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Abstract  We study a single-server queue fed by various kinds of sources, each of which is constrained
by a deterministic regulator, e.g., a token bucket. In particular, we derive bounds of virtual-waiting-time
distribution only assuming that sources are stationary, statistically independent from each other, and have
deterministic subadditive envelopes without using a specific traffic pattern. Based on the derived bounds, we
investigate how large statistical multiplexing gain can be achieved when regulated sources share a common
network resource. Numerical examples reveal that the regulated sources are more advantageous than Markov
arrival processes or long-range-dependent sources with respect to the statistical multiplexing gain.
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1. Introduction

In a typical computer network, each computer sends or receives data by using common
network resources. Since each computer sends data intermittently, it is seldom that several
computers simultaneously send a large amount of data and thus the shared network resources
are fully occupied. This is the reason why the shared network resource can achieve much
higher utilization than resources exclusively dedicated to a specific pair of computers. This
resource-sharing effect is usually called statistical multiplexing.

While the Internet benefits largely from the statistical multiplexing, it usually does
not give any quality-of-service (QoS) guarantees. The provision of QoS guarantees in the
Internet has become a central topic of research for the last decade because congestion is
widespread in today’s Internet and QoS-aware applications like IP telephony are becoming
major services. To this end, several QoS-guaranteeing mechanisms, including Intserv and
Diffserv, have been discussed in the IETF.

Intserv [6] is a technology suitable for the deterministic QoS guarantee, which assures
a given worst-case delay bound or no loss in the Internet. Although the deterministic QoS
guarantee is the most stringent and its realization might be possible by deterministically
assign the network resource to each data flow [11, 12, 23], it cannot benefit from the statistical
multiplexing at all and thus the utilization of network resource should be too low. Diffserv
[3,18] is another solution for introducing QoS to the Internet: it is suitable for realizing
the statistical QoS guarantee of the form such as P[delay > digget] < €, Where dygpger is a
target-delay bound and e typically ranges from 1073 to 107°. The statistical QoS guarantee
can usually achieve much higher utilization than the deterministic QoS guarantee because
the former can take advantage of the statistical multiplexing. We should, however, note
that there is a general belief that any kinds of QoS guarantees will necessitate operating the
Internet at very low utilization because of the bursty nature of the Internet traffic.

359



360 K. Nakamura & S. Shioda

Since it is not often feasible to obtain reliable statistical characteristics of sources, re-
cent research on the statistical QoS has attempted to assess the QoS of the form like
Pldelay > dyqrget] without making assumptions on statistical properties of sources. In partic-
ular, a number of studies have been made to devise the techniques for assessing the QoS by
only assuming that the amount of traffic from each source is constrained by a deterministic
regulator [4,8,16,19-21, 24,25, 29]. For example, Elwalid et al. [16] and LoPresti et al. [24]
studied packet-loss probability in a multiplexer where a large number of regulated sources
are multiplexed. They assumed that traffic from each regulated source follows a periodic
on-off pattern. Several works (for example [25]), however, revealed that the periodic on-off
pattern does not maximize QoS violations: another class of patterns may be even worse.
Thus, the QoS evaluation based on the periodic on-off pattern has a weakness in the sense
that it does not generally give conservative evaluation results. Kesidis et al. [19,20] and
Shioda [25] addressed the problem of finding the worst traffic pattern among all possible
patterns that are constrained by a given regulator. Boorstyn et al. [4] derived the effective
envelopes of superposition of regulated sources, each of which has a deterministic subad-
ditive envelope, without using a specific traffic pattern. Kesidis and Konstantopoulos [21]
derived the bound of the workload distribution for superposition of independent homoge-
neous regulated sources. Chang, Chiu, and Song [8] considered the same problem as Kesidis
and Konstantopoulos in a discrete-time model and derived a different bound of the workload
distribution. Vojnovié¢ and Le Boudec [29] extended their results to the cases where mul-
tiplexed regulated sources have different envelopes from each other (that is, heterogeneous
cases) in a continuous time setting. They also considered a case where the outgoing links
from network nodes do not have constant but time-varying capacities. (If network nodes
use some scheduling algorithms like weighted-fair queueing or deficit round robin, then the
network node do not offer the constant service rate at each instant of time [27].)

The aim of this paper is to investigate how large statistical multiplexing gain can be
achieved when regulated sources share a common network resource. For this purpose, we
derive two bounds (one is for a discrete-time setting and the other is for a continuous time
setting) of the delay distribution P[delay > d] of a single-server queue fed by heterogeneous
regulated sources. We derive the bounds only assuming that sources are stationary, statis-
tically independent from each other, and have deterministic subadditive envelopes without
using a specific traffic pattern. The derived bounds have explicit expressions so that they
can be easily calculated.

Our results include a continuous-time and heterogeneous extension of the bound in
Chang, Chiu, and Song [8]*. Note that the continuous-time model is very important for
analyzing variable-length-packet networks like the Internet. The extension of the discrete-
time result to the continuous-time one is, however, not trivial because simply letting the
length of time unit in a discrete time model be zero does not yield the appropriate bound
in the corresponding continuous-time model. In addition to this, our bound is applicable to
cases where network nodes do not offer the constant service rate. This problem setting is
same as that in Vojnovi¢ and Le Boudec [29], but our bound is tighter than their bound.
We also numerically show that our bound is significantly tighter than that in Kesidis and
Konstantopoulos [21].

The remainder of this paper is organized as follows. In Section 2, we describe the system
model and assumptions on the traffic characteristics used in the analysis. In Section 3,

*Although Chang et al. [8] also showed the bound for heterogeneous regulated sources, they did not show
how it is derived.
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we derive bounds of the virtual-waiting-time distribution of a single-server queue in both
discrete- and continuous-time models. In Section 4, we use the derived bounds to inves-
tigate the statistical multiplexing gain of regulated sources. In Section 5, we numerically
compare the proposed bound with other existing bounds or the exact bound to investigate
the tightness of our bound. Using the proposed bounds, we also show how large statistical-
multiplexing gain can be obtained for regulated traffic sources. In section 6, we present
concluding remarks of our work.

2. Preliminaries

We first describe the system model used in this paper. Consider packet arrivals to an output
buffer in a network node. As shown in Figure 1, the arrivals from sources are policed by
a regulator, switched to an outgoing link, and inserted into the output buffer dedicated to
the outgoing link. The data in the output buffer is transferred to the outgoing link with
time-varying (stochastic) rate. We focus on the delay due to waiting in the output buffer,
which can be regarded as a single server queue.

Network Node
Source 1
JEA 1
| I |
ez —1CO
JARENAN) m—
\ | /) S |
g [ (0
>
S= — Ol
Regulator Buffer

Figure 1: Packet switching in a network node

We assume that the sources are classified into K classes according to their regulator
characterization, where all regulated sources in class k (1 < k£ < K) have the same regu-
lators. There are Ny class-k sources. Let Ag-k) (t,t + 7) be the amount of data (say in bit)
arriving during (¢,¢ + 7] from source j in class k. We assume that Ag-k) (t,t + 7) has the
following characteristics:

(1) Subadditive bound: Ag-k) (t,t+7) is regulated by a deterministic subadditive! envelope
[4,9] such that
AVt +7) <a®(r) < o0

for all t and 7 > 0.
(2) Stationarity: Ag-k) (t,t 4 1) is stationary. Then, for example,
Bt t4+7)<a]=PARE ¢ +7) <2

for all ¢,t' > 0.

TA function f(z) is called subadditive (superadditive) if

flx+y) < () f(x) + fly)

(© Operations Research Society of Japan JORSJ (2004) 47-4



362 K. Nakamura & S. Shioda

(3) Independence: For all i # j, AZ(-k) and Ag-k) are stochastically independent. Similarly, if

k #1, Agk) and Ag” are stochastically independent for all 7, j.
The traffic from a source regulated by a dual token bucket [6], which is the most popular reg-
ulator for peak- and average-rate enforcements, has the following deterministic subadditive
envelope:
o®(7) = min{P®r,o® 4 p® 1},

where P®) is the peak traffic rate, p®) is the average traffic rate, and c*) is a burst size
parameter.

We also let B(t,t+7) denote the maximum amount of data that can be transferred from
the buffer during (¢,¢ + 7]. Note that B(t,t + 7) is a random variable. We assume that
B(t,t+ 7) has the following characteristics:

(4) Superadditive lower bound: B(t¢,t + 7) has a deterministic superadditive lower bound
such that

B(t,t+71) > 5(7)

for all t,7 > 0. The lower bound J(r) is usually called service curve [1,23,29].
(5) Stability condition:

K
. 1 : /B(t)

- E (k) Lol 4
thm r 2 Nia'(t) < lim L (2.1)

(Subadditivity of a'®)(¢) and superadditivity of 5(t) guarantee the existence of limits
in (2.1) [4].)
If the buffer has a constant service rate C', then the service curve §(7) is given by C'7. If the
data in the buffer is served by a latency-rate server with service rate C' and latency e, then
the service curve (1) is given by C'max{7 —e,0} [27,29]. (Several well-known scheduling
algorithms, such as Weighted Fair Queueing, VirtualClock, and Deficit Round Robin, belong
to the class of latency-rate servers.)

The following lemma provides a bound on the moment generating function of Ag-k)((), t),
which will be used to prove the results in the next section. Concerning the proof, please
see [4,25].

Lemma 2.1. If Ag-k) (t,t + 7) satisfies assumptions (1)-(3) explained above, then

(k)
04" (0,1) P pa®ry

Ele

where

(k) (¢
p®) W im & ( )

t—00 t

Remark 2.1. Condition (5) provides a kind of queue-stability condition. To see this, first
observe that from conditions (1), (2) and (6)

g

K K
1
NEAD(0,1)] < 3" Nep® = lim 2> Nl
k=1 k=1

< lim @ (2.2)

t—oo
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If the data in the buffer is served with deterministic service rate C' (that is, 5(t) = Ct),
then (2.2) becomes

Z N,E[A®(0,1)] < C,
which is a well-known stability condition of queues.

3. Upper Bound of Virtual-Waiting-Time Distribution
3.1. A discrete time model

We would like to start by considering a discrete-time model where data periodically arrives
and is transferred at time nT" where n is an arbitrary integer (Figure 2). (We assume that,
at every data-arrival-transfer epoch, data first arrives at the buffer and then data in the
buffer is transferred.) The amount of data that arrives at time nT from source j in class k

is equal to A(k)(( — 1)T,nT). Let DT (N) denote the steady-state Virtual waiting time in

the discrete-time model when the number of sources of each class is N & (Nl, Ny, -+, Ng)
and the length of time unit is 7". The following result is an extension of the bound in Chang,
Chiu, and Song [8] to the cases where network nodes do not offer the constant service rate
but the service curve (7).

1 Arrival of packets

R B
— —

Batch arrival Batch arrival‘
AV | |
0 ‘T lZT
Departure Departure

Figure 2: Discrete time model

Theorem 3.1. If "1, Nep®t < B(t) + B(d) for all t, then

nm,w TdN K (n T) yk(n’Trdrﬁ)
P[D(N) > d] < ’“—
nzzl ,!_[1 yr(n,T,d, N)

N,

lfyk(n,T,d,N)
% 1—xk(n,T)_) : (33)
1 —yg(n,T,d,N)

where

Nmaz (T, d, N) o sup{n : ZNka(k) (nT') > B(nT) + B(d)},
k=1

(© Operations Research Society of Japan JORSJ (2004) 47-4
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k) (n,T,0*(n,T,d, N))
def np def AW ) y Ly Wy
w(n T) = gy W Db N) = o) (nT) !
(0, T, 0) % o D(nT)
alk)(n ’
1 — (1 — g et n)

and 6*(n, T, d, N) is the unique solution in (0,00) to the following equation of 6:

B(nT) + B(d ZNW n,T,0). (3.4)

k=1
Proof. See Appendix A.1. O

Remark 3.1. When K = 1, the bound of virtual-waiting-time distribution (3.3) is expressed
in the following simple form:

= Nmaz(T,d,N) [L‘(n T) y(n,T,d,N) 1 — .'E(n T) 1-y(n,T,d,N) N
P|D N dl < S S S A ’ .
PPN >d < 3, <y<n,T,d,N>) <1—y<n,T,d,N>>

n=1

Nmaz (Ty d, N) ; sup{n : Na(nT) > ggngg i gggg},
np n
x(n,T) = a(nT)’ y(n,T,d,N) = T Na(nD)

Remark 3.2. Thanks to the stability condition (6), nmae (T, d, N) is finite.
Remark 3.3. The solution of (3.4) can be easily found because the right hand side of (3.4)
is increasing in 6.

3.2. A continuous-time model

Using the result in a discrete-time model, we derive the bound of the steady-state virtual-
waiting-time distribution in a continuous-time model. Let D(N) denote the steady-state
virtual-waiting time in a continuous-time model when the number of sources of each class
is N.

Theorem 3.2. If Y"1, Nep®t < B(t) + B(d) for all t, then
P[D(N) > d]
Ny,

Nmaz (T,d,ﬁ) K g}k(n,T,d,ﬁ) 11—y, (n,T,d,]V)
a n=1 k=1 gk(na Ta da N) 1-— Qk (TL, T, d, N)

for all T > 0, where

imaz (T, d, N) = sup{n : ZNka (nT) > B((n = 1)T) + B(d)},

def ’)’k(’n T 9 (7’1, T d N))
a®)(nT) ’

gi(n,T,d, N) £

and 0* (n,T,d, N) is the unique solution in (0,00) to the following equation of 6:

B((n—1)T) + B(d) ZNm n,T,6).

k=1
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Proof. See Appendix A.2. O

Remark 3.4. Simply letting 7' — 0 in Theorem 3.1 does not yield the result in Theorem 3.2
because the summation in the right-hand side of (3.3) becomes infinite when letting 7" — 0.
Remark 3.5. For homogeneous cases, letting ¢, = k7T and K = ¢/T in Theorem 3 in
Vojnovi¢ and Le Boudec [29], which is the continuous-time version of the bound in Chang,
Chiu, and Song [8], yields the same bound as (3.5). For heterogeneous cases, however, (3.5)
yields tighter bound than Theorem 4 (heterogeneous version of Theorem 3) in [29] because
the latter applies the Hoeffding’s inequalities to derive the bound. (Also see, section 5.1.)
Remark 3.6. The choice of T affects the tightness of the bound. We numerically found
that letting T = d/2 in (3.5) yields reasonably good bounds for almost all cases.

4. Statistical Multiplexing Gain Due to the Large Numbers of Superposition

In this section, we analyze the statistical multiplexing due to the large numbers of su-
perposition when the transmission rate is scaled with the number of multiplexed sources.
To simplify the analysis, we assume that N, = r, N where Zszl r, = 1 and that §(t) =

25:1 LNt = Zszl cirrNt. Under these assumptions, we focus on the behavior of D(]\7)

. . — def - def .
when N increases while ¢ = (c1,---,ck) and ¥ = (ry,---,rk) are fixed. We obtain the

following main result:
Theorem 4.1. If ¢ > p (déf (p1, - .,p(K)))i

P[D(N) > d] < fupag (T, d, 7)e "IN (4.6)
where

n(T,d,7) = Zr lo M BOSTAD ) gy (e, T) )OO TED
k 10g n Td?”) 1_Z)k(n*,T,d,77) y

def %(n T, 6" (n T,d,7))

Uk(n,T,d,7) = NG )(nd) ,
Nomaz (T, d, T) o sup{n : Zrka (nT) > ((n—1)T +d)c}

Here, n* is the integer that mazimizes

N . N,
ﬁ ( T (77/, T) ) . (n,T,d,rF) ( 1— xk(n, T) ) 1—9k (n,T,d,F) k
k=1 gk(na T7 d7 F) 11— gk (na T7 d7 F)

in [0, Rz (T, d, 7)] and é*(n, T,d,T) is the unique solution to the following equation.:

((n—l)T+dc—Zrk7knT9 c—chrk

Proof. See Appendix A.3. O

*Here, we let > denote coordinatewise ordering for real vector: for ¥ = (z1, -, 2m) and ¥ = (Y1, ,Ym),
r>ygife; >y, fori=1,---,m

(© Operations Research Society of Japan JORSJ (2004) 47-4
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Remark 4.1. A exponential delay bound similar with (4.6) also holds for Markov arrival
processes [7,13,15]. In this sense, the regulated sources achieve, at least, the same level of
statistical multiplexing gain as Markov arrival processes.

Remark 4.2. Relationship (4.6) is closely related to the large-superposition asymptotics or
economies of scale formula [5,10, 7, 15]

lim Nt log P[D(cN, N)>d) = —n(d)N, or P[D(eN,N)>d)~e "N — (4.7)
where n(d) is usually called the shape function. Botvich et al. [5] and Duffield [14] have
shown that a wide variety of sources including some long-range-dependent sources satisfy this
asymptote. Note that relationship (4.6) is stronger than the large-superposition asymptote
(4.7): that is, (4.7) always holds for sources that satisfy (4.6).

Remark 4.3. In general, the shape function has the following asymptote:

n(d) ~ 0d* + vd?,

where ¢, = 1 and e, = 0 for Markov arrival processes and 0 < €;,€5 < 1 for general long-
range-dependent sources [14]. In other words, 7(d) is linear for Markovian sources while n(d)
is concave for general long-range-dependent sources. As will be shown in the next section,
our numerical examples have revealed that the shape function of regulated sources is a
convex function of d. The behavior of the shape functions of these sources is schematically
drawn in Figure 3.

regulated sources \

Markovian sources

B(d)

S

long-range-dependent sources

d

Figure 3: Behavior of the shape functions

This finding indicates that, as d increases, P[delay > d] when regulated sources are
multiplexed converges to 0 much faster than that when Markovian or long-range-dependent
sources are multiplexed. In other words, if delay target is so large, the regulated sources
could have larger multiplexing gain compared with Markovian and long-range-dependent
sources.

5. Numerical Examples
5.1. Comparison with existing bounds

We numerically compared the proposed bound (3.5) with other existing bounds when a large
number of IP-telephony sources are multiplexed. We consider two low-bit-rate voice-coding
algorithms: G.723.1 and G.729 [22].

(© Operations Research Society of Japan JORSJ (2004) 47-4
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— .+ — Bound by Kesideis and Konstantopoul os [21]
Proposed bound (T = 3d/4)
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Figure 4: Comparison of bounds: homogeneous case

In numerical examples, we assumed that the bit rate of G.723.1 is 6.4 kbps. Since frames
of G.723.1 are generated every 30 ms, the frame size of G.723.1 is 6.4 x 30/8 = 24 byte
during a talkspurt, while the frame size during a silence period is 4 byte. Each IP packet is
constructed from a single frame of G.723.1 with the IP/UDP/RTP header. We assumed that
the size of the IP/UDP/RTP header is compressed into 4 byte by the header compression
technique. Thus, the total size of an IP packet is 28 byte (in a talkspurt) or 8 byte (in
a silence period). Now, let § denote talkspurt activity. The average bit rate of a single
[P-telephony source is then given by

p(8) =30 x 7.5+ (1 —0) x 2.1 kbps (5.8)

because the bit rate in a talkspurt is 28 x 8/30 = 7.5 kbps and the one in a silence period
is 8 x 8/30 = 2.1 kbps.

We first evaluated the supplementary delay distribution Pldelay > d] when a thousand
of IP-telephony sources of G.723.1 are multiplexed. For this purpose, we assume that the
traffic from a IP-telephony source of (G.723.1 is transparent to a dual token bucket whose
peak bit rate is 7.5 kbps, average bit rate is p(d), and bucket size is

7(8) = {7.5— p(8)} x 60 kbit.

The bucket whose size is 0(d) can store the data when the talkspurt lasts 60 seconds. Since
the talkspurt duration usually ranges from 100 ms to 500 ms [26, 30], most of IP telephony
sources should be transparent to the dual token bucket explained above. In Figure 4,
we show the supplementary delay distribution P[delay > d] for various values of T when
0 = 0.5 and the data in the buffer is transferred with constant service rate of 5.2 Mbps
or 5.5 Mbps. We find that the proposed bound is significantly tighter than the bound in
Kesidis and Konstantopoulos [21]. (Note that the bound in Kesidis and Konstantopoulos [21]
is essentially the same as Theorem 1 in Vojnovi¢ and Le Boudec [29].) Similar findings were
reported in [8,29], and we now confirm this for IP-telephony sources. We also found that
there is no optimal value for T so that P|delay > d] becomes smallest for all d.

Next, we evaluated the supplementary delay distribution P[delay > d] when IP-telephony
sources coded by G.729 and those coded by G.723.1 are multiplexed together. The bit rate

(© Operations Research Society of Japan JORSJ (2004) 47-4
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—————— Bound by Vojnovic and Le Boudec [ Theorem4, 29]
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Figure 5: Comparison of bounds: heterogeneous case

of G.729 coding is 8 kbps. Note that, in G.729 coding, a ten-byte frame is generated every
10 ms during a talkspurt while a two-byte frame is generated every 20 ms during a silence
period. Since an IP packet is constructed from two frames of G.729 with the IP/UDP/RTP
header during a talkspurt, the total size of IP packet is 24 byte during a talkspurt. The IP
packet during a silence period is made of a two-byte frame of G.729 and the IP/UDP/RTP
header, so its size is 6 byte. The average bit rate of a single IP-telephony source is given by

p(6) =6 x 9.6+ (1 — 8) x 2.4 kbps (5.9)

because bit rate in a talkspurt is 24 x 8/20 = 9.6 kbps and that in a silence period is
6 x 8/20 = 2.4 kbps. Then, we also assume that the traffic from a IP-telephony source of
(G.729 is constrained by a dual token bucket whose peak bit rate is 9.6 kbps, average bit
rate is p(d), and bucket size is

7(8) = {9.6 — p(8)} x 60 kbit,

Figure 5 shows the results when § = 0.5, T'= d/2, and the data in the buffer is transferred
with constant service rate of 11.5 Mbps, 11.7 Mbps or 11.9 Mbps. The number of G.729
sources and that of G.723.1 sources are both a thousand. We find that the proposed bound
is tighter than Theorem 4 in Vojnovi¢ and Le Boudec [29].

5.2. Tightness of proposed bound

We evaluate the tightness of the proposed bound (3.5) when a thousand of IP-telephony
sources coded by G.723.1 are multiplexed. We assume that the data is not compressed even
during silence periods so that 28-byte-length packets periodically arrive every 30 ms from
each source. Such a periodic source has the subadditive envelope such that «(7) = P17+ L,
where P is the peak rate (the inverse of the packet-interarrival time) and L is the packet
length. We also assume that IP telephony sources share the outgoing link with nonreal-time
traffic. The packets of IP telephony sources are assumed to have nonpreemptive priority
over the nonreal-time traffic. Note that, for such a case, the service curve for IP telephony
sources is given by (1) = min{C7T — Lyonrear, 0} where C' is the outgoing-link capacity and
Lyonrear is the length of nonreall-time packet. Iida et al. [17] derived the exact bound of
delay distribution when periodic sources are served with nonpreemptive priority discipline,
so we use their result for evaluating tightness.

(© Operations Research Society of Japan JORSJ (2004) 47-4



369

————— Bandwidth utilization = 0.9

------ Bandwidth utilization = 0.8
Bandwidth utilization = 0.7

10

0.1 \\ N iy
\\ N 1
0.01 BN . \

0.001

/
"
f
‘ot
/
L~
e
H
:
NN T i 1

Pldelay > d]

0.0001 — ]
\ \

Exact [17] \ .o \ \
10° - o

] [l
10° \ i }\ \ v 1

0.0001 0.001 0.01
dfs]

LBLLLLLL BB R
PR
-
- 7
P
-
i —
[T TN AR

=}
[

Figure 6: Comparison of the proposed bound with the exact bound [17]: periodic sources

In Figure 6, we compare the proposed bound of supplementary delay distribution with
the exact bound in lida et al. [17] for various bandwidth utilization. (The bandwidth
utilization is defined as a ratio of the sum of peak rates of IP telephony sources to the
outgoing-link capacity. In numerical experiments, we let L, onreq = 500 byte.) In Table 1,
we summarize the 99.9-percentile delay obtained by the proposed and the exact bound.
Although there is some gap between the proposed and exact bound, we can conclude that
the proposed delay bound is reasonably tight enough for practical use.

Table 1: 99.9 percentile delay

Bandwidth Proposed formula | Exact formula [17]
utiliztaion [ms] [ms]

0.7 1.7 0.50

0.8 2.5 0.67

0.9 4.1 1.0

5.3. Statistical multiplexing gain

Finally, we numerically investigate the statistical multiplexing gain when a large number
of IP-telephony sources are multiplexed. First, we consider the case where a number of IP
telephony sources coded by G.723.1 are multiplexed. We should note that the bandwidth
utilization of the link dedicated to a single source is p(0)/7.5: for example, the bandwidth
utilization is 0.64 when § = 0.5. If the bandwidth resource is shared by several sources, the
bandwidth utilization should be larger than p(J)/7.5 thanks to the statistical multiplexing.
Furthermore, the bandwidth utilization should become larger as the number of multiplexed
sources increases. With this in mind, based on the delay bound (3.5), we evaluated the band-
width utilization by changing the number of multiplexed sources when the target statistical
QoS is given by Pldelay > digrget] < €.

In Figure 7, we show the relationship between the number of multiplexed sources and
the bandwidth utilization when dy;ge; = 20 ms and 6 = 0.5. The 90%-bandwidth utilization
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Figure 8: Impact of the delay target d;q,4er On the bandwidth utilization: G.723.1

is attained when the number of sources is less than 3000. Note that the bandwidth required
for accommodating 3000 IP-telephony connections whose talkspurt activity is 0.5 is about
13 Mbps under 90%-bandwidth utilization. We also show the impact of the delay target
diarger 0N the bandwidth utilization when e = 1073 and 6 = 0.5 in Figure 8. The difference
in the delay target does not have large impact on the bandwidth utilization. In particular,
the difference between the case of dygrger = 20 ms and that of digrger = 0.2 ms is quite small.

Next, we explain the results for the IP telephony source using G.729 coding. In Figure 9,
we show the relationship between the number of multiplexed sources and the bandwidth
utilization when dygrger = 20 ms and § = 0.5. The 90%-bandwidth utilization is also attained
when the number of sources is 3000 or less. The impact of the delay target dyq,4e On the
bandwidth utilization when € = 1072 and § = 0.5 is shown in Figure 10, which also indicates
that dyarger does not have large impact on the bandwidth utilization when dy4,4¢; 1s less than
20 ms.
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Finally we illustrate the shape function 7(d) in Figure 11 (G.723.1) and Figure 12
(G.729). We see that n(d) is a convex function of d as was explained in Section 4. We
have conducted other numerical experiments, which also confirmed that the shape function
is convex for other choices of the value of 9.

6. Concluding Remarks

We have derived the upper bounds of the virtual-waiting-time distribution of a single-server
queue when several kinds of regulated sources are multiplexed. The statistical multiplexing
has been theoretically and numerically analyzed by using the derived upper bound.

Numerical results concerning the shape function reveal that the regulated sources have
a noteworthy characteristic in the statistical multiplexing: the regulated sources are more
advantageous than Markovian-arrival sources and long-range-dependent sources. This find-
ing is very valuable from the traffic-engineering viewpoint: once sources are smoothed by a
regulator having a deterministic subadditive envelope, then they could achieve large statis-
tical multiplexing gain even if original sources have long-range dependence. This could be
a counter example to the general belief that any kinds of QoS guarantees will necessitate
operating the Internet at very low utilization because of the bursty nature of the Internet
traffic. It is also an objection to the argument that a token bucket cannot completely re-
move the long-range dependence of the traffic [28] and thus it is not useful to enhance the
statistical multiplexing gain.

It may be possible to theoretically prove the convexity the shape function although in
this paper we have numerically shown it. This remains for further study.
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Appendix
A.1. Proof of Theorem 3.1

We begin with proving the following lemma, which will be used in the proof of the theorem.
Lemma A.1. If Y0 Nip®t < B(t) + B(d) for all t and n < Npee(d, N), then

.

Ny

AP(0,nT) > B(T) + B(d)]

k=1 j=
* * Ny,
_ ﬁ WOV (kT a0En )
| \w(n 779*) a®(nT) =y (n, T, 0%) 7
where 0*(n, T, d, ]\7) is the unique solution in (0,00) to the following equation:
B(nT) + B(d ZN,C% n,T,0). (A.1)

k=1

Proof. To prove the existence of 6*(n, T, d, ]\7), observe that g(n;0) dof Zszl Nive(n, T, 6)
is continuous and strictly increasing with 6. In addition to this, if n < n,,.,, then

K
g9(n;0) =n>_ Np®T < B(nT) + B(d), and

k= 1

hm g(n;0) ZNka (nd) > B(nT) + B(d),

which readily proves the existence of 6* in (0, 00) satisfying (A.1). To prove the rest, first
note that Chernoft’s inequality yields

K Ny
P Y APO.01) > BnT) + 5(d)] < e COTHAD ple i AT 0

k=1 j=1
K Ny

= e TT T E[ef470nT))

k=1j=1
K

0(B(nT)+5(d)) np™T o) Nk
— n 1 a™(nT) _ ¢
‘ H< e )

IN
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for all & > 0, where the last inequality follows from Lemma 2.1. Thus,

K Ny
P} N A0, nT) > B(nT) + B(d)]
k=1 j=1
K Ny,
< };I>1£ [ 0(B(nT)+5(d)) 1;[ <1 + %(ew(“(ﬂ) _ 1)) ] ‘ (A.2)
Next note that
d . o) o e
1o { e r0m st H ( )<e D 1)) b = =BT = 3(a) + gl0:0),

which indicates that the infimum of the right hand side of (A.2) is attained when 6 =
0*(n; d, B; N) because g(n;#) is continuous and strictly increasing with 6. Thus,

o) +6@) T] npd_ gt ) "
inf e 11 (“W(e —”>

k=1

0BT+ ) T npMT g ur) Nk
= e H <1 + W(e — 1))

N,
a®)(nT)
n “)/a®) (n N

B ﬁ np®T o) (nT) — y(n, T, 6*) (mT,07)/ a0 () o) (nT) — np®*)T '
B Ye(n, T,0%) o (nT) —np®T a®)(nT) — v(n, T, 6%)

* * N
_ ﬁ npo T o® (nT) — T\ ' T /ey T
B Ye(n, T, 0%) a®)(nT) — v(n, T, 6*)

By substituting the above result into (A.2), we complete the proof. O

I
— >
—N
8
<
2
Eal
B
S
)
7N\
=
+

Now we are ready to prove the theorem. Define

K N
MO(N)E sup (30N AW (—iT,0) — B(—iT,0)}.
Kosi<n T o

Random variable M, (T)(]\7' ), which is the workload at time 0 when the buffer is empty at
time —nT, is non-decreasing with n and thus converges to a random variable M (") (N )( o0)
as n — oo. In addition to this, if the stability condition (5) is met, then M@ (N) is equal
to the steady-state workload in distribution [2,29]. Observe that

K N
PIMM(N) > 2] = Plsup{>_ Y AW (=nT,0) — B(—nT,0)} > z]
nzl Gy =1
= K N
= Plinf{n > 1; ZZAk —nT,0) > B(—nT,0) + 2} < o]
k=1 j=1
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o] K Ng
< Y PN A (=nT,0) > B(nT) + 2]
n=1 k=1 j=1
Nomaz (T,N K N
= PN AW 0,0T) > B(nT) + 2],
n=1 k=1 j=1

Thus, we have

PIDD(N) > d) < PMD(N)> (d)]

NN
nmaw(d ]\7) K Nk:

< PSS AP (0,0T) > BnT) + ()] (A3)

n=1 k=1 j=1

The proof is completed by applying Lemma A.1 to (A.3) and by conducting a few calcula-
tions.

A.2. Proof of Theorem 3.2
We first prove the following lemma, which will be used in the proof of the theorem.
Lemma A.2. Let W (t, N) be the workload (the amount of data) in the buﬁer at time t in the

continuous-time model when the number of multiplexed sources is N (Nl,NQ, -, Nk),
and W(t, N) be the workload in the buffer at time t in the discrete-time model when the

number of multiplezed sources is N and the length of time unit is T. If B(t,t + 7) has a
deterministic upper bound such that

B(t,t+1) < B(r),

then R
WI(N) < W(nT, N) < WD(N) + B(T). (A.4)

Proof. We prove (A.4) by induction. Notice that W (nT, N ) is given by

N
W (nT,N) = Sl<lp<t{Aau(U,t) ~B(u,t)}, Aw(u,t) € ZAJ'(U; t).
uUsuss j:l
First observe that
W(T,N) = sup {Aw(u,t)— B(u,t)}
w;0<u<T
> max {Au(nT,T) = B(nT,T)} = W{"(N),
and
W(T,N) = sup {Aw(u,t)—B(u,t)}
w;0<u<T
S B VT D)
< I&aﬁl{Aa“(nT T) — B(nT,T) + B(0,7)} < W{"(N) + B(T).
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Thus, (A.4) holds when n = 1. Now, we assume that (A.4) holds when n = k, under which

W((k+1)T,N) = max{W(kT,N)+ Ay (kT, (k +1)T) — B(KT, (k +1)T),
sup  {Aau(u, (k+1)T) — B(u, (k+1)T')}}

u; k:T<u<(k:+1)T

> W (kT N) + A (KT, (k +1)T) — B(ET, (k+1)T)]"
> [WD(N) + Aw(KT, (k +1)T) — B(KT, (k + 1)T)]*
= W),
and
W((k+1)T, N)
= max{W (kT,N) + Ag(kT, (k + 1)T) — B(kT, (k + 1)T),
-kT<SliI?k+1)T{A“”(u’ (k+1)T) — B(u, (k+ 1)T)}}
< max{W(kTiﬁ) + A (KT, (k + 1)T) = BT, (k + 1)T), Aau(kT, (k +1)T)}
< maX{W (N) + Aw(ET, (k +1)T) = B(kT, (k + 1)T) + B(T), A u(kT, (k+1)T)}
< WUN) + Ak, (k + 1)T) = BT, (k + 1)T)]* + B(T) = W) (N) + B(T).
Thus, (A.4) holds when n = k + 1, too, which completes the proof. a

Now we are ready to prove the theorem. We first consider the case where (1) = (7).
By letting n — oo in (A.4), we obtain WT(N) <, W(N) <y WD(N) + B(T) where
W(N) and WT(N) are the steady-state workload in the continuous and discrete time
model$, respectively. Thus,

PID(N)>d] < P[W(N) > B(d)] o
< P[W”j( )+ B(T) > B(d)] = PIVE(N) > (d) — B(T)]
< Z’ ZZA’“ 0,nT) > B(nT) + B(d) — H(T)]
nmm(d,N) K N
< ZZA’“ (0,nT) > B((n = 1)T) + B(d)].

It is not difficult to see that the last term of the above inequality is equal to the right-hand
side of (3.5). Since the virtual waiting time when 3(7) > B(7) should be less than that
when 3(7) = (7) in distribution, the desired conclusion follows.

A.3. Proof of Theorem 4.1
Observe that

P[D ]\7)>d]

(
. - - ~y Nr
T ﬁ ,Z‘k n, T )yk(n,T,d,T‘) < 1 — T (n7 T) 1—3 (n,T,d,F) k
)

Amaz (T,d,T)
~ yk n,T,d, F) 1 — g(n,T,d, 7

~ * ~ * N’f"
< Trma Uk (n*, Tdr) 1 —gg(n*, T,d,T)

k=1

IN

§The ordering relation <,; between random variables denotes the strong ordering [2].
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= Npan (T, d, P)e V1L (A.5)

which completes the proof. Note that since 6* exists in (0,00) by Lemma A.1,
z,(n*,T) < gp(n*,T,d,7) (k=1,---,K).

Thus, for all k (1 < k < K),

(osr.T) YR (1) Y
Yk )

<1,
(n*,T,d, 7 1 — gg(n*, T,d,T)

which guarantees that 7 is positive.
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