
Journal of the Operations Research
Society of Japan

2005, Vol. 48, No. 2, 97-110

A SIMPLICIAL BRANCH-AND-BOUND ALGORITHM FOR

PRODUCTION-TRANSPORTATION PROBLEMS WITH

INSEPARABLE CONCAVE PRODUCTION COST

Hidetoshi Nagai Takahito Kuno∗

University of Tsukuba

(Received May 6, 2004; Revised November 10, 2004)

Abstract In this paper, we develop a branch-and-bound algorithm to solve a network flow problem of
optimizing production and transportation simultaneously. The production cost is assumed to be a concave
function in light of scale economy. The proposed algorithm generates a globally optimal solution to this
nonconvex minimization problem in finite time, without assuming the separability of the production-cost
function unlike existing algorithms. We also report some computational results, which indicate that the
algorithm is fairly promising for practical use.

Keywords: Nonlinear programming, global optimization, concave minimization,
production-transportation problem, minimum cost flow problem, branch-and-bound al-
gorithm

1. Introduction

The production-transportation problem is a kind of network flow problem and arises when
we try to simultaneously optimize production at factories manufacturing a common product,
and transportation of finished goods to warehouses with given demands. If the production
cost is an affine function, the problem is reduced to a Hitchcock problem and can be solved
in polynomial time [1, 2]. However, due to scale of economy, the production cost is assumed
to be a nondecreasing and concave function of production. As a result, the problem can
have multiple locally optimal solutions, many of which fail to be globally optimal. From the
viewpoint of computational complexity, the production-transportation problem is equivalent
to the capacitated minimum concave-cost flow problem, which is known as a typical NP-hard
problem [3, 4].

Compared with an ordinary multiextremal optimization problem, the production-trans-
portation problem has some favorable characteristics. First, the variables functioning non-
linearly are much fewer than other variables. If the numbers of factories and warehouses
are m and n respectively, the concave production cost is a function of only m variables
among a total of m + mn variables. Second, the associated Hitchcock problem is easy to
solve and provides a good approximate solution. Each of the algorithms proposed so far
exploits at least one of these characteristics. The extreme use of the first characteristic
can be seen in a series of parametric algorithms [7–9, 13–15]. The number of factories m is
assumed to be a constant in single digit, and locally optimal solutions are enumerated as
changing the quantity of production. Algorithms of this class are low-order polynomial or

∗The author was partially supported by the Grand-in-Aid for Scientific Research (C)(2) 155600487 from
the Japan Society for the Promotion of Science.

97

© 2005 The Operations Research Society of Japan

98 H. Nagai & Y. Kuno

pseudo-polynomial in n. However, they are all exponential in m and serve no practical use
if m exceeds around five. Another promising class of algorithms is the branch-and-bound
method [5, 10, 11], where the second characteristic is fully exploited for the bounding oper-
ation. In the existing branch-and-bound algorithms, the production cost is further assumed
to be a separable function, i.e., a sum of m univariate functions. The feasible production
set is subdivided into a set of m-dimensional rectangles, each associated with a subproblem.
Under the separability assumption, it is easy to compute a convex envelope, i.e., a maximal
affine function underestimating the production cost on the rectangle. Using this convex en-
velope, the subproblem is linearized into a Hitchcock problem, whose value is a tight lower
bound on the optimal value.

In this paper, we develop a branch-and-bound algorithm to solve this concave cost net-
work flow problem. Unlike the existing algorithms, we do not impose the separability
assumption on the production cost. Since the factories manufacture a common product,
they must accommodate one another with raw materials. Therefore, the production cost
of each factory usually depends upon the production of other factories as well. If the pro-
duction cost is inseparable, the rectangle subdivision of the feasible production set has no
advantage any more. Instead, we propose a simplicial subdivision, which subdivides the
feasible production set into a set of simplices. In Section 2, we describe the basic workings
of this simplicial branch-and-bound algorithm. Although it is possible to define a convex
envelope of the production cost on each simplex, the network structure needed in efficient
solution to the subproblem is damaged by this subdivision scheme. In Section 3, we devise
some procedures for restoring the network structure of each subproblem and linearize it into
a network flow problem giving a lower bound on the optimal value. Section 4 is devoted to
a report on computational results of comparing those procedures. In Section 5, we discuss
some concluding remarks.

2. Problem Settings and the Simplicial Algorithm

Let M denote the set of m factories and N the set of n warehouses. Also let E = M × N .
Then G = (M, N, E) constitutes a bipartite graph of node sets M , N and arc set E. For
each (i, j) ∈ E, the production capacity of factory i and the demand of warehouse j are ui

and bj units, respectively, and the cost of shipping a unit from factory i to warehouse j is
cij , where ui and bj are both positive integers and cij is a real number. Note that for the
problem to make sense it is necessary that

∑
j∈N

bj ≤
∑
i∈M

ui. (2.1)

Let us denote by g(y) the total cost of producing yi units at each factory i ∈ M , where
y = (y1, . . . , ym)T. We assume that g is a nonlinear, nondecreasing and concave function
defined on some open convex set including

Δ1 =

{
y ∈ IRm

∣∣∣∣∣ ∑
i∈M

yi = B, y ≥ 0

}
, (2.2)

c© Operations Research Society of Japan JORSJ (2005) 48-2

Concave Cost Production Transportation 99

where B =
∑

j∈N bj . Letting x = (xij | (i, j) ∈ E)T denote the flow of finished products to
determine, then our problem is formulated as follows:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + g(y)

subject to
∑
j∈N

xij = yi, i ∈ M∑
i∈M

xij = bj , j ∈ N

x ≥ 0, 0 ≤ y ≤ u,

(2.3)

where u = (u1, . . . , um)T. If we add a source 0 of supply B to the graph G and connect it
to each node i ∈ M through a directed arc (0, i) of capacity ui, we see that (2.3) is a special
class of minimum concave-cost flow problem [4]. A major difference from the usual one is
that the objective function is not assumed completely separable into univariate functions.

Let S denote the feasible set of (2.3). Since the objective function is continuous and S
is a bounded polyhedron, problem (2.3) has an optimal solution (x∗,y∗) as long as (2.1)
holds. Moreover, (x∗,y∗) is assumed to be a vertex of S because the objective function
is concave. As seen above, the set of all constraints is essentially the same as minimum
cost flow problems; and hence, the constraint matrix possesses the total unimodularity [1].
These facts imply the following:

Lemma 2.1 Under condition (2.1), problem (2.3) has a globally optimal solution (x∗,y∗),
each component of which is an integer.

When the objective function is inseparable and concave, one of the popular solution
methods is the simplicial branch-and-bound algorithm [6, 12]. In the rest of this section, we
will review its basic workings.

If (2.1) holds, any feasible production y of (2.3) belongs to the (m − 1)-simplex Δ1

defined in (2.2). Therefore, no feasible solution to (2.3) is lost even if we add y ∈ Δ1 as a
constraint. The resulting problem is then given below for Δ = Δ1:

P(Δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + g(y)

subject to
∑
j∈N

xij = yi, i ∈ M∑
i∈M

xij = bj , j ∈ N

x ≥ 0, y ≤ u, y ∈ Δ.

To locate (x∗,y∗), the simplicial branch-and-bound algorithm solves this problem recur-
sively, as replacing Δ by simplices Δ′ and Δ′′ such that

Δ = Δ′ ∪ Δ′′, int(Δ′) ∩ int(Δ′′) = ∅, (2.4)

where int(·) represents the set of relative interior points. The simplex Δ is usually main-
tained as a convex hull of its m vertices vi, i ∈ M , e.g., we have vi = Bei for the initial
simplex Δ1, where ei denotes the ith unit vector. We therefore have

Δ =

{
y ∈ IRm

∣∣∣∣∣ y =
∑
i∈M

λiv
i, eTλ = 1, λ ≥ 0

}
,

c© Operations Research Society of Japan JORSJ (2005) 48-2

100 H. Nagai & Y. Kuno

where e denotes a vector of ones and λ = (λ1, . . . , λm)T. If we select an edge, say vp–vq, of
Δ and divide it at a midpoint, we can immediately have

Δ′ =

⎧⎨⎩y ∈ IRm

∣∣∣∣∣∣ y = λpv +
∑

i∈M\{p}
λiv

i, eTλ = 1, λ ≥ 0

⎫⎬⎭
Δ′′ =

⎧⎨⎩y ∈ IRm

∣∣∣∣∣∣ y = λqv +
∑

i∈M\{q}
λiv

i, eTλ = 1, λ ≥ 0

⎫⎬⎭ ,

where v = (1 − μ)vp + μvq for a fixed ratio μ ∈ (0, 1/2]. We refer to this division rule as
bisection of ratio μ on edge vp–vq. The outline of the algorithm is summarized as follows:

Let D := {Δ1} and repeat Steps 1–3 while D 	= ∅.
Step 1. Take an appropriate Δ out of D. Define a subproblem P(Δ).

Step 2 (bounding operation). Compute a lower bound z(Δ) on the optimal value
z(Δ) of P(Δ), where z(Δ) is set to +∞ if P(Δ) is infeasible. If z(Δ) is larger
than or equal to the value of the best feasible solution (x◦,y◦) obtained so far,
discard Δ and return to Step 1.

Step 3 (branching operation). Otherwise, divide Δ into two simplices Δ′ and Δ′′ and
add them to D.

In general, this class of algorithms is not guaranteed to terminate in finite iterations,
and it generates an infinite sequence of nested simplices {Δr | r = 1, . . . } such that Δ1 ⊃
Δ2 ⊃ · · ·. However, if we apply the bisection rule on the longest edge of Δ at Step 3, it is
known [6, 12] that Δr shrinks to a singleton. This exhaustiveness enables us to converge the
incumbent (x◦,y◦) to an optimal solution (x∗,y∗) of (2.3), when we adopt the best bound
rule selecting Δ of the least z(Δ) at Step 1.

The simplicial subdivision (2.4) has an advantage over other subdivision schemes in
computing a tight lower bound of g. Since each point y ∈ Δ can be represented as
y =

∑
i∈M λiv

i for some λ ≥ 0 such that eTλ = 1, a lower bound of g at y is given
simply by g(y) =

∑
i∈M λig(vi). This function g is an affine function of y, which agrees with

g at m vertices of Δ, and known as a convex envelope of g, i.e., a maximal convex function
underestimating g on Δ [6, 12]. On the other hand, there is an obvious difficulty in the im-
plementation against our problem (2.3). Except for the initial one, the additional constraint
y ∈ Δ damages the network structure of P(Δ), which is essential to efficient computation of
z(Δ). In the subsequent section, we develop some procedures for overcoming this difficulty.

3. Finite Simplicial Algorithm

The key to efficiency of the simplicial branch-and-bound algorithm is mainly held by the
bounding operation of Step 2. To compute a lower bound z(Δ), we solve a relaxed problem
of P(Δ), where the concave function g is replaced by its convex envelope g on Δ. Usually,
instead of representing g explicitly as a function of y, we eliminate y altogether from the
relaxed problem by substituting y =

∑
i∈M λiv

i into the constraints as well (see [6, 12] for
details). This approach is handy but destroys the network structure completely. Here, we
take an alternative approach which keeps the damage as small as possible.

Linear programming relaxation. For m vertices vi, i ∈ M , of Δ, let

V = [v1, . . . ,vm], w = [g(v1), . . . , g(vm)].

c© Operations Research Society of Japan JORSJ (2005) 48-2

Concave Cost Production Transportation 101

Since vi’s are linearly independent if they are generated according to the bisection rule, we
can uniquely identify λ = V−1y for any y ∈ Δ. Substituting it to g(y) =

∑
i∈M λig(vi), we

have

g(y) = wV−1y, ∀y ∈ Δ.

Similarly, we can rewrite the simplex Δ as follows:

Δ = {y ∈ IRm | eTV−1y = 1, V−1y ≥ 0}.

Note that eTV−1y = 1 is satisfied by any feasible production y of (2.3). Each vi and the
feasible production y belong to the initial simplex defined by (2.2). Therefore, eTvi = B
and eTy = B hold; and besides we have

eTV−1y = (1/B)eTy = 1.

We can therefore replace the constraint y ∈ Δ of P(Δ) by V−1y ≥ 0. Furthermore, replacing
g by g, we have a linear programming problem:

RP1(Δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + wV−1y

subject to
∑
j∈N

xij = yi, i ∈ M∑
i∈M

xij = bj , j ∈ N

x ≥ 0, y ≤ u, V−1y ≥ 0.

Let (x1,y1) be an optimal solution when RP1(Δ) is feasible, and let

z1(Δ) =

⎧⎪⎨⎪⎩
∑

(i,j)∈E

cijx
1
ij + wV−1y1, if RP1(Δ) is feasible

+∞, otherwise.

Lemma 3.1 If z1(Δ) = +∞, then subproblem P(Δ) is infeasible. Otherwise, P(Δ) has an
optimal solution of value z(Δ), and we have

z1(Δ) ≤ z(Δ).

Proof: Both feasible sets of P(Δ) and RP1(Δ) coincide with S ∩ Δ, where S denotes the
feasible set of (2.3). For any (x,y) ∈ S ∩ Δ, we have

∑
(i,j)∈E

cijxij + wV−1y ≤ ∑
(i,j)∈E

cijxij + g(y), (3.1)

because g(y) = wV−1y is a convex envelope of g on Δ.

We see from this lemma that the optimal value z1(Δ) of RP1(Δ) can serve as the lower
bound z(Δ) at Step 2 of the simplicial branch-and-bound algorithm. Moreover, since any
feasible solution of RP1(Δ) is feasible to P(Δ), we can update the incumbent (x◦,y◦) by
(x1,y1) if necessary. The only drawback of RP1(Δ) is that the constraint V−1y ≥ 0 still
spoils the network structure and prevents us from applying efficient network flow algorithms.

c© Operations Research Society of Japan JORSJ (2005) 48-2

102 H. Nagai & Y. Kuno

Network flow relaxation. The easiest way to restore the network structure of RP1(Δ)
is to drop the constraint V−1y ≥ 0:

RP2(Δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + wV−1y

subject to
∑
j∈N

xij = yi, i ∈ M∑
i∈M

xij = bj , j ∈ N

x ≥ 0, 0 ≤ y ≤ u.

Then we can eliminate y using the first set of constraints and have a Hitchcock problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij

subject to
∑
j∈N

xij ≤ ui, i ∈ M∑
i∈M

xij = bj , j ∈ N

x ≥ 0,

(3.2)

where cij = cij + wV−1ei and ei denotes the ith unit vector. Since the feasible set does
not depend on Δ, problem (3.2) always has an optimal solution x2 under condition (2.1).
It is well known that the number of arithmetic operations needed to compute x2 is a lower
order polynomial in m and n [1, 2]. The optimal value z2(Δ) =

∑
(i,j)∈E cijx

2
ij obviously

exceeds neither z1(Δ) nor z(Δ), and hence can serve as the lower bound z(Δ) at Step 2.
Let y2

i =
∑

j∈N x2
ij for each i ∈ M . Then (x2,y2) is a feasible solution to the target problem

(2.3), though it might be infeasible to RP1(Δ). Thereby, we can update the incumbent
(x◦,y◦) if necessary.

The relaxed problem RP2(Δ) fairly meets our requirements. Unfortunately, however,
the removal of V−1y ≥ 0 degrades the quality of the lower bound. To improve the lower
bound, we need to retighten the constraints.

Let us introduce 2m numbers:

si = min{yi | y ∈ Δ}�, ti = min{�max{yi | y ∈ Δ}�, ui}, i ∈ M, (3.3)

where · � and � · � represent the integers obtained by rounding up and down, respectively.
Also let s = (s1, . . . , sm)T and t = (t1, . . . , tm)T. Unless y ∈ Δ is an integral vector, it might
not satisfy s ≤ y ≤ t. However, we see from Lemma 2.1 that at least one optimal solution
(x∗,y∗) is integral, and satisfies s ≤ y∗ ≤ t if y∗ ∈ Δ. In other words, even if we replace
y ∈ Δ in RP1(Δ) by s ≤ y ≤ t, no integral optimal solution to P(Δ) is lost. Let us denote
the resulting problem by

RP3(Δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize z =
∑

(i,j)∈E

cijxij + wV−1y

subject to
∑
j∈N

xij = yi, i ∈ M∑
i∈M

xij = bj , j ∈ N

x ≥ 0, s ≤ y ≤ t.

Let (x3,y3) be an optimal solution when RP3(Δ) is feasible, and let

z3(Δ) =

⎧⎪⎨⎪⎩
∑

(i,j)∈E

cijx
3
ij + wV−1y3, if RP3(Δ) is feasible

+∞, otherwise.

c© Operations Research Society of Japan JORSJ (2005) 48-2

Concave Cost Production Transportation 103

We should remark that z3(Δ) is not always a lower bound on z1(Δ), nor even on z(Δ),
because there is no inclusive relation between the sets Δ and {y | s ≤ y ≤ t}. However,
since the target problem (2.3) has an integral optimal solution, the use of z3(Δ) as the
lower bound z(Δ) in the branch-and-bound algorithm is justified if we understand that the
integral constraint on (x,y) is hidden in (2.3) and its subproblem P(Δ).

Lemma 3.2 If z3(Δ) = +∞, then subproblem P(Δ) has no integral feasible solution. Oth-
erwise, let z̃(Δ) denote the value of the best integral solution to P(Δ). Then we have

z2(Δ) ≤ z3(Δ) ≤ z̃(Δ).

Proof: Since all integral points in Δ satisfy s ≤ y ≤ t, problem P(Δ) has no integral
feasible solution if RP3(Δ) is infeasible. The rest follows from (3.1) and the inclusive relation
between the feasible sets of three problems.

Another remark on RP3(Δ) is that it is a minimum cost flow problem similar to the target
problem (2.3). We can construct the underlying network as follows. First, we introduce a
source 0 of supply

∑
i∈M ti and a sink n′ of demand

∑
i∈M ti − B to the graph G. Then, we

connect these auxiliary nodes, 0 and n′, respectively to each node i ∈ M with directed arcs
(0, i) of capacity ti and (i, n′) of capacity ti − si. In this network, it is easy to see that the
flow on each arc (0, i), i ∈ M , is equal to ti for every feasible flow. Therefore, the difference
between ti and the flow on arc (i, n′) gives the value of yi in RP3(Δ). Since the objective
function is linear, we can solve this network flow problem and obtain z3(Δ), naturally in
polynomial time of m and n [1]. Again, (x3,y3) might be infeasible to P(Δ), but is feasible
to (2.3) and can be used for the incumbent update.

The network flow relaxed problem RP3(Δ) has been drawn by exploiting the integrality
of an optimal solution (x∗,y∗) to the target problem (2.3). We can use a similar idea to
terminate the simplicial branch-and-bound algorithm within finite iterations. Using s and t
defined in (3.3), we can see that Δ contains just one integral feasible production ỹ of (2.3)
if and only if

(a) si = ti for all i ∈ M and
∑

i∈M si =
∑

i∈M ti = B;

and Δ contains no integral feasible production of (2.3) if and only if

(b) si > ti for some i ∈ M , and/or (c)
∑

i∈M si > B or
∑

i∈M ti < B.

In the case of (a), we can compute the value of the best integral solution to P(Δ) by solving
P(Δ) with fixed ỹ, which is reduced to a Hitchcock problem. On the other hand, in the
case of (b) and/or (c), we need not solve any relaxed problem RPk(Δ), k = 1, 2, 3. In either
case, each nested simplex from Δ does not contain any integral feasible production of (2.3)
except ỹ. Therefore, we can stop the branching operation and can save computational time.

As seen in Section 2, when the algorithm does not terminate, it generates an infinite
sequence of nested simplices {Δr | r = 1, . . . }, which converges to a singleton if we apply
the bisection rule on the longest edge of Δ at Step 3. Let

d(Δ) = max{‖vi − vj‖ | i < j, i, j ∈ M}.

Then we have d(Δr) ≥ d(Δr+1) for each r, and d(Δr) → 0 as r → ∞. In this sequence, if
d(Δr) <

√
2 holds, then Δr contains at most one integral point, i.e., Δr must satisfy one

of the above stopping criteria (a)–(c). This implies that if we apply these criteria (a)–(c),
each nested sequence {Δr | r = 1, . . . } generated by the algorithm is finite. Hence, even by
adopting the depth first rule to select Δ at Step 1, we can guarantee the finite convergence

c© Operations Research Society of Japan JORSJ (2005) 48-2

104 H. Nagai & Y. Kuno

of the algorithm. The depth first rule selects Δ most recently added to D, and requires less
memory than the best bound rule.

We are now ready to give a detailed description of the algorithm, where conv(V) denotes
the convex hull of the columns of V:

algorithm SIMPLICIAL-BB
begin

for i ∈ M do vi := Bei;
V := [v1, . . . ,vm]; Δ := conv(V); D := {Δ}; z◦ := +∞;
while D 	= ∅ do begin

/∗ Step 1. (best bound or depth first) ∗/
select Δ ∈ D and set D := D \ {Δ};
define a subproblem P(Δ);

/∗ Step 2. (bounding operation) ∗/
for i ∈ M do begin

si := min{yi | y ∈ Δ}�; ti := min{�max{yi | y ∈ Δ}�, ui}
end;
if s = t and eTs = B = eTt then begin

ỹ := s;
solve P(Δ) with fixed ỹ and obtain an optimal solution x̃;
if

∑
(i,j)∈E cij x̃ij + g(ỹ) < z◦ then begin

(x◦,y◦) := (x̃, ỹ); z◦ :=
∑

(i,j)∈E cij x̃ij + g(ỹ)

end

else if s ≤ t and eTs ≤ B ≤ eTt then begin

w := [g(v1), . . . , g(vm)]; g(y) := wV−1y;
define a relaxed problem RPk(Δ) of P(Δ) using g;
solve RPk(Δ) and obtain a lower bound z(Δ) := zk(Δ);
let (xk,yk) denote an optimal solution to RPk(Δ);
if

∑
(i,j)∈E cijx

k
ij + g(yk) < z◦ then begin

(x◦,y◦) := (xk,yk); z◦ :=
∑

(i,j)∈E cijx
k
ij + g(yk)

end;
if z(Δ) < z◦ then begin

/∗ Step 3. (branching operation; μ ∈ (0, 1/2]) ∗/
select the longest edge vp–vq of Δ and let v := (1 − μ)vp + μvq;
V′ := [v1, . . . ,vp−1,v,vp+1, . . . ,vm];
V′′ := [v1, . . . ,vq−1,v,vq+1, . . . ,vm];
Δ′ := conv(V′); Δ′′ := conv(V′′); D := D ∪ {Δ′, Δ′′}

end

end

end;
(x∗,y∗) := (x◦,y◦)

end;

Theorem 3.3 The algorithm SIMPLICIAL-BB terminates after finitely many iterations, and
yields a globally optimal solution (x∗,y∗) to (2.3).

Proof: It is obvious that the algorithm yields an optimal solution (x∗,y∗) to (2.3) if it
terminates. Let us show that it terminates in finite time, assuming μ = 1/2 for simplicity.
We can prove other cases similarly.

c© Operations Research Society of Japan JORSJ (2005) 48-2

Concave Cost Production Transportation 105

If we apply the algorithm to (2.3), it generates a branching tree, each node of which
corresponds to a subproblem P(Δ). If we trace the tree from an arbitrary node P(Δr)
to the root (2.3), we have a nested sequence {Δ1, . . . , Δr}, where Δ1 denotes the initial
simplex given by (2.2). As we have seen, such a sequence has a finite length because the
algorithm backtracks along the branching tree if d(Δr) <

√
2. More precisely, the length is

bounded by m log B when μ = 1/2, since Δ1 has m edges of length
√

2B. Therefore, the
branching tree contains a total of O(2m log B) nodes at most. This implies that the algorithm
solves O(2m log B) linear programming problems RPk(Δ)’s, even in the worst case, and yields
(x∗,y∗) optimal for (2.3).

4. Computational Results

Let us report numerical results of comparing the algorithms of using z1(Δ), z2(Δ) and z3(Δ)
as the lower bound z(Δ) on randomly generated instances of problem (2.3). We refer to the
algorithms by SBB1, SBB2 and SBB3, respectively.

Each instance was generated in the following manner: cij’s were integers drawn from
the uniform distribution on the interval [1, 10]; ui’s and bj ’s were fixed at 200 and
�(∑i∈M 0.75ui)/n�, respectively; and the concave production cost was defined by

g(y) = γ
∑
k∈M

βk

√∑
i∈M

αkiyi,

where γ was selected from {0.1, 1.0, 10.0}, αki and βk were random numbers such that
αki ∈ (1.0, 2.0) if k = i, otherwise αki ∈ (0.0, 1.0), and βk ∈ [10.0, 20.0]. The size of m
ranged from 4 to 7, and n was set to each of {10m, 20m, 40m, 80m}.

The algorithms were coded mainly using GNU Octave (version 2.1.34) [16], a Matlab-like
computational tool, according to the description in Section 3. We also coded the revised
simplex algorithm for solving the relaxed problem RP1(Δ), and the successive shortest path
algorithm for solving RP2(Δ) and RP3(Δ) [1, 2]. Neither algorithm is polynomial, but we
improved the efficiency by exploiting an optimal solution to the preceding relaxed problem
as the initial solution. While Matlab-like tools are powerful for matrix computation due to
binary libraries for linear algebra, they are generally poor at other operations, especially at
processing discrete structures. We therefore took the way to call a shortest path procedure
coded in C++ (GCC version 2.96) from the successive shortest path program of Octave.
Each program code of SBB1, SBB2 and SBB3 adopted the depth first rule, μ = 1/2, and
solved ten instances for each (m, n, γ) on a Linux workstation (Linux 2.4.18, Itanium 2
processor, 1GHz).

Tables 1–3 show the results, each for γ ∈ {0.1, 1.0, 10.0}. The average CPU seconds
(time) and the average number of branching operations (branches) taken by SBB1, SBB2
and SBB3 are listed in each row. The worst figures are also given in brackets. These figures
are omitted to list if there were instances not solved within 10,000 seconds. We see from
the tables that both SBB2 and SBB3 are superior to SBB1 in CPU seconds for all (m, n, γ)
except (7, 70, 1.0), even though they require many more branching operations than SBB1.
This implies that the computational burden of solving each of RP2(Δ) and RP3(Δ) is low
enough to cancel the dominance of z1(Δ) over z2(Δ) and z3(Δ). Since the number of
branching operations required by SBB3 is rather less than that by SBB2, we can conclude
that z3(Δ) is tightened sufficiently from z2(Δ). Also, we should remark that the gap of
performance among SBB1, SBB2 and SBB3 tends to widen as the size of n increases for
each m. As to the effect of change in γ, we can see that it is fairly mild if we compare

c© Operations Research Society of Japan JORSJ (2005) 48-2

106 H. Nagai & Y. Kuno

T
ab

le
1:

C
om

p
u
tation

al
resu

lts
w

h
en

γ
=

0.1

S
B
B
1

S
B
B
2

S
B
B
3

m×
n

tim
e

bra
n
ch

es
tim

e
bra

n
ch

es
tim

e
bra

n
ch

es

4×
40

0.277
(
0.389)

14.2
(

29)
0.076

(0.113)
27.0

(
35)

0.075
(0.113)

26.8
(

41)

4×
80

1.193
(
1.660)

19.8
(

31)
0.106

(0.191)
35.8

(
65)

0.103
(0.186)

35.6
(

65)

4×
160

7.772
(
9.799)

25.2
(

31)
0.133

(0.177)
39.0

(
51)

0.130
(0.174)

38.8
(

51)

4×
320

58.71
(
70.31)

30.0
(

35)
0.269

(0.369)
57.8

(
79)

0.246
(0.274)

47.0
(

51)

5×
50

1.002
(
2.480)

48.4
(

137)
0.538

(0.905)
183.6

(
317)

0.474
(0.745)

163.8
(

255)

5×
100

4.565
(
7.231)

48.8
(

81)
0.571

(0.799)
175.6

(
255)

0.534
(0.738)

166.2
(

227)

5×
200

31.28
(
41.00)

56.2
(

73)
0.750

(1.050)
192.4

(
267)

0.707
(0.962)

178.8
(

239)

5×
400

272.1
(
464.1)

85.2
(

137)
1.943

(2.648)
335.8

(
435)

1.645
(2.327)

257.2
(

369)

6×
60

5.262
(
9.480)

184.4
(

381)
2.365

(3.978)
848.8

(
1,447)

2.299
(3.851)

841.8
(

1,427)

6×
120

31.38
(
56.58)

248.2
(

433)
3.417

(4.829)
1,060

(
1,407)

3.273
(4.474)

1,041
(

1,365)

6×
240

195.1
(
475.7)

220.6
(

485)
8.505

(16.62)
1,811

(
3,383)

5.455
(10.57)

1,099
(

2,035)

6×
480

1,482
(2,439)

265.8
(

445)
17.44

(26.77)
2,358

(
3,565)

10.48
(16.79)

1,283
(

2,027)

7×
70

28.42
(
70.04)

677.4
(1,537)

19.66
(29.80)

6,512
(

9,939)
17.95

(25.78)
5,981

(
8,403)

7×
140

169.8
(
363.2)

801.4
(1,653)

34.24
(64.06)

9,157
(16,671)

29.75
(50.31)

8,088
(13,341)

7×
280

1,435
(3,678)

993.0
(2,075)

46.57
(79.88)

8,947
(14,881)

42.44
(68.37)

8,100
(12,651)

7×
560

−
(

−
)

−
(

−
)

259.1
(678.6)

26,617
(67,753)

104. 5
(200.4)

9,500
(17,997)

c© Operations Research Society of Japan JORSJ (2005) 48-2

Concave Cost Production Transportation 107

T
ab

le
2:

C
om

p
u
ta

ti
on

al
re

su
lt

s
w

h
en

γ
=

1.
0

S
B
B
1

S
B
B
2

S
B
B
3

m
×

n
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es
ti

m
e

br
a
n
ch

es

4×
40

0.
43

0
(
0.

58
8)

34
.2

(
53

)
0.

17
7

(0
.2

64
)

67
.4

(
10

3)
0.

15
8

(
0.

22
1)

58
.0

(
83

)

4×
80

1.
99

5
(
4.

18
0)

56
.0

(
14

5)
0.

25
1

(0
.5

61
)

89
.6

(
20

1)
0.

22
5

(
0.

47
3)

79
.0

(
16

7)

4×
16

0
11

.1
3

(
16

.4
1)

53
.6

(
83

)
0.

26
5

(0
.4

54
)

79
.4

(
13

3)
0.

25
4

(
0.

36
6)

74
.2

(
10

5)

4×
32

0
91

.9
5

(
11

3.
8)

62
.4

(
73

)
0.

63
3

(0
.7

91
)

13
7.

6
(

17
1)

0.
45

9
(
0.

63
6)

88
.0

(
12

7)

5×
50

2.
33

4
(
5.

19
0)

14
4.

4
(

34
5)

1.
93

3
(3

.6
12

)
69

7.
0

(
1,

27
1)

1.
33

7
(
2.

53
3)

46
3.

4
(

86
7)

5×
10

0
9.

59
6

(
13

.9
5)

15
0.

2
(

22
1)

1.
82

0
(2

.9
75

)
59

1.
0

(
95

5)
1.

41
1

(
2.

00
4)

44
0.

4
(

62
1)

5×
20

0
71

.1
0

(
16

3.
2)

18
4.

2
(

46
5)

2.
65

1
(4

.0
63

)
70

0.
2

(
1,

02
9)

1.
94

8
(
3.

18
8)

49
0.

8
(

78
3)

5×
40

0
75

3.
8

(1
,3

48
)

29
7.

0
(

56
7)

7.
27

7
(1

3.
24

)
1,

27
0

(
2,

33
7)

4.
22

8
(
7.

42
4)

66
1.

0
(

1,
13

3)

6×
60

12
.6

5
(
25

.4
5)

51
1.

0
(

88
9)

6.
58

7
(1

6.
50

)
2,

37
6

(
5,

76
1)

5.
15

4
(
8.

04
1)

1,
85

0
(

2,
84

1)

6×
12

0
79

.3
8

(
13

9.
0)

68
8.

6
(1

,1
19

)
8.

36
5

(1
2.

49
)

2,
61

6
(

3,
72

9)
7.

48
4

(
10

.6
0)

2,
30

3
(

3,
09

9)

6×
24

0
55

6.
2

(1
,3

01
)

74
3.

4
(1

,6
49

)
39

.7
8

(6
5.

01
)

8,
98

3
(

14
,9

33
)

16
.0

6
(
24

.2
0)

3,
28

8
(

4,
80

9)

6×
48

0
5,

32
6

(8
,4

55
)

1,
02

7
(1

,5
59

)
95

.7
2

(1
78

.7
)

13
,1

43
(

26
,9

07
)

34
.7

8
(
51

. 5
5)

4,
22

5
(

6,
25

5)

7×
70

75
.6

9
(
17

4.
6)

1,
97

1
(4

,5
99

)
10

2.
3

(2
04

.4
)

33
,4

21
(

67
,2

81
)

60
.7

8
(
97

.3
7)

19
,4

53
(

30
,4

53
)

7×
14

0
57

4.
7

(1
,1

64
)

2,
95

5
(5

,7
11

)
21

4.
2

(4
60

.8
)

57
,2

08
(1

22
,7

27
)

96
.9

2
(
16

8.
1)

25
,2

22
(

42
,9

21
)

7×
28

0
4,

27
2

(6
,8

86
)

3,
28

5
(5

,9
95

)
30

6.
4

(5
48

.3
)

57
,9

41
(1

04
,9

47
)

14
2.

6
(
20

4.
7)

25
,9

57
(

36
,7

63
)

7×
56

0
−

(
−)

−
(

−)
−

(
−)

−
(

−)
61

4.
0

(2
,5

18
)

55
,6

86
(2

22
,7

99
)

c© Operations Research Society of Japan JORSJ (2005) 48-2

108 H. Nagai & Y. Kuno

T
ab

le
3:

C
om

p
u
tation

al
resu

lts
w

h
en

γ
=

10.0

S
B
B
1

S
B
B
2

S
B
B
3

m×
n

tim
e

bra
n
ch

es
tim

e
bra

n
ch

es
tim

e
bra

n
ch

es

4×
40

0.875
(
1.679)

74.8
(

151)
0.313

(
0.515)

117.0
(

197)
0.266

(0.452)
99.2

(
171)

4×
80

3.700
(
9.218)

96.6
(

275)
0.402

(
1.085)

140.2
(

377)
0.337

(0.962)
116.2

(
341)

4×
160

25.35
(
41.04)

104.2
(

163)
0.509

(
0.969)

138.6
(

263)
0.452

(0.832)
121.2

(
227)

4×
320

221.0
(
386.9)

121.6
(

201)
0.971

(
2.006)

158.2
(

299)
0.861

(1.476)
151.2

(
267)

5×
50

4.374
(
8.649)

265.6
(

585)
2.812

(
5.921)

977.6
(

2,003)
1.640

(3.037)
572.0

(
1,067)

5×
100

16.26
(
34.73)

223.2
(

541)
2.511

(
4.777)

803.8
(

1,513)
1.713

(3.305)
537.0

(
1,027)

5×
200

151.0
(
216.3)

330.4
(

469)
3.439

(
4.812)

821.0
(

1,235)
2.475

(3.346)
580.4

(
757)

5×
400

1,331
(1,973)

301.4
(

397)
4.510

(
9.583)

549.6
(

1,241)
3.440

(6.079)
417.4

(
769)

6×
60

25.52
(
45.64)

860.8
(

1,473)
8.973

(
13.70)

3,102
(

4,635)
6.729

(9.543)
2,356

(
3,299)

6×
120

132.0
(
214.9)

802.0
(

1,135)
8.935

(
12.56)

2,572
(

3,513)
7.931

(10.86)
2,331

(
3,157)

6×
240

1,543
(3,954)

1,692
(

4,781)
49.98

(
135.1)

9,915
(

24,789)
24.69

(69.10)
4,771

(13,239)

6×
480

−
(

−
)

−
(

−
)

93.65
(
309.7)

8,309
(

26,343)
34. 88

(84.34)
3,033

(
7,155)

7×
70

194.4
(
516.0)

4,794
(13,073)

193.0
(
465.9)

60,740
(141,607)

96.56
(202.5)

30,429
(62,887)

7×
140

1,614
(3,066)

5,958
(12,243)

282.6
(1,003)

69,003
(230,187)

131.1
(321.6)

32,353
(76,935)

7×
280

−
(

−
)

−
(

−
)

270.1
(
940.2)

40,475
(132,011)

181.5
(418.7)

27,447
(57,615)

7×
560

−
(

−
)

−
(

−
)

2,704
(9,233)

208,187
(727,397)

358. 1
(669.0)

26,316
(46,591)

c© Operations Research Society of Japan JORSJ (2005) 48-2

Concave Cost Production Transportation 109

three tables. The algorithm SIMPLICIAL-BB is therefore expected to solve still more highly
nonlinear problems as long as m is less than seven.

5. Concluding Remarks

The production-transportation problem (2.3) can be thought of as an example of the sim-
plest supply chain models. However, if we assume the production cost to be an inseparable
concave function of a total amount of production, it is not so easy to figure out a globally
optimal solution even for small-scale problems. To solve this intractable problem, we pro-
posed a simplicial branch-and-bound algorithm, SIMPLICIAL-BB. Unlike the usual simplicial
algorithms, our algorithm always maintains the network structure possessed by the original
problem in the course of computation. This causes rather rapid growth of branching trees
but enables us to use efficient network flow procedures, and results in the advantage over the
algorithm ignoring the network structure, as seen in the previous section. Since we tested
the algorithms on limited instances, we can not make a final conclusion. Nonetheless, the
algorithm SIMPLICIAL-BB is fairly promising for practical use and will serve as a stepping
stone to solve further complicated supply chain models.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin: Network Flows (Prentice-Hall, NJ, 1993).

[2] M.S. Bazaraa, J.J. Jarvis and H.D. Sherali: Linear Programming and Network Flows
(2nd ed.) (John Wiley & Sons, NY, 1990).

[3] M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory
of NP-Completeness (W.H. Freeman, CA, 1979).

[4] G.M. Guisewite and P.M. Pardalos: Minimum concave-cost network flow problems:
applications, complexity, and algorithms. Annals of Operations Research, 25 (1990),
75-100.

[5] K. Holmberg and H. Tuy: A production-transportation problem with stochastic de-
mand and concave production costs. Mathematical Programming, 85 (1999), 157–179.

[6] R. Horst and H. Tuy: Global Optimization: Deterministic Approaches (2nd ed.)
(Springer-Verlag, Berlin, 1993).

[7] T. Kuno: A pseudo-polynomial algorithm for solving rank three concave production-
transportation problems. Acta Mathematica Vietnamica, 22 (1997), 159–182.

[8] T. Kuno and T. Utsunomiya: A decomposition algorithm for solving certain classes of
production-transportation problems with concave production cost. Journal of Global
Optimization, 8 (1996), 67–80.

[9] T. Kuno and T. Utsunomiya: A pseudo-polynomial primal-dual algorithm for glob-
ally solving a production-transportation problem. Journal of Global Optimization, 11
(1997), 163–180.

[10] T. Kuno and T. Utsunomiya: A Lagrangian based branch-and-bound algorithm for
production-transportation problems. Journal of Global Optimization, 18 (2000), 59–
73.

[11] R.M. Soland: Optimal facility location with concave costs. Operations Research, 22
(1974), 373–382.

[12] H. Tuy: Convex Analysis and Global Optimization (Kluwer Academic Publishers, Dor-
drecht, 1998).

c© Operations Research Society of Japan JORSJ (2005) 48-2

110 H. Nagai & Y. Kuno

[13] H. Tuy, N.D. Dan and S. Ghannadan: Strongly polynomial time algorithms for certain
concave minimization problems on networks. Operations Research Letters, 14 (1993),
99–109.

[14] H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand: Strongly polynomial algorithm
for a production-transportation problem with concave production cost. Optimization,
27 (1993).

[15] H. Tuy, S. Ghannadan, A. Migdalas and P. Värbrand: Strongly polynomial algorithm
for a production-transportation problem with a fixed number of nonlinear variables.
Mathematical Programming, 72 (1996), 229–258.

[16] Octave Home Page. http://www.octave.org/.

Takahito Kuno
Graduate School of Systems and Information Engineering
University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan
E-mail: takahito@cs.tsukuba.ac.jp

c© Operations Research Society of Japan JORSJ (2005) 48-2

