearly goes round about the origin (see Figure 2).

For large R, the difference of the arguments between z′1 and z′4 is small, hence, the change
of the argument along the curve C ′

1C
′
2C

′
3 is nearly 2π. In other words, for any ε > 0 and

sufficiently large R, we have

∣∣∣
∫

C1C2C3

d argψ(z) − 2π
∣∣∣ < ε. (3.2)
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Figure 2: The image C ′ of C by the mapping ψ(z) (λ = 0.5, k = 0, R = 8)

Next, we consider the change of the argument along C ′
4. Represent a point zt on C4 by

zt = (1 − t)z4 + tz1

= R + i
(2t− 1)π

λ
, 0 ≤ t ≤ 1.

Denoting by z′t the image of zt by the mapping ψ(z), we have

z′t = exp(λ(R− 1) + i2πt)(1 + δ), (3.3)

where δ = (R + i
(2t− 1)π

λ
)/ exp(λ(R− 1) + i2πt).

If R is large, then |δ| is small and hence the change of arg(1 + δ) along C4 is small. From
(3.3), we have arg z′t = 2πt+ arg(1 + δ) and thus

∫
C′

4

d arg z′t =

∫ 1

0

2πdt+

∫
C′

4

d arg(1 + δ). (3.4)

Therefore, for any ε > 0 and sufficiently large R, we have
∣∣∣
∫

C4

d argψ(z) − 2π
∣∣∣ < ε. (3.5)

From (3.2), (3.5), we have

∣∣∣ 1

2π

∫
C

d argψ(z) − 2
∣∣∣ < ε

π
. (3.6)

(1/2π)
∫

C
d argψ(z) is the number of rotation of the closed curve C ′ = ψ(C) around the

origin z′ = 0, so it is an integer. From (3.6), we have

1

2π

∫
C

d argψ(z) = 2. (3.7)
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By the argument principle, we see that ψ(z) has exactly two zeros in the region surrounded
by the closed curve C, which are z = 1 and z = ζ0. Letting R tend to infinity, we know
that z = 1, ζ0 are the only zeros in S0 and they are both simple zeros.

(ii) Let k > 0. Consider four points

z1 = R + i
2πk + π

λ
, z2 = −R + i

2πk + π

λ
,

z3 = −R + i
2πk − π

λ
, z4 = R + i

2πk − π

λ

on the boundary of Sk, and define Cj as the line segment from zj to zj+1, j = 1, . . . , 4,
with regarding z5 = z1. Let C denote the closed curve connecting C1, . . . , C4. The image of
zj, Cj, and C by the mapping ψ(z) are denoted by z′j, C

′
j, and C ′, respectively. Similarly

to the proof of (i), for sufficiently large R, we see that the curve C ′
1C

′
2C

′
3 is included in the

upper half plane 	z > 0, where 	z denotes the imaginary part of z. The difference of the
argument between the starting point z′1 of C ′

1C
′
2C

′
3 and the ending point z′4 is very small

(see Figure 3).
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Figure 3: The image C ′ of C by the mapping ψ(z) (λ = 0.5, k = 1, R = 8)

Therefore, for any ε > 0 and sufficiently large R, we have∣∣∣
∫

C1C2C3

d argψ(z)
∣∣∣ < ε. (3.8)

Similarly to the proof of (i), the change of the argument of ψ(z) along C4 satisfies
∣∣∣
∫

C4

d argψ(z) − 2π
∣∣∣ < ε (3.9)

for large R. From (3.8),(3.9), we have

1

2π

∫
C

d argψ(z) = 1, (3.10)
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hence by the argument principle, we see that ψ(z) has a unique zero ζk in the region
surrounded by the closed curve C. Letting R → ∞, we know that z = ζk is the unique zero
in Sk, k > 0, and it is a simple zero. We can prove similarly for k < 0. �

We will also use the following lemma for determining the position of the zeros of ψ(z).
�z denotes the real part of z.

Lemma 3.1 z = 1 is the unique zero of ψ(z) in the region �z < ζ0.

Proof: We apply Rouché’s theorem. Write z = x + iy. For sufficiently small ε > 0 and
large R > 0, we consider an open set D = {|z| < R, x < ζ0 − ε} and its boundary C = ∂D.
For an arbitrary z ∈ C, we have

|z| ≥ ζ0 − ε

> exp(λ(ζ0 − ε− 1))

≥ exp(λ(x− 1))

= | exp(λ(z − 1))|.

By Rouché’s theorem, z has the same number of zeros as ψ(z) = z − exp(λ(z − 1)) does in
D. Since z has one simple zero z = 0 in D, z = 1 is also the unique zero of ψ(z) in D and
is simple. By letting ε → 0, R → ∞, we see that z = 1 is the unique zero of ψ(z) in the
region �z < ζ0. �

3.1. Coordinates of the zeros of ψ(z)

We will approximate the x-coordinate and y-coordinate of the kth zero ζk of ψ(z).
Write ζk = xk + iyk, k ∈ Z. By comparing the real and imaginary parts of both sides of

the equation

ζk = exp(λ(ζk − 1)), (3.11)

we have

xk = exp(λ(xk − 1)) cosλyk, (3.12)

yk = exp(λ(xk − 1)) sinλyk. (3.13)

Lemma 3.2 The sequences {xk}∞k=0 and {yk}∞k=0 are monotonically increasing, i.e., xk <
xk+1, yk < yk+1, k = 0, 1, . . ., thus we have |ζk| < |ζk+1|, k = 0, 1, . . ..

Proof: We see from Theorem 3.1 that {yk}∞k=0 is monotonically increasing. We next show
that {xk}∞k=0 is monotonically increasing, too.

From (3.12), (3.13), we have

x2
k + y2

k = exp(2λ(xk − 1)), k = 0, 1, . . . . (3.14)

Define f(x) ≡ exp(2λ(x − 1)) − x2. We can write (3.14) as f(xk) = y2
k. We have f ′(x) =

2{λ exp(2λ(x − 1)) − x}. By the graphs of Y = λ exp(2λ(x − 1)) and Y = x, we see
that f ′(x) = 0 has exactly two solutions α1, α2, with 0 < α1 < 1 < α2. α1 gives a
local maximum of f(x) and α2 gives a local minimum. f(x) is monotonically increasing
in x > α2 and f(x) goes to infinity as x does. The maximum of f(x) in 0 ≤ x ≤ α2 is
f(α1) = exp(2λ(α1 − 1)) − α2

1 < 1. Therefore, for any β > 1, the equation f(x) = β has a
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unique solution in x > 0. From Theorem 3.1 (ii), we have yk ≥ y1 >
π

λ
> 1, k = 1, 2, . . .,

hence, x = xk is the unique solution of

f(x) = y2
k, k = 1, 2, . . .

and, by the increasing property of f(x), yk < yk+1 leads to xk < xk+1, k = 1, 2, . . .. The
inequality x0 < x1 also holds because f(x0) = 0 = y2

0 and x0 > α2. �

We will show an approximation of ζk. For k > 0, we have yk > 0 from Theorem 3.1, and
xk > 0 from Lemma 3.1, hence from (3.12), (3.13), cosλyk > 0, sinλyk > 0. Thus,

2πk

λ
< yk <

2πk + π/2

λ
. (3.15)

From Theorem 3.1 or (3.15), when k goes to infinity, yk goes to infinity, thus from (3.13) xk

does, too. Therefore, from (3.12), we have cosλyk → 0, and thus from (3.15),

2πk − λyk → π

2
. (3.16)

From (3.13), (3.16), we have

yk � exp(λ(xk − 1)), (3.17)

and then ζk can be represented approximately as

ζk � 1

λ
ln

2πk + π/2

λ
+ 1 + i

2πk + π/2

λ
, k → ∞. (3.18)

For k < 0, we have an approximation for ζk by (3.18) and ζk = ζ̄−k.
Among the zeros of ψ(z), z = 1 is not a pole of π(z) because z = 1 is a simple zero of

ψ(z) and the numerator of π(z) has a factor z− 1. Therefore, the poles of π(z) are {ζk}k∈Z.
In summary,

Theorem 3.2 The poles of π(z) are {ζk}k∈Z, all of which are simple poles. We have |ζk| <
|ζk+1| for k = 0, 1, . . .. The pole ζk of π(z) can be approximated as follows.

ζ±k � 1

λ
ln

2πk + π/2

λ
+ 1 ± i

2πk + π/2

λ
, k → ∞. (3.19)

We show, in the case of λ = 0.5, a comparison between the exact value of ζk and the
approximation (3.19) in Figure 4.

4. Partial Fraction Expansion of π(z)

The principal part of π(z) at z = ζk is αk(z − ζk)
−1 with αk the residue of π(z) at z = ζk.

If π(z) can be represented by a partial fraction of a form like π(z) =
∑

k αk(z − ζk)
−1,

the coefficients πn of π(z) has a series expansion. But, unfortunately, the partial fraction∑
k αk(z − ζk)

−1 does not converge, hence we need some idea to have a convergent series.
For this purpose, we apply the following theorem.
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Figure 4: Comparison between the exact value of ζk and the approximation (3.19)

Theorem A (see [3]) Let f(z) be holomorphic at z = 0 and meromorphic in |z| <∞ with
poles {ζk}∞k=1 all of which are of order 1. There is a sequence of rectifiable simple closed
curves {Cm}∞m=1 and every Cm includes the origin and poles {ζk}nm

k=1 in its interior. nm+1−nm

are assumed to be bounded. Let lm denote the length of Cm and ρm the distance between
the origin and Cm. The residue of f(z) at z = ζk is denoted by αk. For an integer q ≥ 1,
assume αk = o(ζq+1

k ), k → ∞, and ρm → ∞, lm = O(ρm), f(z) = o(ρq
m), m→ ∞, z ∈ Cm.

Then, for any z �= ζk, we have

f(z) =

q−1∑
j=0

f (j)(0)

j!
zj − zq

∞∑
k=1

αk

ζq
k(ζk − z)

(4.1)

=

q−1∑
j=0

f (j)(0)

j!
zj +

∞∑
k=1

αk

( 1

z − ζk
+

q−1∑
j=0

zj

ζj+1
k

)
(4.2)

The series (4.1),(4.2) converges absolutely and uniformly in wide sense in the region C −
{ζk}k. �

The residue αk of our function π(z) at z = ζk is obtained by

αk = lim
z→ζk

(z − ζk)π(z)

= −(1 − λ)ζk(ζk − 1)

λζk − 1

So, applying the Theorem A, we have
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Theorem 4.1 π(z) has the partial fraction expansion

π(z) = π0 + π1z − z2

∞∑
k=−∞

αk

ζ2
k(ζk − z)

, (4.3)

αk = −(1 − λ)ζk(ζk − 1)

λζk − 1
, k ∈ Z. (4.4)

The series (4.3) converges absolutely and uniformly in wide sense in the region C − {ζk}k.
Proof: Let q = 2 in Theorem A. For m = 1, 2, . . ., let Cm be the square with vertices

z1 =
2πm

λ
+ i

2πm

λ
, z2 = −2πm

λ
+ i

2πm

λ
,

z3 = −2πm

λ
− i

2πm

λ
, z4 =

2πm

λ
− i

2πm

λ
.

From Theorem 3.1, the poles {ζk}m−1
k=−(m−1) are included in the interior of Cm, thus nm =

2m− 1. Denoting by lm the length of Cm and ρm the distance between the origin and Cm,
we have lm = 16πm/λ, ρm = 2πm/λ, so, ρm → ∞, lm = O(ρm), m→ ∞. We have

|αk| =
∣∣∣(1 − λ)ζk(ζk − 1)

λζk − 1

∣∣∣ = o(ζ3
k), k → ∞.

We next show π(z) = o(ρ2
m), z ∈ Cm, m → ∞. We first consider the case that z is on

the line segment z1z2. z = zt is represented as

zt = t+ i
2πm

λ
, −2πm

λ
≤ t ≤ 2πm

λ
.

We can write

π(z) =
(1 − λ)(z − 1)

z exp(−λ(z − 1)) − 1
,

then, defining g(z) ≡ z exp(−λ(z − 1)) − 1, we show

|g(zt)|2 ≥ γ, zt ∈ Cm,

where γ is a positive constant which does not depend on m. In fact,

|g(zt)|2 = (t exp(−λ(t− 1)) − 1)2 + (2πmλ−1 exp(−λ(t− 1)))2

≥ (t exp(−λ(t− 1)) − 1)2 + (2πλ−1 exp(−λ(t− 1)))2

≥ γ

This implies that π(z) = o(ρ2
m) if z is on the line segment z1z2. In the case that z is on z3z4,

we can show that π(z) = o(ρ2
m) in a similar way. Moreover, we can easily show π(z) = o(ρ2

m)
when z is on z2z3 and z4z1. In consequence, π(z) satisfies all the assumptions in Theorem
A with q = 2. Then π(z) has the following expression;

π(z) = π0 + π1z − z2

∞∑
k=−∞

αk

ζ2
k(ζk − z)

= π0 + π1z + (1 − λ)z2

∞∑
k=−∞

ζk − 1

ζk(λζk − 1)

1

ζk − z
.
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5. Series Expansion of πn

From the partial fraction expansion (4.3), we have

π(z) = π0 + π1z + (1 − λ)z2

∞∑
k=−∞

ζk − 1

ζ2
k(λζk − 1)

∞∑
n=0

( z
ζk

)n

(5.1)

for z with sufficiently small absolute value. The summation in n converges uniformly in k,
hence we can change the order of the summations to obtain the following series expansion
of πn, n ≥ 2.

πn = (1 − λ)
∞∑

k=−∞

ζk − 1

λζk − 1

1

ζn
k

(5.2)

= (1 − λ)
{ ζ0 − 1

λζ0 − 1

1

ζn
0

+ 2
∞∑

k=1

Re
( ζk − 1

λζk − 1

1

ζn
k

)}
, n ≥ 2. (5.3)

5.1. Upper and lower bounds for πn

For the principal part p0(z) = α0/(z − ζ0) of π(z) at z = ζ0, define

f(z) ≡ π(z) − p0(z). (5.4)

z = ζ0 is a removable singularity of f(z). The poles of f(z) with the smallest absolute value
are z = ζ1, ζ−1. Let f(z) =

∑∞
n=0 dnz

n be the power series expansion of f(z) at the origin,
then from (5.4) and

p0(z) = −α0

ζ0

∞∑
n=0

( z
ζ0

)n

,

we have

πn = − α0

ζn+1
0

+ dn, n = 0, 1, . . . . (5.5)

For arbitrary r with ζ0 < r < |ζ1|, defining M1(r) = max|z|=r |f(z)|, we obtain by Cauchy’s
estimate that

|dn| ≤ M1(r)

rn
, n = 0, 1, . . . .

Thus from (5.5) we have the following estimates for πn;

− α0

ζn+1
0

− M1(r)

rn
≤ πn ≤ − α0

ζn+1
0

+
M1(r)

rn
, n = 0, 1, . . . .

In a similar way, we have

Theorem 5.1 Define

fK(z) ≡ π(z) −
K∑

k=−K

αk

z − ζk
, K = 0, 1, . . . (5.6)
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and

MK(r) = max
|z|=r

|fK(z)| (5.7)

for r with |ζK | < r < |ζK+1|. Then πn is evaluated as follows;

−
K∑

k=−K

αk

ζn+1
k

− MK(r)

rn
≤ πn ≤ −

K∑
k=−K

αk

ζn+1
k

+
MK(r)

rn
, n = 0, 1, . . . (5.8)

6. Numerical Result

We show in Figure 5 the comparison of the exact value of πn and the proposed upper bound
obtained by Theorem 4 with K = 1, i.e., the upper bound is

πn ≤ − α0

ζn+1
0

+
M1(r)

r
, n = 0, 1, . . . . (6.1)

Three cases λ = 0.1, 0.5 and 0.9 are shown in Figure 5. The parameters are written in
Table 1. In Figure 5, the black circle indicates the exact value and the white one the
upper bound (6.1). The calculation of πn is due to the recursive formula given by π =
πP . The computational complexity of this recursive formula is O(n2), whereas that of our
upper bound is O(1). The computational complexity of the direct expression (2.4) of πn

is O(n), but it is numerically unstable because it includes alternating additions of positive
and negative numbers of very large absolute value.

Table 1: The parameters of upper bound (6.1)

λ ζ0 α0 r M1(r)

0.1 37.1 −444.8 84.0 384.0

0.5 3.5 −5.8 16.0 60.6

0.9 1.2 −0.026 8.0 0.95

7. Conclusion

We studied the stationary probabilities πn of the queue length of an M/D/1 queue. We
determined the series expansion of πn with the poles and their associated residues of π(z).
Upper and lower bounds for πn are also provided.

An M/D/1 is a simple queueing model, but the proofs of the theorems are complicated.
We would like to improve and simplify our proof to attack more complex Markov chains.
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Figure 5: The comparison of πn and the upper bound
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