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Abstract A vector x ∈ Rn is weakly k-majorized by a vector q ∈ Rk if the sum of r largest components
of x is less than or equal to the sum of r largest components of q for r = 1, 2, · · · , k and k ≤ n. In this
paper we extend the components of x to their absolute values in the above description and generalize some
results in [2] and [3] by G. Dahl and F. Margot.
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1. Introduction

For p, q ∈ Rn we say that p is weakly sub-majorized by q if
∑r

j=1 p[j] ≤
∑r

j=1 q[j] for
r = 1, 2, · · · , n. Here p[j] denotes the jth largest component of p. If

∑n
j=1 pj =

∑n
j=1 qj also

holds, p is majorized by q and we write p ≺ q. Furthermore, for integers k, n with k ≤ n
and x ∈ Rn, q ∈ Rk, we say that x is weakly k-majorized by q and write x ≺k q if

r∑
j=1

x[j] ≤
r∑

j=1

q[j] for r = 1, 2, · · · , k. (1.1)

Majorization is a concept appearing in several branches of mathematics and applied
mathematics as indicated in [2]. Here, we extend the components of x in (1.1) to their
absolute values as follows:

r∑
j=1

|x[j]| ≤
r∑

j=1

q[j] for r = 1, 2, · · · , k. (1.2)

We say that x is weakly absolutely k-majorized by q and write xabs ≺k q. In the following
we investigate properties induced by (1.2) and generalize some results in [2] and [3].

Hereafter, we assume that majorant q ∈ Rk satisfies

q1 ≥ q2 ≥ · · · ≥ qk ≥ 0. (1.3)

2. Polyhedra Induced by Absolute Majorization

Let
P (q; k) := {x ∈ Rn|x ≺k q}, (2.1)

and denote Nt := {1, 2, · · · , t}. Define x(X) :=
∑

j∈X xj . Then we have [2]

P (q; k) = {x ∈ Rn|x(X) ≤ q(Nr) for all X ⊆ Nn with r = |X| ≤ k}, (2.2)
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Weak Absolute Majorization Ordering 91

so P (q; k) is a polyhedron.
In the case of absolute majorization, we first denote by 3Nn the set of all ordered pairs

of disjoint subsets of Nn, i.e., 3Nn := {(X, Y ) | X, Y ⊆ Nn, X ∩ Y = ∅}. Similarly, let

PS(q; k) := {x ∈ Rn|xabs ≺k q}. (2.3)

Then we have

PS(q; k) = {x ∈ Rn| x(X) − x(Y ) ≤ q(Nr) for all

(X, Y ) ∈ 3Nn with r = |X ∪ Y | ≤ k}. (2.4)

Hence PS(q; k) is also a polyhedron, or more precisely, a polytope. Note here that the
absolute-value notation disappears, and instead we have a signed linear form description.

Define the set function f : 3Nn → R by

f(X, Y ) =
r∑

i=1

qi for all (X, Y ) ∈ 3Nn where r = |X ∪ Y |. (2.5)

We call a function f : 3Nn → R bisubmodular if f satisfies

f(X1, Y1)+f(X2, Y2) ≥ f(X1∩X2, Y1∩Y2)+f((X1∪X2)− (Y1∪Y2), (Y1∪Y2)− (X1∪X2)).
(2.6)

for any (X1, Y1), (X2, Y2) ∈ 3Nn .

Proposition 2.1 The function f defined by (2.5) is a bisubmodular function.

(Proof) For any (X1, Y1), (X2, Y2) ∈ 3Nn, we show that the function satisfies bisubmodular
inequality (2.6).

Rewrite the inequality (2.6) as

f(X1, Y1)−f(X1∩X2, Y1∩Y2) ≥ f((X1∪X2)− (Y1∪Y2), (Y1∪Y2)− (X1∪X2))−f(X2, Y2).
(2.7)

Let s = |X1∩X2|+|Y1∩Y2|, t = |X2|+|Y2|, and l1 = |X1∪Y1−X2∪Y2|, l2 = |X1∩Y2|+|X2∩Y1|.
By the definition of function f(X, Y ) in (2.5), the left-hand side of (2.7) is

s+l1+l2∑
i=s+1

qi, (2.8)

and the right-hand side of (2.7) is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t+l1−l2∑
i=t+1

qi (if l1 ≥ l2)

t∑
i=t+l2−l1+1

− qi (if l1 < l2)

(2.9)

Since t ≥ s, it follows from the assumption (1.3) that the left-hand side of (2.7) is, indeed,
greater than or equal to the right-hand side of (2.7) (see Figure 1). Here note that |L′

1∪L′′
1 | =

l1 and |L′
2 ∪ L′′

2| = l2. �
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� |X1 ∩ X2| + |Y1 ∩ Y2| + l1 + l2 �

� |X1| + |Y1| �

�|X1 ∪ X2 − Y1 ∪ Y2| + |Y1 ∪ Y2 − X1 ∪ X2|�
� |X2| + |Y2| + l1 − l2 �

X2

Y2

X1 Y1

X1 ∩ X2

Y1 ∩ Y2

L′
1 L′′

1

L′
2

L′′
2

Figure 1: Lengths of sets and Venn diagram of Proposition 2.1

From the above proposition, we have a diameter description of PS(q; n).
Let P be a convex polytope. The diameter of P , denoted by δ(P ), is the smallest number

δ(P ) such that any two vertices in P can be connected by a path with at most δ(P ) edges.
Let φ be a linear form defined on P . Suppose that any v can be connected to v∗ by a
nonincreasing (nondecreasing) path induced by φ with at most δ(P, φ) edges, where v∗

minimizes (maximizes) φv. The monotonic diameter of P is defined as

δ∗(P ) = max{δ(P, φ) | φ is a linear form on P}. (2.10)

Now we have the following result ([5], [1]).

Proposition 2.2 If all the components of q take different values, the diameter and the
monotonic diameter of PS(q, n) are n2.

(Outline of the proof): ¿From the proof of 2.1, we can easily see that different components of
q guarantee strict inequalities of bisubmodular function. Therefore, each vertex of PS(q; n)
can be characterized by a signed chain, a list of signed elements, or a special signed Hasse
diagram [1]. Then we traverse to adjacent vertices along the edges of PS(q; n) by two types
of operations.

(1) Exchange the pair of two adjacent elements of a chain.
(2) Change the sign of an element at one fixed terminal of a chain.
Hence, what we have to do is counting the number of operations of types (1) and (2).

Without loss of generality, we suppose that a maximally distant pair of vertices are charac-
terized by following two chains.

(−x1, −x2, · · · , −xn), (2.11)

(x1, x2, · · · , xn). (2.12)

Hence, the total number of operations to obtain from one chain to another is

1 + (2 × 2 − 1) + · · ·+ (2i − 1) + · · ·+ (2n − 1) = n2. (2.13)

The monotonic property can be obtained from the definition of the bisubmodularity
inequality. �

3. Optimization Problems and Integrality

Let c ∈ Rn and consider the following optimization problem,

max{c T x | xabs ≺k q}. (3.1)
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We know from (2.4) that the above problem is equivalent to

max{c T x | x ∈ PS(q; k)}, (3.2)

a linear programming (LP). And it is clear that when k = n, i.e., in the bisubmodular case,
the above LP can be solved by greedy algorithm [4].

In the following, we generalize some results in [3] and [2] for k < n.
First, for g ∈ Rk, we define tail average of g by ḡs:k := 1/(k − s + 1)

∑k
i=s |gi|.

Suppose that c ∈ Rk satisfies |c1| ≥ |c2| ≥ · · · ≥ |ck−1| (note that ck may be arbitrary).
Then there is an m ∈ {1, 2, · · · , k} such that [2]

c̄1:k ≥ · · · ≥ c̄m:k ≤ c̄m+1:k ≤ · · · ≤ c̄k:k = |ck|. (3.3)

For 0 ≤ s ≤ k−1 and c ∈ Rn with |c1| ≥ |c2| ≥ · · · ≥ |cn|, we define signed sth q-average
ws ∈ Rn by

ws := ((−1)i1q1, · · · , (−1)isqs, (−1)is+1 q̄s+1:k, · · · , (−1)in q̄s+1,k), (3.4)

where il = 0 or 1 for l = 1, 2, · · · , n, and define ws
c ∈ Rn, signed sth q-average related to c

by
ws

c := (sign(c1)q1, · · · , sign(cs)qs, sign(cs+1)q̄s+1:k, · · · , sign(cn)q̄s+1,k). (3.5)

Theorem 3.1 The optimal solution of Problem (3.2) can be obtained as a permutation of
ws

c, where s = m − 1.
(Proof) To prove the optimality, we only consider the case when for i = 1, 2, · · · , n, (1)
xi ≥ 0 if ci ≥ 0 and (2) xi < 0 if ci < 0. Otherwise, reversing the signs of components of
x would increase the value of c�x without violating the constraints xabs ≺k q. Our proof
is only based on the form of cT x, we may suppose ci ≥ 0 and xi ≥ 0 for i = 1, 2, · · · , n.
Otherwise, let cixi = (−ci)(−xi) and omit the signs before them for convenience.

For the second part of the proof, see appendix. �

Conversely, by the same arguments as the proof of Theorem 3.1 and by an appropriate
choice of c (see Theorem 5 of [3]), we can prove that each ws (s = 0, 1, · · · , k−1) is a unique
optimal solution of (3.2) on PS(q; k), and therefore a vertex of PS(q; k). Combining it with
Theorem 3.1, we have the following result.
Theorem 3.2 The set of vertices of PS(q; k) is precisely the set of vectors that can be
obtained by permutations of ws, s = 0, 1, · · · , k − 1.

By Theorem 3.1, the simple (greedy) algorithm for solving problem (3.1) is similar to
that described in [2] and its time complexity is O(n2). The difference is that we compute
s by taking absolute values of components of c and we take minus components of ws when
the corresponding components of c are less than zero.

Now we consider the following integer programming problem:

max{c T x | xabs ≺k q, x is integral}. (3.6)

We represent the integer hull of PS(q; k) by

QS(q; k) := conv{x ∈ Rn | xabs ≺k q, x is integral}. (3.7)

We assume that q is an integer vector, otherwise round down each component of q with-
out changing QS(q; k). Note here that QS(q; k) is full-dimensional if q �= 0 (together with
the assumption that q is integral and non-negative).
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94 P. Zhan

In [3] and [2], a complete description of vertices and facets of polyhedra Q(q; k) =
conv{x ∈ Rn|x ≺k q, x is integral} are provided. By the symmetry, these results can be
generalized to polytope QS(q; k) without much modifications. We summarize two main re-
sults here.

Let α ∈ [qk, q̄1,k] and define s(α) = max{0 ≤ s < k | q̄s+1,k ≥ α} and Δ(α) =
∑k

i=s+1 qi −
(k − s(α) − 1)α. We define the vector x(α) ∈ Rn by

x(α) := ((−1)i1q1, · · · , (−1)isqs(α), (−1)is+1Δ(α), (−1)is+2α, · · · , (−1)inα), (3.8)

for il = 0 or 1 and l = 1, 2, · · · , n, where α ≤ q̄1,k is a round down or round up of q̄s+1,k and
s = 0, 1, · · · , k − 1. And we say x(α) a signed rounded q-average.

Theorem 3.3 The set of vertices of QS(q; k) is precisely the set of vectors that can be
obtained by permutations of signed rounded q-averages.

Let s and t be integers with 0 ≤ s < k < t ≤ n, and put δs :=
∑k

i=s+1 qi−(k−s)q̄s+1:k� =∑k
i=s+1 qi mod (k − s). Then, define αs,t

0 := (t − k)/(k − s − δs)
∑s

i=1 qi +
∑k

i=1 qi + (t −
k)q̄s+1:k�. We call

(t − s − δs)/(k − s − δs)(x(X1) − x(Y1)) + x(X2) − x(Y2) ≤ αs,t
0 (3.9)

a signed q-average inequality if q̄s+1:k is fractional, where X1, Y1, X2, Y2 are pairwise disjoint,
|X1 ∪ Y1| = s and |X2 ∪ Y2| = t − s.

We call

x(X) − x(Y ) ≤
r∑

i=1

qi for (X, Y ) ∈ 3Nn, |X ∪ Y | = r (3.10)

a signed set size inequality if r=1 or q1 > qr.

Theorem 3.4 A complete and non-redundant facet description of QS(q; k) is given by
signed set size inequalities and signed q-average inequalities.

4. Appendix

For the second part of the proof of Theorem 3.1 we first assume c1 ≥ c2 ≥ · · · ≥ cn. Let
x ≥ 0 be a feasible solution. Without loss of generality, we may assume that x1 ≥ · · · ≥
xk = · · · = xn. Let di = ci for i = 1, 2, · · · , k − 1, and dk =

∑n
j=k cj . Let x∗ = ws

c , as
indicated in the theorem.

n∑
i=1

ci(x
∗
i − xi) =

k∑
i=1

di(x
∗
i − xi) =

s∑
i=1

di(qi − xi) + q̄s+1:k

k∑
i=s+1

di −
k∑

i=s+1

dixi

=
s∑

i=1

di(qi − xi) + (k − s)d̄s+1:kq̄s+1:k −
k∑

i=s+1

dixi, (4.1)
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where,

−
k∑

i=s+1

dixi = −
k−1∑

i=s+1

( k∑
j=i

dj −
k∑

j=i+1

dj

)
xi − dkxk

= −
k−1∑

i=s+1

(
(k − i + 1)d̄i:k − (k − i)d̄i+1:k

)
xi − dkxk

= −
(k−2∑

i=s

(k − i)d̄i+1:kxi+1 −
k−1∑

i=s+1

(k − i)d̄i+1:kxi

)
− dkxk

=
k−2∑

i=s+1

(k − i)d̄i+1:k(xi − xi+1) − (k − s)d̄s+1:kxs+1 + d̄k:kxk−1 − dkxk. (4.2)

Note that xi − xi+1 ≥ 0. From the definition of s we obtain

k−2∑
i=s+1

(k − i)d̄i+1:k(xi − xi+1)

≥ d̄s+1:k

k−2∑
i=s+1

(k − i)(xi − xi+1)

= d̄s+1:k

k−2∑
i=s+1

(k − i)xi − d̄s+1:k

k−1∑
i=s+2

(k − i + 1)xi

= −d̄s+1:k

k−2∑
i=s+2

xi + (k − s − 1)d̄s+1:kxs+1 − 2d̄s+1:kxk−1

= −d̄s+1:k

k−1∑
i=s+1

xi + (k − s)d̄s+1:kxs+1 − d̄s+1:kxk−1. (4.3)

Now, the last whole row of equation (4.2) (after deleting (k−s)d̄s+1:kxs+1−(k−s)d̄s+1:kxs+1))
is greater than

−d̄s+1:k

k−1∑
i=s+1

xi − d̄s+1:kxk−1 + d̄k:kxk−1 − dkxk

= −d̄s+1:k

k∑
i=s+1

xi + d̄s+1:kxk − d̄s+1:kxk−1 + d̄k:kxk−1 − dkxk

= −d̄s+1:k

k∑
i=s+1

xi + (dk − d̄s+1:k)(xk−1 − xk)

≥ −d̄s+1:k

k∑
i=s+1

xi. (4.4)

Finally, since qi − xi ≥ 0 for all i = 1, 2, · · · , s, we have

s∑
i=1

di(qi − xi) ≥ d̄s+1:k

s∑
i=1

(qi − xi). (4.5)
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96 P. Zhan

Summarizing the above equations and inequalities, we have

k∑
i=1

di(x
∗
i − xi) ≥ d̄s+1:k

( k∑
i=1

qi −
k∑

i=1

xi

)
≥ 0. (4.6)

�

Note that this is a direct proof of Theorem 2 in [2].
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