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Abstract In the typical type of ANP with a matrix U evaluating alternatives by criteria and a matrix W
evaluating criteria by alternatives in the so-called supermatrix S, W is often said to be unstable. Here, we
propose a method to revise W into a stable Ŵ and to calculate the weights of criteria and alternatives at the
same time under the revised supermatrix Ŝ. Our method is formulated as an optimization problem based
on Bayes Theorem which T.L. Saaty claimed to be included in ANP scheme. Concurrent Convergence
method developed by Kinoshita and Nakanishi also intends to be correct W , but this method includes
some contradictions. We prove that our method has no such contradiction. We introduce some eigenvalue
problems, which give a lower bound of our optimal value and their special cases coincide with our problem.
Furthermore, we clear what perturbations of W preserve weights of criteria and alternatives to be invariant
under the concept of inactive alternatives.

Keywords: Decision making, AHP, analytic network process, bayes theorem, fractional
programming

1. Introduction

The Analytic Hierarchy Process (AHP) developed by Saaty [6] is a multi-criteria decision
method that uses hierarchic structure to represent a decision problem and then provides
priorities for alternatives on decision makers’ judgments. Saaty extends the hierarchic struc-
ture of criteria and alternatives into a network one, and proposes Analytic Network Pro-
cess (ANP). We consider the simplest type of ANP that is composed of the set of criteria
C = {C1, . . . , Cm}, the set of alternatives A = {A1, . . . , An}, the evaluation matrix U of
alternatives by criteria and W of criteria by alternatives. This type of ANP has a so-called
supermatrix

S =

[
0 W
U 0

]
. (1.1)

The main object of ANP is to calculate weights of C1, . . . , Cm and A1, . . . , An with
given values of U and W . Of course decision makers may give two evaluation matrices
W and U that include neither interdependence nor reciprocal relationship. This pair of
evaluation matrices W and U is often called independent. In the other case there exist some
interdependence between W and U , and it is often said that the values of elements of W
depend on U . This dependence of wij is mathematically formulated as

wij = fij(U)eij (1.2)

where eij is an error term. If eij of (1.2) is abnormally large, then W is often called unstable.
Kinoshita and Nakanishi assume an interdependence between criteria and alternatives and
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then propose Concurrent Convergence Method (CCM) [3] for this type ANP, which revises
given values of W by some relations between U and W . It is said to correct the initial
values of W by using the information of U . However, it is pointed out by Sekitani and
Ueta [10] that their CCM has a contradiction. Further recently Saaty [6, 7] insists that
Bayes Theorem is included in the framework of ANP. His idea is briefly summarized as
follows; Taking C1, . . . , Cm as the causes and A1, . . . , An as the outcomes, we can consider
U as the set of conditional probabilities of the the outcomes under the occurrences of the
causes. So W is to correspond to the formula to calculate aposteriori probabilities in Bayes
Theorem. His such idea connecting ANP and Bayes Theorem is ingenious excellent. The
object of this paper is to propose the new approach of revising W based on this idea and
to show no contradiction of the new one.

The remaining structure of the paper is organized as follows: Section 2 reviews rela-
tionships between Bayes theory and ANP with the supermatrix (1.1). The new method
of revising unstable W is proposed in Section 3. Section 4 shows no contradiction of the
new method and mathematical properties of priorities of alternatives and criteria. With the
help of a simple numerical example, Section 5 illustrates the uniqueness and sensitivity of
an evaluation weight vector. Section 6 shows how to incorporate some requests of decision
makers into the proposed method. A conclusion is summarized in the last section.

2. The Structures of Bayes Theorem and ANP

We will explain the structures of Bayes Theory by the simplest actual example. Consider
a group G of human beings (G may be the whole people of U.S.A.). Some of them have
a specific disease (say, cancer). Let C1 be the set of persons of cancer and C2 = G \ C1

be the set of non-cancer ones. Denoting the percent/100 of C1(C2) by p1(p2), we have
p1 +p2 = 1. Let A1 be the set of persons who are decided to cancer by the medical checkup.
And A2 = G \ A1 is the set of ones decided to have not cancer. Denoting the percent/100
of A1(A2) by q1(q2), then we have q1 + q2 = 1. (See Figure 1.) Then we have the following
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Figure 1: Cancer and medical check

four kinds of conditional probabilities:

uji =
|Aj ∩ Ci|

|Ci| , i, j = 1, 2, (2.1)

where |X| is the number of elements of a set X. For example u11 is the probability of a
person having cancer who is decided to have cancer by the medical check, and u21 is the
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probability of a person having cancer who is decided to have not cancer by the check (that
is, overlooking probability). All we can know is only the results of the medical check. So
we often want to know the (conditional) probability of a person decided to have cancer by
the medical check who has really cancer. This is clearly represented as

|A1 ∩ C1|
|A1| (2.2)

by the set theoretical consideration. Bayes Theorem intends to represent (2.2) by pi, qj and
uij, then (2.2) is to represent by

u11p1

q1

. (2.3)

In Bayes theory the formula like (2.3) is called aposteriori probability. This way of expression
is based on their idea taking C1, C2 as causes and A1, A2 as outcomes. By this way of
expression, the aposteriori probability wij of Ci on the outcome Aj is

wij =
ujipi

qj

. (2.4)

Here, we have clearly qj =
∑

i ujipi, so (2.4) is equivalent to

wij =
ujipi∑
k ujkpk

. (2.5)

This is the famous Bayes Theorem.
Now we will show how does such probability problem correspond with the evaluation

problem like ANP. Again take the simplest actual example of (1.1) type of ANP. Consider
two fast food companies A1 and A2, and two evaluation criteria C1 (quality food) and C2

(advertisement).
Now assuming that the whole people G of U.S.A can be decomposed into two groups

C̄1, the set of people supporting C1, and C̄2, the set of people supporting C2. The similar
decomposition Ā1 and Ā2 is considered. Then evaluating weight pi(qj) of Ci(Aj) can be
considered to be near percent/100 of C̄i(Āj) in G. Similarly evaluating weight uji of Aj by
Ci can be considered to be near to the percent/100 of Āj within C̄i. Of course such evaluating
value is commonly decided by a decision maker’s intuition in ANP. But his intuition must
be based on the information with above mentioned data. Under these considerations, we
have

uji ≈
∣∣∣Āj ∩ C̄i

∣∣∣∣∣∣C̄i

∣∣∣ . (2.6)

If we can accept the validness of (2.6), we must also accept that evaluating weight wij of Ci

by Aj is near to |Āj ∩ C̄i|/|Āj|, that is,

wij ≈ |Āj ∩ C̄i|
|Āj| . (2.7)

Formula (2.6) and (2.7) clearly indicate that U = [uij] and W = [wij] of the supermatrix (1.1)
in ANP can not be independent. Moreover considering pi ≈ |C̄i|/|G| and qi ≈ |Āj|/|G| we
have

wij ≈ ujipi

qj

. (2.8)
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If (2.8) is valid with exact equality, it completely coincides with Bayes Theorem (2.4). This
is a brief explanation of Saaty’s claim ”ANP includes Bayes Theorem”. (Of course the above
discussion extremely simplifies the actual situation. For example taking (2.7), you can say
that evaluating Ci by Aj must include the policy of the company Aj. Certainly the value
of wij must be based on various factors. But if we want to take every effecting factors, it
costs us endless. Theory needs simplifying.)

We have stated that there can be a structure of ANP (of (1.1)) such that U and W
are not independent. Of course there are many cases where U and W are independently
determined. The evaluation structures stated above are based on the same space G. If the
evaluation of Aj by Ci and that of Ci by Aj are based on completely different spaces, U
and W might be independently determined. So the relationship depends on the structure
of evaluations.

Note that we do not claim our method to be applicable to every case of ANP of type (1.1).
Our method is applicable to such type of the dependent structure, and is not suitable for
the independent type. This is the key to implement our method for actual problems.

3. A New Method of Revising W

In early time Kinoshita and Nakanishi noticed the dependency of U and W and proposed
CCM [3]. It is based on some relations between uji/uki and wij/wik which of course are
different from (2.8). Sekitani and Ueta show that CCM includes a fatal contradiction.

Now we will propose our new method which replaces the relations on CCM [3] with (2.8).
Let it call Bayes Revising Method (BRM). Of course our method has no contradiction, which
is shown later. In BRM it is assumed that U is stable and W is unstable. So it intends
to correct the initially given values of W by the informations of U and the relations (2.8)
between U and W .

In order to clear BRM we define several symbols as follows:

U =




u11 · · · u1m
...

. . .
...

un1 · · · unm


 =




u1
...

un


 : evaluation matrix of alternatives A1, . . . , An

by criteria C1, . . . , Cm.

W =




w11 · · · w1n
...

. . .
...

wm1 · · · wmn


 = [w1, · · · ,wn] : initial value of evaluation matrix of criteria

by alternatives (wj is an evaluating vector of
criteria by Aj, j = 1, . . . , n.).

p = [p1, . . . , pm]� : evaluation vector of criteria by an outer fac-
tor.

q = [q1, . . . , qn]� : evaluation vector determined by q = Up.
Here we assume as usual ANP

n∑
i=1

uij = 1,
m∑

i=1

wij = 1, wij ≥ 0 and uij ≥ 0 for all i = 1, . . . , n, j = 1, . . . ,m. (3.1)

Writing (2.8) by matrix-forms, we have

W ≈ (∆p)U�(∆q)−1, (3.2)

where ∆x for vector x = [x1, . . . , xn]� is the diagonalization of x, that is

∆x =




x1 0
. . .

0 xn


 . (3.3)
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Considering q = Up, we can write the right hand-side of (3.2) as

W [p] = (∆p) U� (∆(Up))−1 (3.4)

which is considered to be a transformation of apriori probability into aposteriori probability
W [p] by Bayes Theorem. Here we call (3.4) Bayes transformation.

Now the principle of BRM is to make Bayes transformation W [p] of the convex combi-
nation p =

∑n
j=1 rjwj of w1, . . . ,wn, to be nearest to W . That is, the principle of BRM is

to find

p =
n∑

j=1

rjwj,
n∑

j=1

rj = 1 and rj ≥ 0 (j = 1, . . . , n) (3.5)

such that
W [p] = (∆p)U� (∆(Up))−1 (3.6)

is near to W as possible as we can. Then we take W [p] as the revised W .
But there are various meanings of ”near”. For example we can take the minimum L2-

norm of (W [p] − W ) as ”nearest”, which is often formulated as the minimum-norm point
problem in mathematical programming (see [12, 15]). Here we take the min-max principle
as the nearest; that is, the min-max principle is to minimize

max

{
ŵij

wij

,
wij

ŵij

∣∣∣∣∣ i = 1, . . . ,m and j = 1, . . . , n

}
, (3.7)

where

Ŵ =




ŵ11 · · · ŵ1n
...

. . .
...

ŵm1 · · · ŵmn


 = W [p] (3.8)

and p satisfies (3.5). For all p and all Ŵ satisfying (3.5) and (3.8), we have

m∑
i=1

ŵij = 1 for all j = 1, . . . , n

and

ŵij =
ujipi

ujp
=

uji
∑n

k=1 wikrk∑n
k=1(ujwk)rk

for all i = 1, . . . ,m and all j = 1, . . . , n, (3.9)

where pi is the i-th component of p. Thus the actual BRM is essentially to solve

min max

{
uji

∑n
k=1 wikrk

wij
∑n

k=1(ujwk)rk

,
wij

∑n
k=1(ujwk)rk

uji
∑n

k=1 wikrk

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}
(3.10)

s.t.
n∑

k=1

rk = 1, rk ≥ 0, k = 1, . . . , n. (3.11)

The optimization problem of (3.10) and (3.11) is a typical fractional program and it can be
solved by Dinkelbach algorithm [1].

Remark 1 Theoretically the problem to minimize the L1-norm or L2-norm of (W [p]−W )
can be considered. But their objective functions include a sum of linear ratios or quadratic
ratios. So, it is hard to find an optimal solution exactly and efficiently by research efforts
of the recent mathematical programming [2, 5, 13].
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Once we had the revised matrix Ŵ , the analysis of ANP are carried out by the revised
supermatrix

Ŝ =

[
0 Ŵ
U 0

]
. (3.12)

Let the evaluation vector of criteria be x, and that of alternative be y, then they are unique
solution of

Ŝ

[
x
y

]
=

[
x
y

]
or

Ux = y

Ŵy = x
. (3.13)

That is,

[
x
y

]
is the principal eigenvector of Ŝ whose principal eigenvalue is 1 (see the

details for [9]). This leads to
ŴUx = x. (3.14)

The solution of (3.14) is p satisfying (3.9). That is

ŴUp = p. (3.15)

In fact, the i-th component of the left hand-side of (3.15) is

n∑
j=1

m∑
k=1

ŵijujkpk =
n∑

j=1

ujipi

ujp

m∑
k=1

ujkpk =
n∑

j=1

ujipi

ujp
ujp =

n∑
j=1

ujipi = pi,

which is the i-th component of the right hand-side of (3.15). So we have the following
theorem:
Theorem 1 The evaluation weight vector of criteria of ANP with the supermatrix (3.12)
is p∗ of (3.8) and the evaluation weight vector of alternatives is Up∗.

From Theorem 1 we introduce definitions of the evaluation weight vectors by BRM as
follows: For an optimal solution [r∗1, . . . , r

∗
n]� of (3.10) and (3.11), an evaluation weight vector

of criteria is defined by p∗ =
∑n

j=1 r∗jwj and an evaluation weight vector of alternatives is
defined by Up∗ = U

∑n
j=1 r∗jwj. In the sequel, the evaluation weight vector of criteria is

denoted by p∗ and that of alternatives is denoted by q∗.

4. Some Properties of BRM

In this section we introduce some properties of BRM that is to solve the min-max problem
of (3.10) and (3.11). Since the evaluation weight vector p∗ of criteria by BRM is an optimal
solution of the min-max problem, properties of p∗ are provided by the constraints (3.11)
and the objective function (3.10).

We will show that the constraints (3.11) provides an important property of p∗, which
is not obtained by CCM. For the typical mutual evaluation (1.1) Sekitani and Ueta [10]
request the following condition for an evaluation weight vector p = [p1, . . . , pm]� of criteria:

if w1j > w2j > · · · > wmj for all j = 1, . . . , n, then p1 > p2 > · · · > pm. (4.1)

If an evaluation method provides an evaluation weight vector p satisfying (4.1) for any su-
permatrix (1.1), the evaluation method is called no contradiction. CCM has a contradiction
for the supermatrix 



0 0 0.520 0.510 0.530
0 0 0.480 0.490 0.470

0.667 0.030 0 0 0
0.250 0.968 0 0 0
0.083 0.002 0 0 0




(4.2)
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and it provides the evaluation weight vector of criteria, [0.135, 0.865]� after 5 iterations
(see [10] for details). Applying BRM to the supermatrix (4.2), we have an optimal solution
of (3.10) and (3.11), r∗ = [0, 1, 0]�, by using Dinkelbach algorithm. It follows from (3.5)
and the definition of the evaluation weight vector p∗ of criteria that

p∗ =
n∑

j=1

r∗jwj = w2 =

[
0.51
0.49

]
. (4.3)

Therefore, the evaluation weight vector of criteria by BRM satisfies (4.1) for the superma-
trix (4.2).

For all supermatrices (1.1) with any pair of positive stochastic matrices W and U , BRM
always provides an evaluation weight vector of criteria satisfying (4.1) by the following
theorem:
Theorem 2 Let S be a supermatrix (1.1) and let p∗ be an evaluation weight vector of
criteria by applying BRM to S. Suppose that W of S satisfies w1j > w2j > · · · > wmj for
all j = 1, . . . , n, then p∗1 > p∗2 > · · · > p∗m. That is, BRM has no contradiction.
Proof: Let r∗ be an optimal solution of (3.10) and (3.11), then we have r∗j ≥ 0 for all
j = 1, . . . , n and there exists an index l ∈ {1, . . . , n} such that r∗l > 0. Since we have
p∗i =

∑n
j=1 wijr

∗
j for all i = 1, . . . ,m and (w1j − w2j)r

∗
j ≥ 0 for all j = 1, . . . , n, it follows

from (w1l − w2l)r
∗
l > 0 that

p∗1 − p∗2 =
n∑

j=1

w1jr
∗
j −

n∑
j=1

w2jr
∗
j =

n∑
j=1

(w1j − w2j)r
∗
j

=
∑
j �=l

(w1j − w2j)r
∗
j + (w1l − w2l)r

∗
l ≥ (w1l − w2l)r

∗
l > 0.

By the same manner, we prove p∗2 > p∗3 > · · · > p∗m.

Let C(W ) be the convex hull of {w1, · · · ,wn}, then the min-max problem of (3.10) and
(3.11) is equivalent to

min
p∈C(W )

max

{
ujipi

wijujp
,
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}
. (4.4)

In order to discuss some properties of p∗ by the objective function (3.10), we relax the feasible
region C(W ) of the min-max problem (4.4) into the positive orthant {p | pi > 0 i = 1, . . . ,m}
and then consider two optimization problems:

min
p>0

max

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . , m
j = 1, . . . , n

}
. (4.5)

and

max
p>0

min

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . , m
j = 1, . . . , n

}
. (4.6)

Lemmas 3 and 4 guarantee the existence of optimal solutions of (4.5) and (4.6) and the
coincidence between them and principal eigenvectors of some matrices.
Lemma 3 There exists an optimal solution of (4.5). Let λ̄ and p̄ be the optimal value
of (4.5) and an optimal solution of (4.5), respectively. Let

wiji
uji

p̄

ujiip̄i

= max

{
wijujp̄

ujip̄i

∣∣∣∣∣ j = 1, . . . , n

}
(4.7)
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for all i = 1, . . . ,m, then p̄ is a positive principal eigenvector of an m × m matrix


(w1j1/uj11) uj1
...

(wmjm/ujmm) ujm


 . (4.8)

Proof: Let V i = {(wij/uji)uj | j = 1, . . . , n} for i = 1, . . . ,m, then (4.5) is equal to

min
p>0

max

{
v1p

p1

, · · · , vmp

pm

∣∣∣∣∣ (v1, · · · ,vm) ∈ V 1 × · · · × V m

}
.

It follows from Theorem 34 of [8] that the above problem has an optimal solution that is a
principal eigenvector of (4.8).

Lemma 4 There exists an optimal solution of (4.6). Let λ and p be the optimal value
of (4.6) and an optimal solution of (4.6), respectively. Let

wiji
uji

p

ujiipi

= min

{
wijujp

ujipi

∣∣∣∣∣ j = 1, . . . , n

}

for all i = 1, . . . ,m, then p is a positive principal eigenvector of an m × m matrix


(w1j1/uj11) uj1
...

(wmjm/ujmm) ujm


 . (4.9)

Proof: By the same manner as the proof of Lemma 3, this assertion directly follows (see
also Theorem 30 of [8]).

Both the optimal value of (4.5) and that of (4.6) correspond to lower bounds of the
optimal value of the min-max problem (4.4) as follows:
Lemma 5 Let λ̄ and λ be the optimal value of (4.5) and (4.6), respectively, then

the optimal value of (4.4) ≥ max
{

1

λ
, λ̄
}

. (4.10)

Proof: Since wj > 0 for all j = 1, . . . , n, we have C(W ) ⊆ {p |p > 0}. This implies from
λ > 0 that

min
p∈C(W )

max

{
ujipi

wijujp
,
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}

≥ min
p>0

max

{
ujipi

wijujp
,
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}

= min
p>0

max

{
max

{
ujipi

wijujp

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}
, max

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}}

≥ max

{
min
p>0

max

{
ujipi

wijujp

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}
, min
p>0

max

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}}

= max



(

max
p>0

min

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

})−1

, min
p>0

max

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}


= max
{

1

λ
, λ̄
}

.
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When the optimal value of (4.4) is equal to that of (4.5), an evaluation weight vector p∗ of
criteria by BRM has the following properties:

Lemma 6 Let λ̄ and p̄ be the optimal value of (4.5) and an optimal solution of (4.5),
respectively, and suppose that λ̄ is equal to the optimal value of (4.4), then any optimal
solution of (4.4) is (p̄/

∑m
i=1 p̄i).

Proof: Suppose that there exists an optimal solution of p∗ �= p̄/
∑m

i=1 p̄i of (4.4), then it
follows from

∑m
i=1 p∗i = 1, Frobenius’ Theorem (e.g., Theorem 9 of [11]) and Lemma 3 that

λ̄ < max

{
(w1j1/uj11) uj1p

∗

p∗1
, · · · , (wmjm/ujmm) ujmp∗

p∗m

}
,

where ji is defined by (4.7) for all i = 1, . . . ,m. This means that λ̄ is less than the optimal
value of (4.4), which is a contradiction. Hence, any optimal solution (4.4) is p̄/

∑m
i=1 p̄i.

Theorem 7 means that an evaluation weight vector p∗ of criteria by BRM is an eigenvector
of some matrix when the optimal value of (4.4) is equal to that of (4.5).

Theorem 7 Suppose that the optimal value of (4.5) is equal to the optimal value of (4.4),
then an optimal solution of (4.4) is a positive principal eigenvector of the matrix (4.8).

Proof: This theorem follows from lemmas 3 and 6.

In the other case, that is, when the optimal value of (4.4) is a reciprocal of that of (4.6),
an evaluation weight vector p∗ of criteria by BRM is an eigenvector of some matrix by the
following lemma and theorem:

Lemma 8 Let λ and p be the optimal value of (4.6) and an optimal solution of (4.6),

respectively, and suppose that λ−1 is equal to the optimal value of (4.4), then any optimal

solution of (4.4) is
(
p/
∑m

i=1 p
i

)
.

Proof: In the similar way to the proof of Lemma 6, we prove it.

Theorem 9 Suppose that the optimal value of (4.6) is a reciprocal of the optimal value
of (4.4), then an optimal solution of (4.4) is a positive principal eigenvector of the ma-
trix (4.9).

Proof: This theorem follows from lemmas 4 and 8.

We show the existence of W that provides no gap between the optimal value of (4.4)
and that of (4.5).

Theorem 10 Suppose that there exists a positive vector p̄ such that W = W [p̄] and∑m
i=1 p̄i = 1, then the optimal value of (4.4) is equal to that of (4.5), and both an opti-

mal solution of (4.5) and that of (4.4) are p̄.

Proof: It follows from W = W [p̄] that wji = (uij p̄i)/(ujp) for all i = 1, . . . ,m and j =
1, . . . , n. Hence, we have

(wji/uij)ujp̄

p̄i

= 1 for all i = 1, . . . ,m and all j = 1, . . . , n.

From Frobenius’ Theorem (e.g., Corollary 4 of [11]) every positive vector p /∈ {µp̄ |µ > 0}
satisfies

min

{
(wji/uij)ujp

pi

∣∣∣∣∣ i = 1, . . . ,m

}
< 1 < max

{
(wji/uij)ujp

pi

∣∣∣∣∣ i = 1, . . . ,m

}
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for all j = 1, . . . , n. Hence, for every positive vector p �= p̄ with
∑m

i=1 pi = 1, we have

max

{
ujip̄i

wijujp̄
,
wijujp̄

ujip̄i

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}
= 1 < max

{
ujipi

wijujp
,
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}

and max

{
wijujp̄

ujip̄i

∣∣∣∣∣ i = 1, . . . ,m
j = 1, . . . , n

}
= 1 < max

{
wijujp

ujipi

∣∣∣∣∣ i = 1, . . . , m
j = 1, . . . , n

}
.

It follows from Theorem 1 that there exists an positive vector y such that Wy = p̄ and∑n
j=1 yj = 1. This means that p̄ ∈ C(W ). Therefore, both the optimal value of (4.4) and

that of (4.5) are 1 and their optimal solution are p̄.

Theorem 10 also implies that BRM provides a unique evaluation weight vector p∗ satisfying
W = W [p∗] if W is given by the Bayes Theorem (2.5).

5. Uniqueness and Sensitivity of Evaluation Weight Vector

For practical use of BRM, we discuss the uniqueness of an optimal solution of (4.1) and
sensitivity of its optimal solution, with the help of a numerical example [14],

U =




1/3 0.3
1/6 0.6
1/2 0.1


 (5.1)

W =

[
0.7 0.4 0.2
0.3 0.6 0.8

]
. (5.2)

The min-max problem (3.10) and (3.11) defined by U of (5.1) and W of (5.2) has an
optimal solution

r∗ = [r∗1, r
∗
2, r

∗
3]

� = [0.0, 0.586, 0.414]� (5.3)

and the optimal value λ∗ = 3.4948. An optimal solution of the min-max problem (4.4) is

p∗ = Wr∗ =

[
0.317
0.683

]
. (5.4)

From (3.9) we have

Ŵ = W [p∗] =

[
0.340 0.114 0.699
0.660 0.886 0.301

]
. (5.5)

For two matrices, W of (5.2) and Ŵ of (5.5), we have

max

{
wij

ŵij

,
ŵij

wij

∣∣∣∣∣ i = 1, 2, j = 1, 2, 3

}
=

w12

ŵ12

=
ŵ13

w13

= λ∗ = 3.4948, (5.6)

where λ∗ is the optimal value of (4.4). From p∗ of (5.4) we have

q∗ = Up∗ =




0.310
0.463
0.227


 . (5.7)
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As stated above, an optimal solution p∗ of the min-max problem (4.4) is given as an
evaluation weight vector of criteria by BRM. Is p∗ unique? To check the existence of
alternative evaluation weight vector of criteria by BRM other than p∗, we solve

max
m∑

i=1

|pi − p∗i |
s.t. ujipi − λ∗wijujp ≤ 0 for all i = 1, . . . ,m and j = 1, . . . , n (5.8)

wijujp − λ∗ujipi ≤ 0 for all i = 1, . . . ,m and j = 1, . . . , n

p ∈ C(W ),

where λ∗ is the optimal value of the min-max problem of (3.10) and (3.11). If the optimal
value of (5.8) is 0, an evaluation weight vector of criteria by BRM is unique. Otherwise
there exist multiple evaluation weight vectors of criteria by BRM, whose set is


p

∣∣∣∣∣∣∣
ujipi − λ∗wijujp ≤ 0 for all i = 1, . . . ,m and j = 1, . . . , n
wijujp − λ∗ujipi ≤ 0 for all i = 1, . . . ,m and j = 1, . . . , n
p ∈ C(W )


 . (5.9)

The problem (5.8) defined by U of (5.1), W of (5.2), p∗ of (5.4) and λ∗ = 3.4948 has
the optimal value 0. Hence, an optimal solution p∗ of the min-max problem (4.4) is unique.
Applying BRM to the supermatrix (1.1) with U of (5.1) and W of (5.2), Ŵ is (5.5) and an
evaluation weight vector of criteria is p∗ of (5.4). Moreover, an evaluation weight vector of
alternates is q∗ of (5.7).

Since judgment of criteria by alternative may be unstable, it is desirable that Ŵ given
by p∗ does not fluctuate widely with small changes in W . So we illustrate how sensitive
the evaluation weight vector p∗ of criteria is to slight changes in W of (5.2). A way of
perturbation of W is to change only one column of W and then to fix other columns. This
is called a single column-perturbation of W . Replacing the first column [0.7, 0.3]� of (5.2)
with w1 = [w11, w21]

�, we consider

W (w11) =

[
w11 0.4 0.2
w21 0.6 0.8

]
(5.10)

as a perturbation of W , where w11 + w21 = 1, w11 > 0 and w21 > 0.
Setting w11 = 0.5, 0.55, . . . , 0.9, we generate 9 perturbations of (5.2), W (0.5),W (0.55),

. . . ,W (0.9). For each of w11 = 0.5, . . . , 0.9 we apply BRM to the supermatrix (1.1) with
U of (5.1) and W (w11), and then solve (5.8) in order to test the uniqueness of an optimal
solution p∗ of (4.4). Here, the optimal value of (5.8) is denoted by σ∗. These computational
results are summarized in Table 1 that documents the optimal value λ∗, an evaluation weight
vector p∗ of criteria, an evaluation weight vector q∗ = Up∗of alternatives, a revising matrix
Ŵ = W [p∗] and the optimal value σ∗ of (5.8) for each of w11 = 0.5, . . . , 0.9.

Since we have σ∗ = 0 for every w11 = 0.5, . . . , 0.9, an evaluation weight vector p∗ of
criteria by BRM is unique. The evaluation weight vector p∗ of criteria is invariant to
w11 = 0.5, . . . , 0.8 and then W [p∗] is so. Therefore, the evaluation weight vector p∗ of
criteria and the revising matrix W [p∗] do not fluctuate with changes of w11 = 0.7 ± 0.05
and 0.7 ± 0.1.

In order to discuss invariance of p∗ to the single column-perturbation analytically, we
introduce a definition of an inactive alternative. For two stochastic positive matrices W and
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Table 1: Perturbations of W and BRM
w11 p∗ q∗ λ∗ W [p∗] σ∗

0.5
...

0.8

[0.317, 0.683]� [0.310, 0.463, 0.227]� 3.495

[
0.340 0.114 0.699
0.660 0.886 0.301

]
0

0.85 [0.399, 0.601]� [0.313, 0.427, 0.259]� 3.841

[
0.424 0.156 0.768
0.576 0.844 0.232

]
0

0.9 [0.498, 0.502]� [0.316, 0.385, 0.299]� 4.763

[
0.524 0.216 0.832
0.476 0.784 0.168

]
0

U of (1.1), an alternative j is called inactive if the optimal value λ∗ of (4.4) and any optimal
solution p∗ of (4.4) satisfies

λ∗ > max

{
ujip

∗
i

wijujp∗ ,
wijujp

∗

ujip∗i

∣∣∣∣∣ i = 1, . . . ,m

}
(5.11)

and p∗ ∈ C (w1, · · · ,wj−1,wj+1, · · · ,wn) , (5.12)

where C (w1, · · · ,wj−1,wj+1, · · · ,wn) is the convex hull of {w1, · · · ,wj−1,wj+1, · · · ,wn}.
An inactive alternative has the following property for the single column-perturbation of W :

Lemma 11 Let λ∗ and p∗ be the optimal value of (4.4) and the optimal solution of (4.4),
respectively and suppose that an alternative j is inactive. Suppose that w̃j is a positive
vector with

∑m
i=1 w̃ij = 1 and consider W̃ = [w1, · · · ,wj−1, w̃j,wj+1, · · · ,wn] as a single

column-perturbation of W , then p∗ is also a feasible solution of (4.4) with W̃ . If

λ∗ ≥ max

{
w̃ijujp

∗

ujip∗i
,

ujip
∗
i

w̃ijujp∗

∣∣∣∣∣ i = 1, . . . ,m

}
, (5.13)

then p∗ attains the same objective function value of (4.4) with W̃ as λ∗, that is

λ∗ = max




max

{
ulip

∗
i

wilulp∗ ,
wilulp

∗

ulip∗i

∣∣∣∣∣ i = 1, . . . ,m
l �= j

}
,

max

{
ujip

∗
i

w̃ijujp∗ ,
w̃ijujp

∗

ujip∗i

∣∣∣∣∣ i = 1, . . . ,m

}



. (5.14)

Proof: Since the alternative j is inactive, it follows from (5.12) that

p∗ ∈ C (w1, · · · ,wj−1,wj+1, · · · ,wn) ⊆ C (w1, · · · ,wj−1, w̃j,wj+1, · · · ,wn) = C
(
W̃
)
.

Therefore, p∗ is a feasible solution of (4.4) with W̃ .
Since λ∗ and p∗ are the optimal value of (4.4) and its optimal solution, respectively, it

follows from (5.11) and (5.13) that

λ∗ = max

{
ulip

∗
i

wilulp∗ ,
wilulp

∗

ulip∗i

∣∣∣∣∣ i = 1, . . . ,m
l = 1, . . . , n

}
= max

{
ulip

∗
i

wilulp∗ ,
wilulp

∗

ulip∗i

∣∣∣∣∣ i = 1, . . . ,m
l �= j

}

= max

{
max

{
ulip

∗
i

wilulp∗ ,
wilulp

∗

ulip∗i

∣∣∣∣∣i = 1, . . . ,m
l �= j

}
,max

{
ujip

∗
i

w̃ijujp∗ ,
w̃ijujp

∗

ujip∗i

∣∣∣∣∣i = 1, . . . ,m

}}
.
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Let W̃ = [w1, · · · ,wj−1, w̃j,wj+1, · · · ,wn], then the min-max problem (4.4) with W̃ is
formulated as

min
p∈C(W̃)

max




max

{
ulipi

wilulp
,
wilulp

ulipi

∣∣∣∣∣ i = 1, . . . ,m
l �= j

}
,

max

{
ujipi

w̃ijujp
,
w̃ijujp

ujipi

∣∣∣∣∣ i = 1, . . . ,m

}



. (5.15)

Lemma 11 means that an optimal solution p∗ of the min-max problem (4.4) is a feasible
solution of (5.15) when the alternative j is inactive and that the objective function value
attained by p∗ is invariant to the inactive alternative j’s vector w̃j satisfying (5.13). There-
fore, if the alternative j is inactive and the optimal value λ∗ of (4.4) is also the optimal
value of (5.15), then the optimal solution p∗ of (4.4) is also that of (5.15).

By the numerical results of (5.1) and (5.2), we confirm the invariance of the evaluation
weight vector p∗ of criteria to w̃j of an inactive alternative j. Since the min-max prob-
lem (4.4) with W of (5.2) has the unique optimal solution p∗ of (5.4) and the optimal value
λ∗ = 3.495, it follows from p∗ = 0.586w2 + 0.414w3 that

max

{
u1ip

∗
i

wi1u1p∗ ,
wi1u1p

∗

u1ip∗i

∣∣∣∣∣ i = 1, 2

}
= max {0.486, 2.057, 2.199, 0.455} < 3.495 = λ∗

and p∗ ∈ C (w2,w3) .

Therefore, the alternative 1 is inactive for U of (5.1) and W (0.7). Let W̃ =

[
w̃11 0.4 0.2
w̃21 0.6 0.8

]
,

then the min-max problem (5.15) corresponds to (4.4) defined by W of (5.2) that includes
a perturbation factor w̃1, and λ∗ = 3.495 is the objective function value of (5.15) at p∗

of (5.4) when w̃1 satisfies (5.13), that is

1

λ∗ ≤ w̃i1u1p
∗

u1ip∗i
≤ λ∗ (5.16)

for i = 1, 2. The inequalities (5.16) implies from p∗ = [0.317, 0.683]�, u1 = [1/3, 0.3],
λ∗ = 3.495 and w̃11 + w̃21 = 1 that 0.097 ≤ w̃11 ≤ 0.811. Since w̃11 ∈ [0.097, 0.811] for w̃11 =
0.5, 0.55, . . . , 0.8 and λ∗ = 3.495 is the optimal value of (5.15) with w̃11 = 0.5, 0.55, . . . , 0.8,
the evaluation weight vector p∗ of criteria is invariant to w̃11 = 0.5, 0.55, . . . , 0.8.

Under the equivalence between the optimal value of (4.4) and that of (5.15), Lemma 11
guarantees the invariance of the evaluation weight vector of criteria. However, the following
theorem does not need the equivalence between them:

Theorem 12 Let λ∗ and p∗ be the optimal value of (4.4) and the optimal solution of (4.4),
respectively. Let λ̄ and λ be the optimal value of (4.5) and that of (4.6), respectively. Suppose

that λ∗ = max
{
λ−1, λ̄

}
and that an alternative j is inactive. If a positive vector w̃j satisfies∑m

i=1 w̃ij = 1 and (5.13), then p∗ is also an optimal solution of (5.15).

Proof: Let λ̃ and p̃ be the optimal value of (5.15) and an optimal solution of (5.15),
respectively. Since w̃j satisfies (5.13), it follows from Lemma 11 that λ∗ ≥ λ̃.

Assume that λ∗ > λ̃, then we have

p̃ �= p∗ and
m∑

i=1

p̃i =
m∑

i=1

p∗i = 1. (5.17)
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Consider the case λ∗ = max
{
λ−1, λ̄

}
= λ̄, then it follows from Lemmas 3 and 6 that there

exist m indices j1, . . . , jm such that p∗ is a positive principal eigenvector of (4.8). Since the
alternative j is inactive and the principal eigenvalue of (4.8) is λ∗ = λ̄, it follows from (5.11)
that j /∈ {j1, . . . , jm}. This implies from (5.17) and Frobenius’ Theorem that

λ∗ = λ̄ < max

{
w1j1uj1p̃

uj11p̃1

, · · · , wmjmujmp̃

ujmmp̃m

}

≤ max




max

{
ulip̃i

wilulp̃
,
wilulp̃

ulip̃i

∣∣∣∣∣ i = 1, . . . ,m
l �= j

}
,

max

{
ujip̃i

w̃ijujp̃
,
w̃ijujp̃

ujip̃i

∣∣∣∣∣ i = 1, . . . ,m

}



= λ̃.

This is contradiction for λ∗ > λ̃. For the other case, that is λ∗ = max
{
λ−1, λ̄

}
= λ−1, we

lead to contradiction by the same manner. Therefore, we have λ∗ = λ̃ and it follows from
Lemmas 6 and 8 that p∗ = p̃.

Consider the min-max problem (4.4) defined by U of (5.1) and W (0.85) of (5.10), then
the optimal value λ∗ of (4.4) is equal to the optimal value λ of (4.6) and the optimal solution
p∗ of (4.4) is a principal eigenvector of

[
(w13/u31) u3

(w21/u12) u1

]
. (5.18)

In fact, by applying the Dinkelbach algorithm [1] or the coloring algorithm [8] to the max-
min problem (4.6) defined by U of (5.1) and W (0.85) of (5.10), we have its optimal value
λ = 0.2603 and its optimal solution p = [0.399, 0.601]�. Since

w13u3p

u31p1

= min

{
w1jujp

uj1p1

∣∣∣∣∣ j = 1, 2, 3

}
and

w21u1p

u12p2

= min

{
w2jujp

uj2p2

∣∣∣∣∣ j = 1, 2, 3

}
,

it follows from Lemma 4 that p is a principal eigenvector of the matrix (5.18) such as



(

0.2
1/2

)
1/2

(
0.2
1/2

)
0.1(

0.15
0.3

)
1/3

(
0.15
0.3

)
0.3


 =

[
1
5

1
25

1
6

3
20

]
,

whose principal eigenvalue is λ = 0.2603. Since the optimal value λ∗ = 3.841 of (4.4) is
equal to λ−1 = 0.2603−1 = 3.841, it follows from Theorem 9 that p is an optimal solution
of (4.4).

From (5.1), (5.2) and p∗ = [0.399, 0.601]� we have

max

{
u2ip

∗
i

wi2u1p∗ ,
wi2u2p

∗

u2ip∗i

∣∣∣∣∣ i = 1, 2

}
= max {2.567, 0.390, 0.710, 0.409} < 3.841 = λ∗

and p∗ = 0.306w1 + 0.694w3 ∈ C (w1,w3) .

Hence, the alternative 2 is inactive for U of (5.1) and W (0.85) of (5.10). Let W̃ =[
0.85 w̃12 0.2
0.15 w̃22 0.8

]
, then the min-max problem (5.15) corresponds to (4.4) defined by W (0.85)
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including a perturbation factor w̃2, then p∗ is an optimal solution of (5.15) when w̃2 satis-
fies (5.13), that is

1

λ∗ ≤ w̃i2u2p
∗

u2ip∗i
≤ λ∗ (5.19)

for i = 1, 2. The inequalities (5.19) implies from p∗ = [0.399, 0.601]�, u2 = [1/6, 0.6],
λ∗ = 3.841 and w̃12 + w̃22 = 1 that 0.0405 ≤ w̃12 ≤ 0.599. Therefore, for U of (5.1) and W̃ ,
the evaluation weight vector p∗ of criteria is invariant to w̃12 ∈ [0.0405, 0.599].

In the type (1.1) of ANP, the number n of alternatives is often greater than that of
criteria, m. Every point p ∈ C(W ) can be given as a convex combination of at most m
vectors of {w1, . . . ,wn}. Note that the set of optimal solutions of (4.4) is (5.9), we see that
at most m inequality constraints of (5.10) are held on equality at almost optimal solutions
of (4.4). Since ujipi − λ∗wijujp = 0 is equivalent to wijujp/ujipi = λ∗, there exists an
inactive alternative if n > 2m. Here, we consider an assumption that every index j of (5.11)
satisfies (5.12). The assumption is valid in all numerical examples as stated above. Under
the assumption there exists an inactive alternative if n > m. Therefore, the evaluation
weight vector by BRM may often be invariant to small perturbation of judgments from one
alternative to criteria.

6. Incorporating Requirements of Decision Makers into BRM

BRM satisfies the requirement of (4.1) and changes the evaluation matrix W into the revised
one Ŵ . However, all judgments of criteria from alternatives by decision makers are not
always satisfied with the revised matrix Ŵ . As stated in the previous section, the first
column of W of (5.2) is

w11 = 0.7 ≥ 0.3 = w21. (6.1)

This means that decision makers with the viewpoint of the alternative 1 prefer the criterion
1 to the criterion 2. The first column of of Ŵ of (5.5) is

ŵ11 = 0.34 ≤ 0.66 = ŵ21 (6.2)

and the preference order among criteria by (6.2) is against that by (6.1). Hence, the revised
evaluation matrix Ŵ might neglect some judgments of the decision makers that are quan-
tified to W . There may exist a requirement of the decision makers that order of criteria
by some columns of W are invariant to a revision from W to Ŵ . Furthermore, they may
require the revision of W to keep all values of some columns of W invariant.

These requirements of decision makers can be dealt with BRM by adding constraints
into the optimization problem (3.10) and (3.11). The coincidence between order among
{w1j, w2j, · · · , wmj} and that among {ŵ1j, ŵ2j, · · · , ŵmj} is called the j-th column order in-
variance condition. The equivalence between {w1j, w2j, · · · , wmj} and {ŵ1j, ŵ2j, · · · , ŵmj}
is called the j-th column invariance condition. Without loss of generality, we consider
w1j ≥ w2j ≥ · · · ≥ wmj for some j. The j-th column order invariance condition is for-
mulated as (wij − wi+1j)(ŵij − ŵi+1j) ≥ 0 for all i = 1, . . . ,m − 1. From (3.9) we have
ŵij−ŵi+1j = ujipi/ujp−uji+1pi+1/ujp = (ujipi − uji+1pi+1) /ujp and hence, it follows from
ujp > 0 that (wij−wi+1j)(ŵij−ŵi+1j) ≥ 0 is equivalent to (wij−wi+1j)(ujipi−uji+1pi+1) ≥ 0.
Therefore, the j-th column order invariance condition is equivalently reduced to

(w1j − w2j)(uj1p1 − uj2p2) ≥ 0,
...

(wm−1j − wmj)(ujm−1pm − ujmpm) ≥ 0.

(6.3)
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From (3.9), the j-th column invariance condition is formulated as

wijujp − ujipi = 0 for all i = 1, . . . ,m. (6.4)

By introducing linear constraints (6.3), (6.4) and p =
∑n

j=1 rjwj into the optimization prob-
lem (3.10) and (3.11), BRM can deal with two invariance requirements of decision makers
and it satisfies (4.1). Since three additional constraints (6.3), (6.4) and p =

∑n
j=1 rjwj

are linear functions of r, Dinkelbach algorithm can be applied to the optimization problem
(3.10) and (3.11) with the additional constraints.

With the supermatrix (1.1) consisting of the pair of (5.1) and (5.2), we illustrate BRM
with invariance requirements of decision makers. Suppose that decision makers require the
first column order invariance condition. The requirement of decision makers is formulated
as

0 ≤ (w11 − w21)(u11p1 − u12p2). (6.5)

We add (6.5) and p =
∑3

j=1 rjwj into constraints (3.11) of the optimization problem. Solving
the optimization problem with additional constraints by Dinkelbach algorithm, we have the
optimal function value 4.4, its optimal solution r∗ = [0.912, 0, 0.088]� and

p∗ = [0.474, 0.526]� ,

q∗ = [0.316, 0.395, 0.289]� ,

W [p∗] =

[
0.5 0.2 0.818
0.5 0.8 0.182

]
. (6.6)

Since the first column of (6.6) implies ŵ11 ≥ ŵ21, the revised evaluation matrix Ŵ is satisfied
with the requirement of decision makers. (In order to obtain ŵ11 > ŵ21, it is sufficient to
replace the left hand-side value 0 of (6.5) with a small positive number ε and then to solve
the optimization problem with additional constraints.)

7. Conclusion

For the typical ANP with the supermatrix (1.1), we develop a method of revising the
unstable W into the stable Ŵ . The idea of our method is based on Bayes Theorem stated
in Section 2. Section 3 formulates it as a fractional programming problem (3.10), (3.11)
or (4.4), which is solved by Dinkelbach algorithm. Theorem 1 guarantees that our method,
at the same time, gives the solution of the revised ANP with Ŵ .

In Section 4 Theorem 2 shows that our method has no contradictions appear in CCM [10],
and we introduce some eigenvalue problems which give the lower bound of the optimal value
λ∗ of (4.4) by Lemma 11. Further Theorems 7 and 9 show that if λ∗ becomes equal to this
bound, the solution of (4.4) coincides with that of this eigenvalue problem.

Section 5 illustrates several numerical examples for (4.4) and further introduces the
concept of inactive alternatives, (5.11) and (5.12). Lemma 11 clarifies the range within
which the evaluation vector wj by the inactive alternative j can fluctuate without changing
the optimal value. Further Theorem 12 shows that this range is explicitly represented in
the case for λ∗ that is equal to the lower bound. We can not prove the uniqueness of
solutions of our problem, but all our examples are found to have uniqueness by checking
the program (5.8). In addition to advantage of the sensitivity analysis, Section 6 shows
flexibility of BRM modeling.
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