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Abstract We study a geometric decay property for two-node queueing networks, not restricted to ones
having acyclic configuration. We take a matrix-analytic approach, and prove the geometric decay property
of the marginal queue-length distributions by giving an upper bound of the exact decay rate for each node.
The upper bound coincides with the exact decay rate for Jackson networks and MAP/M/1→/M/1 tandem
queues.
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1. Introduction

This paper studies geometric decay of marginal queue-length distributions in a two-node
Markovian queueing system.

For single queues in a broad class, it is well known that the stationary queue-length
distribution {p(n)} has a tail decaying geometrically, that is, there exist positive constants
η∗ < 1 and C <∞ such that

lim
n→∞

p(n)

(η∗)n
= C. (1.1)

Many authors proved this property for various queueing models. For example, Kendall [7]
proved it for GI/M/1 queues, Takahashi [16] for PH/PH/c queues, Neuts and Takahashi [13]
for GI/PH/c queues with heterogeneous servers, and Falkenberg [3] for M/G/1-type queues.
Further, Glynn and Whitt [6] and others proved a weaker property limn→∞ n−1 log p(n) =
log η∗ using the large deviation principle for a wide class of queues.

In a single queue, the decay rate η∗ is related to the Laplace-Stieltjes transforms f(x)
and g(x) of the interarrival and service time distributions. For a PH/PH/1 queue, it was
shown in [16] that η∗ is given by f(x∗), where x∗ is a unique positive root of the equation

f(x∗)g(−x∗) = 1. (1.2)

For the marginal queue-length distributions in queueing networks, several authors proved
the geometric decay property in some special models. Chang [2], Ganesh and Anantharam [4]
and Bertsimas et al. [1] among others proved the geometric decay property in a weak sense in
some tandem queues or in some tree-type queueing networks. These studies mostly based
on the acyclic or feedforward configurations of the networks and their proofs exploited
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Figure 2.1: Two-node Markovian queueing system

the fact that, for example, the behavior of the first node is not affected by the second
one. Miyazawa [11] discussed the decay rate of the marginal queue length distribution in
generalized Jackson networks. His conjecture was derived in part from our prework result,
an extension of it is reported here.

This paper studies the geometric decay property in two-node networks, not restricted to
those having acyclic configuration. Our model, which will be called a two-node Markovian
queueing system, is a two-node open queueing network having single servers, buffers with
infinite capacity, MAP inputs, PH service distributions and random routings with arbitrary
configuration. We take a matrix-analytic approach and by using a lemma for a quasi-birth-
and-death process with infinite number of states in each level we prove the geometric decay
property of the marginal queue-length distributions by giving an upper bound of the exact
decay rate for each node. Our upper bound coincides with the exact decay rate in Jackson
networks and MAP/M/1→/M/1 tandem queues studied in [4].

The rest of the paper is organized as follows. We introduce our model and some notation
in Section 2. The stochastic behavior of the model is represented by a two-dimensional
Markov chain. In Section 3, we discuss a doubly geometric form solution to the balance
equations of the Markov chain. Its solution plays an important role for obtaining our upper
bound. In Section 4, we state our main theorem. In section 5, we introduce a lemma given
in Makimoto et al. [9] for geometric decay of level probabilities in a quasi-birth-and-death
process having infinite number of states in each level. The lemma is our main tool to derive
our upper bound. The main theorem is proved in Sections 6 and 7, and the propositions in
Section 4 are proved in Section 8.

2. Model Description and Notations

In this section we introduce our model and some notation.

Model: We consider an open queueing network with two nodes, node 1 and node 2 (Figure
2.1). At node k (k=1, 2), customers arrive from outside of the system via a Markovian arrival
process MAPk with representation (T k,U k) [8]. There is a single server and a buffer of
infinite capacity. Customers are served in a usual FCFS (First Come First Served) manner.
Service times are subject to a common phase-type distribution PHk with representation
(bk,Sk) [12]. After being served, customers proceed to node j (j = 1, 2) with probability
rkj, and leave the system with probability rk0 = 1− rk1 − rk2. Exogenous arrival processes,
service times and routing are all stochastically independent. We will refer this model as a
two-node Markovian queueing system.

To include the tandem queue case, we allow node 2 to have no exogenous arrivals.
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Assume that node 1 does have exogenous arrivals (later this will be represented as λ1 > 0)
and r12 > 0. The latter assumption causes that nodes are dependent on each other.

Node representation: For brevity of exposition, in this paper, we use the following con-
vention for representing node numbers. Symbol “ k ” is used to refer the node number of
node k. It stands for 1 or 2. If a “k” appears in equations, inequalities, definitions, the-
orems, etc., then these should be understood for k = 1 and 2 unless stated otherwise. If
symbol “ k′ ” is used with a “ k ”, then it refers the other node number, namely k′ = 2 if
k = 1, and k′ = 1 if k = 2.

Vector and matrix notation: Row vectors are represented by bold lower case letters
(except for the Markov chain X(t) representing the system behavior). To represent a column
vector we attach a superscript � to the corresponding row vector. We denote by 0 a row
zero vector and by e a row vector with all elements equal to 1. Matrices are represented
with bold upper case letters. We denote by O a zero matrix and by I an identity matrix.
Dimensions of vectors and matrices should be understood from the context. Vectors and
matrices 0, e, O and I are used for both cases with finite dimension and infinite dimension.
Inequalities between vectors or matrices are considered elementwise. Limits of sequences of
matrices or vectors are also considered elementwise. For a vector x, we denote by diag[x] a
diagonal matrix having i-th element of x in its i-th diagonal element.

We extend our use of terminology “Perron-Frobenius eigenvalue” to an eigenvalue of
a finite-dimensional square matrix having nonnegative off-diagonal elements and possibly
negative diagonal elements. Let A be such a matrix. We will say that a real number x is
the Perron-Frobenius eigenvalue (PFE) of A and denote it by pf [A] if x+ s is the Perron-
Frobenius eigenvalue in the usual sense (i.e. the maximal eigenvalue) of the nonnegative
matrix A + sI for a sufficiently large s. Obviously, x does not depend on the choice of s.
We note that, if A is irreducible, pf [A] is a simple root of the equation |xI − A| = 0 and
the eigenvector associated with it is positive and unique up to a multiplicative constant.

Markov chain representation: The exogenous arrival process MAPk has an underlying
finite Markov chain with transition rate matrix T k + U k. Elements of U k govern state
transitions accompanied by arrivals, and off-diagonal elements of T k govern those without
arrivals. Diagonal elements of T k are negative so that (T k + U k)e

� = 0�. We denote the
state space of the Markov chain by Ik and refer to the state of the Markov chain as the
phase of MAPk. We assume that Ik is finite and T k + U k is irreducible. We write ak the
stationary probability vector of the matrix T k +U k. The exogenous arrival rate is given by

λk =
(
−akT

−1
k e�

)−1
. From the model assumption, λ1 > 0. When there exist no exogenous

arrivals to node 2, both T 2 and U 2 as a scalar and equal to 0, and set λ2 = 0.

The service time distribution PHk also has an underlying finite absorbing Markov chain

with transition rate matrix
(

Sk σ�
k

0 0

)
and an initial probability vector ( bk 0 ). Here σ�

k =

−Ske
�. The state space of the Markov chain is represented as Jk ∪ {0}, where Jk is a

finite set of transient states and 0 is a single absorbing state. When a new service starts at
node k, the Markov chain starts from a transient state chosen according to the distribution
bk, and the service lasts until the chain is absorbed in the absorbing state. The service time
distribution has a density function bk exp{tSk}σ�

k for t ≥ 0. We will refer the state of the
chain as the phase of PHk. We assume the representation (bk,Sk) is irreducible in the sense

that bk(−Sk)
−1 > 0. The service rate is given by µk =

(
−bkS

−1
k e�

)−1
. Of course, µk > 0.

Using these underlying Markov chains, we construct a time-continuous Markov chain
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that represents the stochastic behavior of the whole system. Let Nk(t) be the number of
customers in node k at time t, Ik(t) the phase of MAPk, and Jk(t) the phase of PHk. We
put Jk(t) = 0 when Nk(t) = 0. Then, the vector

X(t) = (N1(t), N2(t), I1(t), I2(t), J1(t), J2(t)) (2.1)

constitutes a Markov chain. A typical state can be represented as a sextuple (n1, n2, i1, i2, j1, j2),
and the state space is given by

S = {{0} × {0} × I1 × I2 × {0} × {0}} ∪ {{0} × N × I1 × I2 × {0} × J2}
∪ {N × {0} × I1 × I2 × J1 × {0}} ∪ {N ×N × I1 × I2 × J1 × J2} , (2.2)

where N = {1, 2, · · · }. From the irreducibility assumptions of the MAPk and PHk repre-
sentations and from the model assumption that λ1 > 0 and r12 > 0, the chain {X(t)} is
irreducible.

Stability condition: The chain {X(t)} is stable if and only if

ρk =
(1 − rk′k′)λk + rk′kλk′

{(1 − rkk)(1 − rk′k′) − rkk′rk′k}µk

< 1 for k=1, 2. (2.3)

This can be proved as in Sigman [15] where a similar stability condition was proved for a
generalK-node queueing network with a single MMPP (Markov modulated Poisson process)
as an input. The proof is not difficult and we omit it here. Hereafter we assume that the
condition (2.3) is satisfied. Note that (2.3) implies rkk < 1.

3. Balance Equations and Doubly Geometric Form Solution

In order to describe our main result, we shall prepare some notation related to the
stationary distribution of the Markov chain {X(t)}.
Stationary probabilities: Assuming the chain {X(t)} is in the steady state, we denote
its state probabilities as

p(n1, n2)i1,i2,j1,j2 = P{(N1(t), N2(t), I1(t), I2(t), J1(t), J2(t)) = (n1, n2, i1, i2, j1, j2)},
(n1, n2, i1, i2, j1, j2) ∈ S. (3.1)

The joint queue-length probabilities and the marginal queue-length probabilities of node k
are written as

p(n1, n2) = P{N1(t) = n1, N2(t) = n2}, n1, n2 = 0, 1, 2, . . . , and

pk(nk) = P{Nk(t) = nk}, nk = 0, 1, 2, . . . . (3.2)

The decay rate η∗k of the marginal queue-length distribution {pk(nk)} is defined by

log η∗k = lim sup
nk→∞

1

nk

log pk(nk). (3.3)

Obviously, η∗k ≤ 1.

Balance equations: For n1, n2 ≥ 1, we let

C(n1, n2) = {n1} × {n2} × I1 × I2 × J1 × J2

= {(n1, n2, i1, i2, j1, j2) | (i1, i2, j1, j2) ∈ I1 × I2 × J1 × J2} , (3.4)
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and call it Cell (n1, n2). This is a set of states at which there are n1 customers in node 1 and
n2 customers in node 2. When n1 = 0 and/or n2 = 0, we define C(n1, n2) in a similar manner
by replacing J1 and/or J2 above with {0}. Clearly p(n1, n2) = P{X(t) ∈ C(n1, n2)}. The
vector of state probabilities corresponding to states in C(n1, n2) is denoted by

p(n1, n2) = (p(n1, n2)i1,i2,j1,j2 ; (n1, n2, i1, i2, j1, j2) ∈ C(n1, n2)) . (3.5)

For n1, n2 ≥ 2, the set of balance equations around C(n1, n2) is written in vector form as

0 = p(n1, n2)(T 1 ⊕ T 2 ⊕ (S1 + r11 σ�
1 b1) ⊕ (S2 + r22 σ�

2 b2))

+p(n1 − 1, n2)(U 1 ⊗ I ⊗ I ⊗ I) + p(n1, n2 − 1)(I ⊗ U 2 ⊗ I ⊗ I)

+ {r10 p(n1 + 1, n2) + r12 p(n1 + 1, n2 − 1)} (I ⊗ I ⊗ σ�
1 b1 ⊗ I)

+ {r20 p(n1, n2 + 1) + r21 p(n1 − 1, n2 + 1)} (I ⊗ I ⊗ I ⊗ σ�
2 b2),

(3.6)

where ⊗ indicates a Kronecker product operation and ⊕ a Kronecker sum operation. If
n1 ≤ 1 or n2 ≤ 1, the equation has to be changed slightly.

Laplace-Stieltjes transforms: The Laplace-Stieltjes transform (LST) of the service time
distribution PHk is given by

gk(y) = bk(yI − Sk)
−1σ�

k . (3.7)

Its domain can be extended to the interval D[gk] = (δg
k,∞), where δg

k(< 0) is its abscissa
of convergence. It is easily seen that gk is strictly decreasing, infinitely differentiable and
strictly log-convex on D[gk]. Further limy→∞ gk(y) = 0 and limy↓δg

k
gk(y) = ∞. The service

rate is given by µk = −1/g′k(0), where the prime (′) indicates a derivative.
For MAPk, if λk > 0, we let TA

k (n) be the n-th exogenous arrival epoch at node k, and
define the asymptotic LST of the exogenous interarrival times by

log fk(x) = lim
n→∞

1

n
logE[e−xT A

k (n)]. (3.8)

If the exogenous arrival process to node k is a renewal process, fk reduces to the ordinary
LST of the interarrival time distribution. This function fk is defined on the interval D[fk] =
(δf

k ,∞), where δf
k (< 0) is its abscissa of convergence. It is easily seen that fk(x) is the

PFE of the matrix U k(xI − T k)
−1 for x ∈ D[fk]. Similar to gk, the function fk is strictly

decreasing, infinitely differentiable and strictly log-convex on D[fk], and limx→∞ fk(x) = 0
and limx↓δf

k
fk(x) = ∞. The exogenous arrival rate is given by λk = −1/f ′

k(0). If there exist

no exogenous arrivals to node 2, the function f2 is not defined and we set λ2 = 0.

Doubly geometric form solution: Our main result relates in a deep manner to a doubly
geometric form solution to the balance equations around a cell. We will say that a solution
{p†(m1,m2) ; m1 = n1, n1 ± 1 and m2 = n2, n2 ± 1} to the balance equations (3.6) around
C(n1, n2) is of a doubly geometric form if there exist positive numbers η1 and η2 and a
positive vector ν such that

p†(m1,m2) = ηm1
1 ηm2

2 ν. (3.9)

Substituting (3.9) into (3.6), we have

0 = ηn1
1 ηn2

2 ν
[(

T 1 + η−1
1 U 1

)
⊕
(
T 2 + η−1

2 U 2

)
⊕
(
S1 +

(
r10 η1 + r11 + r12 η1η

−1
2

)
σ�

1 b1

)
(3.10)

⊕
(
S2 +

(
r20 η2 + r21 η

−1
1 η2 + r22

)
σ�

2 b2

) ]
.
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This equation indicates that ν is a left eigenvector of the matrix in the brackets associated
with eigenvalue 0. The matrix is represented as a Kronecker sum of four smaller matrices.
So, the eigenvalue 0 is given by a sum of eigenvalues of these four smaller matrices and the
eigenvector ν is a Kronecker product of eigenvectors associated with those eigenvalues. Let
us denote these eigenvalues as x1, x2, −y1 and −y2, and corresponding eigenvectors as ν1,
ν2, ν1 and ν2. Then

x1 + x2 − y1 − y2 = 0, (3.11)

ν = ν1 ⊗ ν2 ⊗ ν1 ⊗ ν2, (3.12)

νk

(
T k + η−1

k U k

)
= xk νk , and (3.13)

νk

(
Sk +

(
rk0 ηk + rkk + rkk′ ηkη

−1
k′
)
σ�

k bk

)
= −yk νk . (3.14)

The matrices in (3.13) and (3.14) have nonnegative off-diagonal elements, and we can speak
of Perron-Frobenius eigenvalues for them. For fixed η1 and η2, from the irreducibility as-
sumptions of the representations for MAPk and PHk, these matrices are irreducible and
have simple PFE’s and unique positive eigenvectors associated with them. Here we are
interested in positive ν. So, xk and −yk have to be PFE’s and νk and νk are associated
positive eigenvectors. If eigenvalues xk and −yk satisfy (3.11) then (3.10) holds.

Using the functions fk and gk, we can rewrite relations among values ηk, xk and yk.
From (3.13), a simple calculation shows that

νk U k(xkI − T k)
−1 = ηk νk. (3.15)

This equation implies that ηk is the PFE of the matrix U k(xkI − T k)
−1, and hence, if

λk > 0,
ηk = fk(xk). (3.16)

If λk = 0, we have assumed T k = U k = 0 (scalar). Hence (3.13) implies that xk = 0 and
νk is arbitrary (so we let νk = 1 (scalar)). The equation (3.14) can be rewritten as

νk = (νkσ
�
k )
(
rk0 ηk + rkk + rkk′ ηkη

−1
k′
)
bk (−ykI − Sk)

−1 . (3.17)

Postmultiplied by σ�
k , we have from (3.7)(

rk0 ηk + rkk + rkk′ ηkη
−1
k′
)
gk(−yk) = 1. (3.18)

Thus, under the doubly geometric form assumption (3.9), if λ2 > 0, the six variables η1,
η2, x1, x2, y1 and y2 satisfy five equations (3.16), (3.18) (two equations each) and (3.11). If
λ2 = 0, the six variables satisfy x2 = 0, (3.16) for k = 1, (3.18) for k = 1, 2, and (3.11).

4. Main Theorem

To make our discussions simpler, hereafter we assume there exists no direct feedback to
the same node, that is rkk = 0 for k = 1, 2. This does not reduce any generality as long as
we are concerned about the numbers of customers in nodes 1 and 2, because, if rkk > 0, we
may change the routing probabilities to

r̃k0 = rk0/(1 − rkk), r̃kk = 0 and r̃kk′ = rkk′/(1 − rkk) (4.1)

and the service time distribution so that

(b̃k, S̃k) = (bk,Sk + rkkσ
�
k bk) and σ̃k = (1 − rkk)σk. (4.2)
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The new model with these modified routing probabilities and service time distribution has
the same {X(t)} process as the original one. Thus, the decay rate of the new model coincides
with the original one.

Two-variable representations and inverse functions: To represent our main result
in a simpler form, we write the six variables η1, η2, x1, x2, y1 and y2 as functions of two
variables a1 = log η1 and a2 = log η2. Clearly,

ηk = eak . (4.3)

To represent xk and yk as functions of a1 and a2, we need to introduce inverse functions.
For an arbitrary monotone function h, we denote its inverse function by inv[h]. For the
moment, we assume that λk > 0. Let φk be the inverse function of log fk, and ψk be that
of log gk, i.e.

φk(a) = inv[log fk](a) and ψk(a) = inv[log gk](a). (4.4)

These functions are defined on the whole real line (−∞,+∞). From Theorem 1 of Glynn
and Whitt [5], the functions φk and ψk can be interpreted probabilistically in the following
manner. Let NA

k (t) be the number of exogenous arrivals at node k during time interval
(0, t], and NS

k (t) the number of (fictitious) customers served at node k during (0, t] provided
that the server continues processing. Then we have

φk(a) = lim
t→∞

1

t
logE[e−aNA

k (t)] and ψk(a) = lim
t→∞

1

t
logE[e−aNS

k (t)]. (4.5)

Since fk and gk are decreasing, infinitely differentiable and log-convex, φk and ψk are also
decreasing, infinitely differentiable and convex. They satisfy the following properties:

φk(0) = ψk(0) = 0, φ′
k(0) = −λk, ψ′

k(0) = −µk, lim
a→+∞φk(a) = δf

k < 0,

lim
a→+∞ψk(a) = δg

k < 0 and lim
a→−∞φk(a) = lim

a→−∞ψk(a) = +∞.
(4.6)

From (3.16) and (3.18), the variables xk and yk can be represented as

xk = φk(ak) and − yk = ψk(−ak + hk′(ak′)), (4.7)

where hk(a) = − log
(
rk′k e

−a + rk′0

)
. (4.8)

If rk′k > 0, the function hk is strictly increasing and concave, and satisfies the following
properties:

hk(0) = 0, h′k(0) = rk′k, lim
a→+∞hk(a) = − log rk′0 and lim

a→−∞hk(a) = −∞. (4.9)

If rk′k = 0 (this may occur only for k = 1 from the assumption r12 > 0 ), then hk(ak) ≡ 0.
From (4.7), the equation (3.11) is rewritten as

κ(a1, a2) ≡ φ1(a1) + φ2(a2) + ψ1(−a1 + h2(a2)) + ψ2(−a2 + h1(a1)) = 0. (4.10)

This function κ plays a very important role in our discussion.
So far we have assumed that λ2 > 0. If λ2 = 0, we cannot define f2 in (3.8) since the

random variable TA
2 (n) does not exist. So in this case we set

φ2(a) ≡ 0, a ∈ (−∞,+∞) (when λ2 = 0). (4.11)
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By this rule, we need not distinguish the cases λ2 > 0 and λ2 = 0 in most of the subsequent
discussions.

To summarize, for any pair (a1, a2) satisfying κ(a1, a2) = 0, the corresponding values
of variables η1, η2, x1, x2, y1 and y2 are given by (4.3) and (4.7), and the corresponding
positive vectors ν1, ν2, ν1, ν2 and ν are derived from (3.13), (3.14) and (3.12). Then a
doubly geometric form solution (3.9) formed with η1, η2 and ν given above satisfies the set
of balance equations around C(n1, n2) as in (3.10).

In order to describe our main theorem we introduce sets on the (a1, a2)-plane and num-
bers related to them. First we note that, as will be shown in Lemma 7.1, the set

Kloop = {(a1, a2) : κ(a1, a2) = 0} (4.12)

is a loop passing through the origin, i.e. κ(0, 0) = 0 (see Figure 4.1 for an example). We let

Ek = {(a1, a2) ∈ Kloop : ak < 0 and hk(ak) ≤ ak′ ≤ 0} and (4.13)

bEk
k = inf {ak : ∃ ak′ such that (a1, a2) ∈ Ek} . (4.14)

Further we define

Fk = Ek ∩ {(a1, a2) : ak′ ≥ b
Ek′
k′ }

= {(a1, a2) ∈ Kloop : ak < 0 and max{hk(ak), b
Ek′
k′ } ≤ ak′ ≤ 0}. (4.15)

and let

ηk = exp{bFk
k }, where bFk

k = inf{ak : ∃ ak′ such that (a1, a2) ∈ Fk}. (4.16)

As will be shown in Lemma 7.2, Ek and Fk are nonempty and the numbers bEk
k , bFk

k and ηk

are all well defined. Our main theorem is stated as follows.

Theorem 4.1 ηk = exp{bFk
k } is less than 1 and is greater than or equal to the decay rate

η∗k of the marginal queue-length distribution {pk(n)} defined in (3.3), namely

η∗k ≤ ηk < 1. (4.17)

The proof of this theorem needs a long discussion using a series of lemmas. So we
postpone it to Section 6.

Remark 4.1 (On the sets Ek and Fk) The set

E ′
k = {(a1, a2) ∈ Kloop : ak < 0 and hk(ak) < ak′ < 0} (4.18)

consists of points (a1, a2) satisfying the condition of Lemma 6.1 given in Section 6 together
with constraints ak < 0 and ak′ < 0. Ek is almost the same as this set. However E ′

k becomes
empty if hk(ak) ≡ 0 and hence if rk′k = 0. To avoid this inconvenience and to make the
exposition of the theorem general, Ek is slightly changed from E ′

k so that it is nonempty in
any case. Fk is defined so that it provides the coordinate of the limit point of the converging
sequence of points given by (6.31) in Section 6. ♦
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Remark 4.2 (An LST version) Theorem 4.1 can be restated in terms of fk and gk directly.
For brevity of exposition, here we state the result only for the case λ2 > 0. If λ2 = 0, we
have to change equations (4.19) and definitions (4.20) below slightly. From (3.16), (3.18)
and (3.11), we have three equations for four variables x1, x2, y1 and y2 as

(
rk0 fk(xk) + rkk + rkk′

fk(xk)

fk′(xk′)

)
gk(−yk) = 1 for k = 1, 2, and

x1 + x2 − y1 − y2 = 0.
(4.19)

We define positive numbers x̂k and η′k as

x̂k = sup{xk : ∃(x1, x2, y1, y2) satisfying (4.19), xk′ ≥ 0, xk > 0 and yk′ ≤ 0}, (4.20)

η′k = inf {fk(xk) : ∃(x1, x2, y1, y2) satisfying (4.19), xk > 0, xk′ ∈ [0, x̂k′ ] and yk′ ≤ 0} .

Then from relations in (4.7) we see η′k = ηk. ♦
Remark 4.3 (Corollaries on procedure) To calculate bF1

1 and bF2
2 in individual models, we

shall write them more explicitly. We consider the curves and straight lines

κ(a1, a2) = 0 (the set Kloop), ak′ = hk(ak), ak = 0 and ak = bEk
k (4.21)

on the (a1, a2)-plane (see Figure 4.1 for an example). Properties of these curves and lines will
be examined in Section 7. We start with introducing notations for some sets and coordinates
of intersections of the curves and lines. We let

K = {(a1, a2) : κ(a1, a2) ≤ 0} and Kk = {(a1, a2) ∈ K : ak′ ≤ 0} . (4.22)

The set K is convex (Lemma 7.1) and its periphery is Kloop. For a given number b, the
straight line ak = b either intersects with Kloop twice, is tangent to Kloop at a single point,
or never meets Kloop. In the following discussions, for brevity of exposition, sometimes we
say the line intersects with Kloop at two points even when the line is tangent to the loop.

The straight line ak′ = 0 intersects with Kloop at two points, one of which is the origin
(Lemma 7.1). Let b0k be the smaller k-th coordinate of the two intersections, namely

b01 = min{a1 : κ(a1, 0) = 0} and b02 = min{a2 : κ(0, a2) = 0}. (4.23)

The curve ak′ = hk(ak) intersects Kloop at two points, at the origin and at a point having
negative coordinates (Lemma 7.1). Let (bhk

1 , b
hk
2 ) be the coordinates of the latter point,

namely, for example, if k = 1,

bh1
1 = {unique negative root of equation κ(a1, h1(a1)) = 0 for a1} and bh1

2 = h1(b
h1
1 ).
(4.24)

The straight line ak = bhk
k intersects Kloop at two points, one of which is (bhk

1 , b
hk
2 ). Let bhk,c

k′

be the k′-th coordinate of the other intersection. Namely, for example, if k = 1,

bh1,c
2 =

{
root other than bh1

2 of equation κ(bh1
1 , a2) = 0 for a2

}
. (4.25)

We let
b
K(k)
k = inf{ak : ∃ ak′ such that (a1, a2) ∈ K}, and

bKk
k = inf{ak : ∃ ak′ such that (a1, a2) ∈ Kk}.

(4.26)
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2 ) ����
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1 , bh2

2 )

��	(bK2
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2 )

���
(0, b0

2)
���

(0, bF2
2 )

������
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�
�
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(κ(a1, a2) = 0)
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���

(bF1
1 , 0)

Figure 4.1: Curves and lines on the (a1, a2)-plane for the model in Example 4.1

Since these numbers are less than or equal to bhk
k (< 0), they are negative. Each of infimums

in (4.26) is attained by a single point on Kloop (Lemma 7.2). We denote by (b
K(k)
1 , b

K(k)
2 ) the

coordinates of the point attaining the first infimum and by (bKk
1 , bKk

2 ) those attaining the

second infimum. If b
K(1)
2 ≤ 0, (bK1

1 , bK1
2 ) = (b

K(1)
1 , b

K(1)
2 ), and if b

K(1)
2 ≥ 0, (bK1

1 , bK1
2 ) = (b01, 0).

The set E1 defined in (4.13) is the upper left arc (segment) of Kloop between points (b01, 0)
and (bh1

1 , b
h1
2 ) in the third quadrant (Lemma 7.2, see Figure 4.1 for an example). The latter

end point belongs to the set, but the former does only when b01 < 0. We let (bE1
1 , b

E1
2 ) be the

coordinates of the point that attains the infimum of a1 in E1 as in (4.14). Similarly the set
E2 is the lower right arc of Kloop between (0, b02) and (bh2

1 , b
h2
2 ), and we denote by (bE2

1 , b
E2
2 )

the coordinates of the point at which the infimum of a2 in E2 is attained. Then, by tracing
the arc Ek from the end point near the origin, we see that coordinates (bEk

1 , b
Ek
2 ) are given as

follows (see Lemma 7.2 and its proof).

(bEk
1 , b

Ek
2 ) =


 (bKk

1 , bKk
2 ) if bhk,c

k′ ≥ bhk
k′ ,

(bhk
1 , b

hk
2 ) if bhk,c

k′ ≤ bhk
k′ .

(4.27)

Since Fk is a subset of Ek restricted by ak′ ≥ b
Ek′
k′ , by comparing bEk

k′ and b
Ek′
k′ (see Lemma

7.2), we see that the infimum bFk
k in (4.16) is given by

bFk
k =


 bEk

k if bEk
k′ ≥ b

Ek′
k′ ,

b
hk′ ,c
k if bEk

k′ ≤ b
Ek′
k′ .

(4.28)

Using these relations, we can calculate ηk concretely as stated in the following corollary.

Corollary 4.1 The upper bound ηk given in Theorem 4.1 can be calculated through (4.27)
and (4.28) as ηk = exp{bFk

k }.
The procedure presented in Corollary 4.1 can be written without using bEk

k and bEk
k′ . Note

that from Lemma 7.1 the case where bh1
2 ≤ bh2

2 and bh2
1 ≤ bh1

1 cannot occur.

c© Operations Research Society of Japan JORSJ (2004) 47-4



324 K. Katou, N. Makimoto & Y. Takahashi

Corollary 4.2 The pair (bF1
1 , bF2

2 ) which derives the upper bounds η1 and η2 in Theorem
4.1 is given by

(bF1
1 , bF2

2 ) =




(bh1
1 , b

h2
2 ) if bh1,c

2 ≤ bh1
2 , b

h2,c
1 ≤ bh2

1 , b
h1
2 ≥ bh2

2 and bh2
1 ≥ bh1

1 ,

(bh1
1 , b

h1,c
2 ) if bh1,c

2 ≤ bh1
2 , b

h2,c
1 ≤ bh2

1 , b
h1
2 ≥ bh2

2 and bh2
1 ≤ bh1

1 ,

or if bh1,c
2 ≤ bh1

2 , b
h2,c
1 ≥ bh2

1 and bK2
1 ≤ bh1

1 ,

(bh2,c
1 , bh2

2 ) if bh1,c
2 ≤ bh1

2 , b
h2,c
1 ≤ bh2

1 , b
h1
2 ≤ bh2

2 and bh2
1 ≥ bh1

1 ,

or if bh1,c
2 ≥ bh1

2 , b
h2,c
1 ≤ bh2

1 and bK1
2 ≤ bh2

2 ,

(bh1
1 , b

K2
2 ) if bh1,c

2 ≤ bh1
2 , b

h2,c
1 ≥ bh2

1 and bK2
1 ≥ bh1

1 ,

(bK1
1 , bh2

2 ) if bh1,c
2 ≥ bh1

2 , b
h2,c
1 ≤ bh2

1 and bK1
2 ≥ bh2

2 ,

(bK1
1 , bK2

2 ) if bh1,c
2 ≥ bh1

2 and bh2,c
1 ≥ bh2

1 .

(4.29)

♦
Example 4.1 Figure 4.1 shows curves and coordinates of intersections on the (a1, a2)-plane
for the model with two-phase Erlang renewal arrival processes and two-phase Erlang service
distributions, where λ1 = 1.0, λ2 = 0.5, µ1 = 3.0, µ2 = 5.0, r12 = r10 = 0.5, r21 = 0.8 and
r20 = 0.2. The procedure presented in Corollary 4.1 is applied in the following manner.

(bh1
1 , b

h1
2 ) = (−0.4073,−0.3381)

(bK1
1 , bK1

2 ) = (−1.1407,−1.6380)

}
=⇒ (bE1

1 , b
E1
2 ) = (bh1

1 , b
h1
2 ) = (−0.4073,−0.3381)

(bh2
1 , b

h2
2 ) = (−1.1403,−1.6592)

(bK2
1 , bK2

2 ) = (−0.8390,−1.9508)

}
=⇒ (bE2

1 , b
E2
2 ) = (bK2

1 , bK2
2 ) = (−0.8390,−1.9508)

bE1
2 > bE2

2 =⇒ bF1
1 = bE1

1 = bh1
1 = −0.4073, η1 = exp{bF1

1 } = 0.6654

bE2
1 < bE1

1 =⇒ bF2
2 = bh1,c

2 = −1.8301, η2 = exp{bF2
2 } = 0.1604. ♦

Remark 4.4 (Special models) In some special cases where exact decay rates are known,
we can check whether our upper bound coincides with the exact decay rate or not. The
followings are propositions for such special cases. Proofs will be given in Section 8.

Proposition 4.1 In a Jackson type two-node queueing system, the upper bound ηk coin-
cides with the exact decay rate η∗k = ρk given in (2.3).

Proposition 4.2 If r21 = 0, we have η1 = η∗1 (< 1).

Proposition 4.3 In a tandem queueing system MAP/M/1 → /M/1, the upper bound ηk

coincides with the exact decay rate η∗k. ♦

5. Matrix Geometric Form of a QBD Process Having Infinite Number of States
in Each Level

Our proof of the main theorem, Theorem 4.1, is based on a lemma concerning to the rate
matrix in a quasi-birth-and-death process having infinite number of states in each level [9].
The lemma has been presented only in a technical paper, we introduce it with a brief proof
here.

We consider a time-continuous ergodic Markov chain on a two-dimensional state space
S = {(n, i); n, i = 0, 1, 2, · · · }. Let L(n) be the set of states {(n, i); i = 0, 1, 2, · · · }
with common n and call it Level n. The whole state space S is partitioned into levels
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as S =
⋃∞

n=0 L(n). The Markov chain is called a quasi-birth-and-death process having infi-
nite number of states in each level if, after partitioned into levels, its transition rate matrix
becomes of a block tri-diagonal form

Q =




Q1 Q0

Q2 Q1 Q0

Q2 Q1 Q0

Q2 Q1
. . .

. . . . . .



. (5.1)

Notice that Qi and Qi have infinite dimension.
Let π be the stationary state probability vector of Q and divide it into subvectors as

π = (π(0) π(1) π(2) · · · ) according to the partition of S into levels. It is known [10] that
π takes a matrix geometric form as

π(n) = π(1)Rn−1, n = 1, 2, · · · (5.2)

where R, called the rate matrix, is the minimal nonnegative solution of the matrix quadratic
equation

Q0 + RQ1 + R2Q2 = O. (5.3)

If the dimension of R were finite, the level distribution {π(n) e�} would decay geometrically
fast with rate equal to pf [R]. However, in our case, the dimension of R is infinite and we
cannot use the concept “eigenvalue”. A sufficient condition for geometric decay with a
given decay rate was obtained in Takahashi et al. [17]. Here we use another lemma,
Lemma 5.1 below, to evaluate powers of R. A similar result was obtained in Theorem 5.4 of
Ramaswami and Taylor [14] where (5.5) below was derived with equality but under slightly
stronger conditions.

Lemma 5.1 Assume that diagonal elements of Q1 are bounded. If there exists a positive
number ξ and a positive vector q satisfying

q

(
1

ξ
Q0 + Q1 + ξQ2

)
≤ 0, (5.4)

then
qR ≤ ξq. (5.5)

Proof Choose a sufficiently large positive number ν so that I + 1
ν
Q1 is nonnegative, and

put

P 0 =
1

ν
Q0, P 1 = I +

1

ν
Q1, P 2 =

1

ν
Q2. (5.6)

Starting with R(0) = O, we recursively define matrices R(n) by the relation

R(n) = P 0 + R(n− 1)P 1 + R2(n− 1)P 2, n = 1, 2, · · · . (5.7)

Then R(n) is nonnegative, nondecreasing and bounded from above by R. It is easily
checked that R(n) converges to R as n → ∞. By mathematical induction, we can show
that qR(n) ≤ ξq for all n ≥ 0. Since q and R(n) are nonnegative, by letting n to infinity
we have qR ≤ ξq from the monotone convergence theorem. ♦

From this lemma, we can derive an important inequality for the discussion of decay rates.
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Lemma 5.2 In addition to the conditions of Lemma 5.1, if q satisfies

π(1) ≤ cq (5.8)

for some positive constant c, then we have

π(n) ≤ c ξn−1q, n = 1, 2, · · · . (5.9)

Moreover, if qe� < +∞, then ξ is an upper bound of the decay rate of the level distribution
in the sense

lim sup
n→∞

1

n
log π(n)e� ≤ log ξ. (5.10)

Proof The lemma is clear from (5.2) and (5.5). ♦

6. Proof of the Main Theorem

Now we shall prove Theorem 4.1. We start with some preparatory discussion. Through
this section, if a pair (a1, a2) ∈ Kloop is once chosen, we consider the values of the associated
variables η1, η2, x1, x2, y1 and y2 are given by (4.3) and (4.7), and the associated vectors
ν1, ν2, ν1, ν2 and ν are given by (3.13), (3.14) and (3.12).

Our main tool here is Lemma 5.1 given in the preceding section. To apply the lemma, we
reformulate the Markov chain {X(t)} = {(N1(t), N2(t), I1(t), I2(t), J1(t), J2(t))} defined in
(2.1) to make it a quasi-birth-and-death process on the partition {L2(n2), n2 = 0, 1, 2, . . . }
of the state space S into levels according to the number of customers in node 2. Here
the n2-th level is the set of states with n2 customers in node 2, L2(n2) =

⋃∞
n1=0 C(n1, n2),

n2 = 0, 1, 2, . . .. The level L2(n2) is further partitioned into cells {C(n1, n2), n1 = 0, 1, 2, . . . }
according to the number of customers in node 1. If we rearrange states in a lexicographical
order of (n2, n1, i1, i2, j1, j2) (here n1 and n2 are interchanged from the original ordering),
then the transition rate matrix Q of {X(t)} takes of the form (5.1) with submatrices Q0,
Q1 and Q2 given by

Q0 =




I ⊗ U 2 ⊗ I O
I ⊗ I ⊗ r12σ

�
1 ⊗ I I ⊗ U 2 ⊗ I ⊗ I O

I ⊗ I ⊗ r12σ
�
1 b1 ⊗ I I ⊗ U 2 ⊗ I ⊗ I

. . .
. . . . . .


 ,

Q1 =




T 1 ⊕ T 2 ⊕ S2 U 1 ⊗ I ⊗ b1 ⊗ I
I ⊗ I ⊗ r10σ

�
1 ⊗ I T 1 ⊕ T 2 ⊕ S1 ⊕ S2 U 1 ⊗ I ⊗ I ⊗ I

I ⊗ I ⊗ r10σ
�
1 b1 ⊗ I T 1 ⊕ T 2 ⊕ S1 ⊕ S2

. . .
. . . . . .


 ,

Q2 =




I ⊗ I ⊗ r20σ
�
2 b2 I ⊗ I ⊗ b1 ⊗ r21σ

�
2 b2

O I ⊗ I ⊗ I ⊗ r20σ
�
2 b2 I ⊗ I ⊗ I ⊗ r21σ

�
2 b2

O I ⊗ I ⊗ I ⊗ r20σ
�
2 b2

. . .
. . . . . .


 .

Since Qi, i = 0, 1, 2, do not appear explicitly in our proof, we omit their exact description.
The state probability vector π2 corresponding to our ordering of states is also partitioned
into subvectors as

π2 = ( π2(0) π2(1) π2(2) · · · ) . (6.1)
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The subvector π2(n2) is partitioned into state probability vectors p(n1, n2) defined in (3.5)
for cells C(n1, n2), n1 = 0, 1, 2, . . . , as

π2(n2) = ( p(0, n2) p(1, n2) p(2, n2) · · · ) , n2 = 0, 1, 2, . . . . (6.2)

We choose a pair (a1, a2) ∈ Kloop arbitrarily and apply Lemma 5.1 to the partition
{L2(n2)} with ξ = η2. Then the key matrix ξ−1Q0 + Q1 + ξQ2 has the following block
tri-diagonal structure:

D =
1

η2

Q0 + Q1 + η2Q2 =




B1 B0

B2 B1 B0

B2
. . . . . .
. . .


 , (6.3)

B0 = U 1 ⊗ I ⊗ b1 ⊗ I + I ⊗ I ⊗ b1 ⊗ r21η2σ
�
2 b2,

B1 = T 1 ⊕
(
T 2 +

1

η2

U 2

)
⊕
(
S2 + r20η2σ

�
2 b2

)
,

B2 = I ⊗ I ⊗
(
r10 +

r12

η2

)
σ�

1 ⊗ I,

B0 = U 1 ⊗ I ⊗ I ⊗ I + I ⊗ I ⊗ I ⊗ r21η2σ
�
2 b2, (6.4)

B1 = T 1 ⊕
(
T 2 +

1

η2

U 2

)
⊕ S1 ⊕

(
S2 + r20η2σ

�
2 b2

)
,

B2 = I ⊗ I ⊗
(
r10 +

r12

η2

)
σ�

1 b1 ⊗ I.

We introduce some notation. Let L2 denote a replica of L2(n2) for some n2 > 0, and C2(n1)
a replica of C(n1, n2). Then D can be regarded as a matrix whose elements are indexed in
L2 × L2. For a row vector y with elements indexed in L2 we partition it into subvectors
according to the partition {C2(n1), n1 = 0, 1, 2, . . . } as y = ( y(0) y(1) y(2) · · · ), and
define its decay rate dr[y] by

log dr[y] = lim sup
n1→∞

1

n1

log y(n1)e
�. (6.5)

For r = dr[y], if there exists a positive constant C such that

lim
n→∞

y(n1)e
�

rn1
= C, (6.6)

then we will say y decays geometrically in strong sense with rate r. We use this terminology
even if r ≥ 1.

Now we shall construct a positive vector q that satisfies the inequality qD ≤ 0 and has
a known decay rate η1. We shall use the doubly geometric form solution (3.9) to do this.
We choose a pair (a1, a2) on the loop Kloop arbitrarily. The associated positive vector ν
satisfies the balance equation (3.10), which is rewritten as

ν

(
1

η1

B0 + B1 + η1B2

)
= 0. (6.7)

As a candidate for q in (5.4), consider a row vector

γ = (0 η1ν η2
1ν η3

1ν · · · ) . (6.8)
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Clearly, γ decays geometrically in strong sense with rate η1. A direct calculation shows that

γD = γ

(
1

η2

Q0 + Q1 + η2Q2

)
= ( τ 0 τ 1 0 0 · · · ) , where (6.9)

τ 0 = ν1 ⊗ ν2 ⊗ ν2,

τ 1 = −ν1U 1 ⊗ ν2 ⊗ ν1 ⊗ ν2 − r21η2g2(−y2) ν1 ⊗ ν2 ⊗ ν1 ⊗ b2.
(6.10)

Here we assume, without loss of generality, that νk is normalized so that νkσk = gk(−yk).
Unfortunately, τ 0 > 0 and the vector γ does not satisfy condition (5.4) for q. However the
vector γ will turn out to be a component of a vector q having a known decay rate.

We will derive another candidate vector � for q satisfying �D ≤ 0 as in (6.20) below. We
need some preparation. To use the Markov chain theory, we convert D to a defective tran-

sition rate matrix D′. Let ζ
�
k be the positive right eigenvector of the matrix

(
T k + η−1

k U k

)
associated with eigenvalue xk, and ζ�

k be that of
(
Sk + ηk

(
rk0 + η−1

k′ rkk′
)
σ�

k bk

)
associated

with −yk: (
T k + 1

ηk
U k

)
ζ
�
k = xk ζ

�
k ,(

Sk + ηk

(
rk0 + rkk′

ηk′

)
σ�

k bk

)
ζ�

k = −yk ζ�
k .

(6.11)

If we set ζ� = ζ
�
1 ⊗ ζ

�
2 ⊗ ζ�

1 ⊗ ζ�
2 , then(

1

η1

B0 + B1 + η1B2

)
ζ� = 0�. (6.12)

We let

χ� =




η1 g1(−y1) ζ
�
1 ⊗ ζ

�
2 ⊗ ζ�

2

ζ�

η−1
1 ζ�

η−2
1 ζ�

...



. (6.13)

A direct calculation shows that

Dχ� =

(
1

η2

Q0 + Q1 + η2Q2

)
χ� =



η1 g1(−y1) y1 ζ

�
1 ⊗ ζ

�
2 ⊗ ζ�

2

0
0
...


 . (6.14)

Here we assume ζ�
1 is normalized so that b1ζ

�
1 = g1(−y1). If y1 ≤ 0, then the vector on

the right hand side of the above equation is nonpositive. Hereafter we assume that y1 < 0
(for later convenience, we don’t include the case y1 = 0 in our assumption). We introduce

diagonal matrices Z = diag[χ�], Z0 = diag[ζ
�
1 ⊗ ζ

�
2 ⊗ ζ�

2 ] and Z1 = diag[ζ�], and set

D′ = Z−1DZ = Z−1

(
1

η2

Q0 + Q1 + η2Q2

)
Z. (6.15)

Then D′ takes of the form

D′ =




B
′
1 B

′
0

B
′
2 B′

1 B′
0

B′
2

. . . . . .

. . .


 , where (6.16)
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B
′
0 = (η1g1(−y1))

−1Z−1
0 B0Z1, B

′
1 = Z−1

0 B1Z0, B
′
2 = η1g1(−y1)Z

−1
1 B2Z0,

B′
0 = η−1

1 Z−1
1 B0Z1, B′

1 = Z−1
1 B1Z1 and B′

2 = η1Z
−1
1 B2Z1.

We note that (B′
0 + B′

1 + B′
2)e

� = 0� from (6.12), and hence from (6.14)

D′e� = η1 g1(−y1) y1




e�

0�

0�
...


 ≤ 0�. (6.17)

This implies that we may consider D′ to be a defective transition rate matrix of a Markov
chain {Y (t)} on the state space L2∪{0} with {0} being an absorbing state. Here “defective”
means that D′ is a matrix formed from a complete transition rate matrix by deleting the
row and column corresponding to the absorbing state. Since we have assumed y1 < 0,
the transition rate −η1 g1(−y1) y1 from a state in C2(0) ⊂ L2 to the absorbing state is
strictly positive. Now we assume {Y (t)} starts from a state in C2(0) selected randomly, i.e.
P{Y (0) = (0, i1, i2, 0, j2)} = 1/v for (0, i1, i2, 0, j2) ∈ C2(0), where v = |C2(0)| is the number
of states in C2(0), and we let


′(n1, i1, i2, j1, j2) =
∫ ∞

0
P{Y (t) = (n1, i1, i2, j1, j2)}dt. (6.18)

This quantity can be interpreted as the expected time spent in state (n1, i1, i2, j1, j2) until ab-
sorption or drift to ∞ occurs. From the irreducibility of {X(t)} we see that 
′(n1, i1, i2, j1, j2)
is positive, and it is finite for any state (n1, i1, i2, j1, j2) ∈ L2 since the chain has an absorbing
state. From the Kolmogorov’s forward equation, the row vector �′ = ( 
′(n1, i1, i2, j1, j2) )
satisfies the equation

�′D′ = (−v−1e 0 0 · · · ) . (6.19)

If we put � = �′Z−1, we have

�D = (−(vη1g1(−y1))
−1eZ−1

0 0 0 · · · ) , (6.20)

and this shows that � can serve as a candidate vector for q in Lemma 5.1 since it satisfies
inequality (5.4) with ξ = η2.

The next task is to examine the decay rate of �. We partition �′ and � into subvectors
corresponding to cells as �′ = ( �′(0) �′(1) �′(2) · · · ) and � = ( �(0) �(1) �(2) · · · ).
Then from the block-tri-diagonal form (6.16) of D′ and from the definition (6.18), we see

that �′ takes a matrix-geometric form. To see this, for m > 0 and τ > 0, we denote by R̂
′(m)

a matrix of order C2(1) × C2(1) with∫ ∞

0
P{Y (τ + t) = (m+ 1, i′1, i

′
2, j

′
1, j

′
2), Y (s) does not visit level 1 during (τ, τ + t)

after it leaves level 1 |Y (τ) = (1, i1, i2, j1, j2)} dt (6.21)

in its ( (i1, i2, j1, j2), (i′1, i
′
2, j

′
1, j

′
2) )th element. Clearly the quantity does not depend on τ and

is finite from the same reason as 
′(n1, i1, i2, j1, j2) in (6.18). Then following the standard

probabilistic discussion on sample paths (see Neuts [12]), we see that, if we put R̂
′
= R̂

′(1)
,

�′(m+ 1) = �′(1) R̂
′(m)

= �′(1)
(
R̂

′)m
, (6.22)
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and that R̂
′
coincides with the nonnegative minimal solution of the matrix quadratic equa-

tion
B′

0 + R̂
′
B′

1 + R̂
′2
B′

2 = O. (6.23)

Since m > 0 is arbitrary, (6.22) shows that �′ decays geometrically in strong sense with rate

equal to the PFE of rate matrix R̂
′
, i.e. dr [�′] = pf

[
R̂

′]
. From Lemmas 1.3.2 and 1.3.4 of

[12], we know that the equation pf
[

1
z
B′

0 + B′
1 + zB′

2

]
= 0 for z has at most two positive

roots and pf[R̂
′
] is the minimal one of the two. Since z = 1 is a root of the equation,

pf[R̂
′
] ≤ 1 and hence dr [�′] ≤ 1. Since � = �′Z−1,

�(n1) = ηn1−1
1 �′(n1) Z−1

1 , n1 = 1, 2, 3, . . . . (6.24)

This shows that � also decays geometrically in strong sense with rate less than or equal to
η1, i.e., dr[�] ≤ η1.

This �, however, is not a satisfactory candidate for q, because to check the condition
(5.8) in Lemma 5.2 we need to know the decay rate of q exactly. So, instead of � alone,
we use γ defined in (6.8) together. Recall that γ is nonnegative, γD is nonpositive except
for the first subvector τ 0 in (6.9), and γ decays geometrically in strong sense with rate η1.
On the other hand, � is positive, �D is nonpositive with the first subvector being strictly
negative, and � decays geometrically in strong sense with rate less than or equal to η1. So
if we choose a sufficiently small positive number ε, the vector

q = εγ + �, (6.25)

is positive, satisfies the inequality qD ≤ 0, and decays geometrically in strong sense with
rate exactly equal to η1 as we have requested.

The assumptions we have made for the above discussion are that (i) (a1, a2) ∈ Kloop (or
equivalently κ(a1, a2) = 0) and (ii) y1 < 0 (or equivalently a1 > h2(a2) from (4.6) and (4.7)).
Hence we have the following

Lemma 6.1 Suppose that (a1, a2) ∈ Kloop satisfies the condition a1 > h2(a2). Then for the
partition {L2(n2)}, there exists a positive vector q that satisfies condition (5.4) in Lemma 5.1
with ξ = η2 = ea2 and decays geometrically in strong sense with rate η1 = ea1.

Using Lemma 5.2 and this lemma, we can derive two key lemmas for the proof of our
main theorem. Before stating the lemmas, we introduce another partition of the state space
by the number of customers in node 1. Let {L1(n1), n1 = 0, 1, 2, . . . } be the partition of S,
where L1(n1) =

⋃∞
n2=0 C(n1, n2), and {C(n1, n2), n2 = 0, 1, 2, . . . } is a partition of L1(n1)

into cells. We denote by L1 a replica of L1(n1). We also denote the state probability vector
by π1 subjecting to the lexicographical order of (n1, n2, i1, i2, j1, j2), and according to the
partition {L1(n1)} we divide it into subvectors as π1 = ( π1(0) π1(1) π1(2) · · · ), where
π1(n1) = ( p(n1, 0) p(n1, 1) p(n1, 2) · · · ), n1 = 0, 1, 2, . . .. The vector π1 is essentially the
same as π2 in (6.1) except for ordering of elements. For row vectors with elements indexed
in L1, the decay rate is defined in a similar manner to (6.5).

The first lemma we shall prove is an application of Lemma 6.1 to the case a1 = 0. Note
that we have defined b02 in (4.23). We let η0

2 = exp{b02}.
Lemma 6.2 If b02 < 0, then log dr [π1(1)] ≤ b02, or equivalently, dr [π1(1)] ≤ η0

2.

Proof Since r12 > 0 and b02 < 0, we have h2(b
0
2) < 0. Hence the pair (0, b02) satisfies the

condition of Lemma 6.1, and there exists a positive vector q that satisfies (5.4) with ξ = η0
2
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and decays geometrically in strong sense with rate e0 = 1. So there exists a positive constant
c such that q > c−1e, and since π2(1) ≤ e, the condition (5.8) in Lemma 5.2 is satisfied.
Then from (5.9) we have

π2(n2) ≤ c
(
η0

2

)n2−1
q, n2 = 1, 2, . . . . (6.26)

Considering the second subvector p(1, n2) of π2(n2), we see that p(1, n2) ≤ c (η0
2)

n2−1
q(1),

where q(1) is the second subvector of q in the representation q = ( q(0) q(1) q(2) · · · )
according to the partition {C2(n1)} of L2. Since n2 is arbitrary, we have dr [π1(1)] ≤ η0

2. ♦
The next lemma is to get a new upper bound for η∗2 when an upper bound of η∗1 is known.

Lemma 6.3 Suppose that (a1, a2) ∈ Kloop satisfies the condition of Lemma 6.1, namely
a1 > h2(a2). If a1 < 0 and dr [π2(1)] < η1 (= ea1 < 1), then η∗2 ≤ η2 (= ea2 < 1). If
η∗1 < η1 (= ea1 < 1), then the same inequality holds.

Proof The vector q in (6.25) has decay rate η1. So, if dr [π2(1)] < η1, the condition (5.8)
of Lemma 5.2 is clearly satisfied with π2(1) in place of π(1). From the assumption a1 < 0,
qe� is finite since η1 < 1. Hence we have the desired result from Lemmas 5.1, 5.2 and 6.1.
If η∗1 < η1 < 1, the condition dr [π2(1)] < η1 is trivially satisfied. ♦

Interchanging roles of node 1 and node 2 in Lemmas 6.2 and 6.3, we obtain similar results
for dr [π2(1)] and η∗1. Notice that in Lemmas 6.2 and 6.3 the assumption r12 > 0 is crucial,
because, if r12 = 0, then h2(a2) ≡ 0 and we cannot choose any a2 such that h2(a2) < 0.

Lemma 6.4 Assume that r21 > 0. (i) If b01 < 0, then dr [π2(1)] ≤ η0
1 = exp{b01}. (ii)

For (a1, a2) ∈ Kloop such that h1(a1) < a2 < 0, the inequality η∗1 ≤ η1 (= ea1 < 1) holds if
dr [π1(1)] < η2 (= ea2 < 1) or if η∗2 < η2 (= ea2 < 1).

Using these lemmas, we prove Theorem 4.1 first for the case r21 = 0 and then for the
case r21 > 0. In the proofs, we use some properties of sets Ek, Fk, F ′

k and Gk(bk′), the latter
two are defined afterwards. These properties are proved in the next section.

Proof of Theorem 4.1 for the case r21 = 0 Proposition 4.2 says η1 = η∗1 < 1. Hence
(4.17) trivially holds for k = 1. We shall prove it for k = 2. From Lemma 7.3, log η1 =
bE1
1 = b01 < 0. Hence, the set F2 in (4.15) reduces to

F2 = {(a1, a2) ∈ Kloop : a2 < 0 and max{h2(a2), b
0
1} ≤ a1 ≤ 0}. (6.27)

Now we consider a slightly different set

F ′
2 = {(a1, a2) ∈ Kloop : max{h2(a2), b

0
1} < a1 < 0}. (6.28)

We see that, for any point (a1, a2) ∈ F ′
2, the conditions of Lemma 6.3 are satisfied, and

hence
η∗2 ≤ ea2 < 1. (6.29)

Taking infimum over such points, we get a bound for η∗2:

η∗2 ≤ exp
{
b
F ′

2
2

}
, where b

F ′
2

2 = inf{a2 : ∃ a1 such that (a1, a2) ∈ F ′
2}. (6.30)

As will be shown in Lemma 7.3, F2 (and also F ′
2) is an arc of Kloop, and F2 and F ′

2 only

differ in their one or two end points. Hence the infimum b
F ′

2
2 in (6.30) is equal to the infimum

bF2
2 in (4.16), and the inequality in (6.30) is equivalent to η∗2 ≤ η2 = exp{bF2

2 }. ♦
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The case r21 > 0 can be proved using a similar idea. However in this case we know
neither η∗1 nor η∗2. So, this time, we have to construct an alternating sequence of a1 and a2

converging to bF1
1 and bF2

2 , respectively. To make our exposition clearer, we introduce a set
Gk(bk′) and a function χk(bk′) for bk′ < 0. The set Gk(bk′) plays a similar role to F ′

2 in the
proof of the case r21 = 0 above.

Assume that r21 > 0. For an arbitrary number bk′ < 0 we let

Gk(bk′) = {(a1, a2) ∈ Kloop : max{hk(ak), bk′} < ak′ < 0}, and (6.31)

χk(bk′) = inf{ak : ∃ak′ such that (a1, a2) ∈ Gk(bk′)}. (6.32)

Explanative descriptions of Gk(bk′) and χk(bk′) will be given in Lemma 7.4. The set Gk(bk′)
is a subset of Ek and nonempty. Hence χk(bk′) is well defined for any bk′ < 0. We regard
this χk as a function of bk′ . It is negative and continuous. Further, it is strictly increasing
in the interval [bEk

k′ , 0) and constant equal to bEk
k in the interval (−∞, bEk

k′ ] (see Figure 6.1 for
an example). Since Ek differs from Gk(b

Ek
k′ ) in only one or two end points and Fk differs from

Gk(b
Ek′
k′ ) in one or two end points as stated in Lemma 7.4, it is easily seen that χk(b

Ek
k′ ) = bEk

k

and χk(b
Ek′
k′ ) = bFk

k . Using this function χk(bk′), Lemma 6.3 and (ii) of Lemma 6.4 above are
restated as follows.

Lemma 6.5 Assume that rkk′ > 0. For bk′ < 0, if either log dr [πk(1)] ≤ bk′ or log η∗k′ ≤ bk′,
then log η∗k ≤ χk(bk′) (< 0) or equivalently η∗k ≤ exp{χk(bk′)} (< 1).

Proof Any point (a1, a2) ∈ Gk(bk′) satisfies the condition of (ii) of Lemma 6.4. Hence
η∗k ≤ eak . Taking the infimum in Gk(bk′) we obtain the inequality to be proved. (To apply
the lemmas here, we cannot include a point with max{hk(ak), bk′} = ak′ in the set Gk(bk′).
This is the reason why we have introduced slightly different sets from Ek and Fk.) ♦

Now we proceed to the proof of our main theorem for the case r21 > 0.

Proof of Theorem 4.1 for the case r21 > 0 Lemma 7.1 ensures that either b01 < 0 or
b02 < 0. Without loss of generality, we assume that b02 < 0. If b02 = 0, we may exchange the
roles of node 1 and node 2 in the following argument. We introduce an alternating sequence
{b(0)

2 , b
(1)
1 , b

(1)
2 , b

(2)
1 , b

(2)
2 , b

(3)
1 , · · · } of negative numbers by relations



b
(0)
2 = b02,

b
(m)
1 = χ1(b

(m−1)
2 ), m = 1, 2, · · · ,

b
(m)
2 = χ2(b

(m)
1 ), m = 1, 2, · · · .

(6.33)

Since b02 < 0, this sequence is well-defined (see Figure 6.1 for an example). From Lemma

6.2 we have log dr [π1(1)] ≤ b02 = b
(0)
2 . Then applying Lemma 6.5 with k = 1 and bk′ = b

(0)
2 ,

we have log η∗1 ≤ χ1(b
(0)
2 ) = b

(1)
1 . Applying Lemma 6.5 again with k = 2 and bk′ = b

(1)
1 , we

have log η∗2 ≤ χ2(b
(1)
1 ) = b

(1)
2 . Applying Lemma 6.5 iteratively in this manner, we have

log η∗k ≤ b
(m)
k , m = 1, 2, · · · . (6.34)

Now we show that the subsequence {b(m)
k , m = 1, 2, . . .} converges to bFk

k . Consider
graphs a1 = χ1(a2) and a2 = χ2(a1) on the (a1, a2)-plane (for an example, see Figure 6.1).
The graph a1 = χ1(a2) consists of the upper left arc of the loop Kloop between (b01, 0) and
(bE1

1 , b
E1
2 ) and a semi-infinite segment of a straight line a1 = bEk

1 starting from (bE1
1 , b

E1
2 ).
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Figure 6.1: Convergence of subsequences {b(m)
1 } and {b(m)

2 }

The graph a2 = χ2(a1) also consists of a lower right arc and a segment of a straight line.
Hence the graphs intersect once, and from (4.28) the coordinates of the intersection are

given by (bFk
1 , bFk

2 ). Thus the subsequences {b(m)
1 } and {b(m)

2 } converge to the corresponding
coordinates of the intersection. In this case, the convergence is taken in finite steps, because
at least one of graphs is a straight line in a neighborhood of the intersection. ♦
Remark 6.1 Our proof of Theorem 4.1 largely depends on the model structure. One may
think it would be possible to make a similar discussion using the matrix structure of the
Markov chain {X(t)} only. It should be, however, noted that our construction of the vector
q exploits transition structures of not only nonboundary cells C(n1, n2), n1, n2 = 1, 2, . . .,
but also boundary cells C(n, 0) and C(0, n), n = 1, 2, . . .. If, for example, the service time
distribution is different from PHk when the number of customers in node k is equal to
1 (requiring a special service, etc.), then our proof has to be changed, though it is expected
that the same upper bound ηk is obtained. In this sense, the study on the effects of transition
structures of boundary cells is remained for future work.

7. Properties of K-, E-, F- and G-sets

In the proofs and discussions of Theorem 4.1 we have postponed the proof of some
properties of sets Ek, Fk, F ′

2 and Gk(bk′). We shall prove them here. We start with examining
precise properties of the curves κ(a1, a2) = 0 (Kloop) and hk(ak) = ak′ defined in (4.10) and
(4.8). The first lemma is related to the curves and straight lines in (4.21) on the (a1, a2)-
plane. Note that the sets K and Kk are defined in (4.22).

Lemma 7.1 The curves and straight lines in (4.21) intersect at the origin (a1, a2) = (0, 0)
and satisfy the following properties:
(i) The region K is convex. The curve κ(a1, a2) = 0 (Kloop) is a loop passing through the

origin.
(ii) Any tangential line of Kloop is tangent to it at a single point. Therefore, for a given

number b, the straight line ak = b either intersects Kloop twice, is tangent to Kloop at a
single point, or does not meet Kloop.

(iii) The straight line ak′ = 0 either intersects with Kloop at two points, one of which is
the origin, or is tangent to Kloop at the origin. (The smaller k-th coordinate of the two
intersections is denoted as b0k.)
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(iv) Either b01 < 0 or b02 < 0.
(v) The curve hk(ak) = ak′ intersects with Kloop twice, at the origin and at a point (bhk

1 , b
hk
2 ).

If rk′k > 0 then both bhk
1 and bhk

2 are negative.
(vi) ak ≤ hk(ak) for any ak < 0, and hence bhk

k ≤ bhk
k′ . The equality holds only when rk′k = 1.

(vii) hk(hk′(ak)) < ak for any ak < 0. Either a1 < h1(a1) for any a1 < 0 or a2 < h2(a2) for
any a2 < 0. Especially, bh1

1 < bh2
1 or bh2

2 < bh1
2 .

Proof It is clear from definitions (4.8) and (4.10) that the curves and straight lines in
(4.21) intersect at the origin. The other properties are proved in the following manner.

(i) From the monotonicity and the convexity/concavity of functions φk, ψk and hk

∂2

∂a2
1

κ(a1, a2) > 0 and

{
∂2

∂a2
1

κ(a1, a2)

}
·
{
∂2

∂a2
2

κ(a1, a2)

}
−
{

∂2

∂a1∂a2

κ(a1, a2)

}2

> 0 (7.1)

on the whole plane. Hence the function κ is strictly convex, and the set K is convex. The
boundedness of K can be proved using (4.6) and (4.9). Since K is convex and bounded,
κ(a1, a2) = 0 forms a loop.

(ii) From the strict convexity of the function κ, the statement follows.
(iii) This is a direct consequence of (ii) with the fact κ(0, 0) = 0.

(iv) Since d
da1
κ(a1, 0)

∣∣∣
a1=0

= −λ1 + µ1 − r21µ2, b
0
1 < 0 if and only if µ1 > λ1 + r21µ2.

Similarly, b02 < 0 if and only if µ2 > λ2+r12µ1. Suppose that b01 ≥ 0. Then from the stability
condition ρ2 < 1 in (2.3) we can easily see that µ2 > λ2 +r12µ1, and this implies that b02 < 0.

(v) It is easily seen that the function κ(a1, h1(a1)) of a1 is strictly convex, and that

κ(0, h1(0)) = 0 and lima1→±∞ κ(a1, h1(a1)) = +∞. Since ρ1 < 1, d
da1
κ(a1, h1(a1))

∣∣∣
a1=0

=

−(λ1 + r21λ2) + (1− r12r21)µ1 > 0. Thus the equation κ(a1, h1(a1)) = 0 has a negative root
bh1
1 other than 0. When rk′k > 0, from the monotonicity of h, it is clear that bh1

2 = h(bh1
1 ) < 0.

(vi) The statements are trivial from the definition of hk in (4.8).
(vii) Since r12r21 < 1 from the stability condition, the second statement is a direct

consequence of (vi). Then the first and the third statements are trivial. ♦
The next lemma is related to the sets K, Kk, Ek and Fk.

Lemma 7.2 E1 and E2 are disjoint. For the sets K1, E1 and F1, the following properties
hold. Similar properties hold for sets K2, E2 and F2.
(i) The infimum b

K(1)
1 of a1 in K is attained at a single point (b

K(1)
1 , b

K(1)
2 ). The infimum

bK1
1 of a1 in K1 is attained at a single point (bK1

1 , bK1
2 ). If b

K(1)
2 ≤ 0, then (bK1

1 , bK1
2 ) =

(b
K(1)
1 , b

K(1)
2 ). If b

K(1)
2 ≥ 0, then (bK1

1 , bK1
2 ) = (b01, 0).

(ii) E1 is the arc of Kloop between points (b01, 0) and (bh1
1 , b

h1
2 ) in the region {(a1, a2) : a1 ≤

a2 ≤ 0}. The end point (bh1
1 , b

h1
2 ) belongs to the set. The other end point (b01, 0) belongs

to the set if and only if b01 < 0.
(iii) The infimum bE1

1 of a1 in E1 is attained at (bh1
1 , b

h1
2 ) or at (bK1

1 , bK1
2 ). If bh1,c

2 ≤ bh1
2 , then

(bE1
1 , b

E1
2 ) = (bh1

1 , b
h1
2 ). If bh1,c

2 ≥ bh1
2 , then (bE1

1 , b
E1
2 ) = (bK1

1 , bK1
2 ).

(iv) If bE1
2 ≥ bh2

2 , then F1 = E1. If bE1
2 ≤ bh2

2 , then F1 is the arc of Kloop between points (b01, 0)

and (bh2,c
1 , bh2

2 ). In the latter case, the end point (bh2,c
1 , bh2

2 ) belongs to F1, but the other
end point (b01, 0) belongs to the set if and only if b01 < 0.

(v) The infimum bF1
1 of a1 in F1 is given by bE1

1 if bE1
2 ≥ bE2

2 , and given by bh2,c
1 if bE1

2 ≤ bE2
2 .

Proof (i) The first statement is a direct consequence of (ii) of Lemma 7.1. If b
K(1)
2 ≤ 0,

then (b
K(1)
1 , b

K(1)
2 ) ∈ K1 and hence (bK1

1 , bK1
2 ) = (b

K(1)
1 , b

K(1)
2 ). If b

K(1)
2 ≥ 0, then (bK1

1 , bK1
2 ) =

(b01, 0) from the convexity of K. Thus the infimum bK1
1 is attained at a single point.
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(ii) The statements are obvious from the definition (4.13) and (vi) of Lemma 7.1.

(iii) We trace the arc E1 from the end point (b01, 0). If b
K(1)
2 ≥ 0, the coordinate a1

increases monotonically and the minimum of a1 in E1 is attained at the starting point (b01, 0)

= (bK1
1 , bK1

2 ). If bK1
2 ≤ 0, from the convexity of K, the point (b

K(1)
1 , b

K(1)
2 ) lies on the left arc

of Kloop between points (bh1
1 , b

h1
2 ) and (bh1

1 , b
h1,c
2 ). If we trace E1 from (b01, 0), the coordinate

a1 decreases first and we eventually reach the minimum point (bK1
1 , bK1

2 ) or the other end
point (bh1

1 , b
h1
2 ). If we reach (bK1

1 , bK1
2 ) first (this occurs when bh1,c

2 ≥ bh1
2 ), the coordinate a1

begins to increase then. Hence the minimum is attained at (bK1
1 , bK1

2 ). If we reach (bh1
1 , b

h1
2 )

first (this occurs when bh1,c
2 ≤ bh1

2 ), the minimum is attained at (bh1
1 , b

h1
2 ).

(iv) The statements are easily led from the definition of F1.
(v) If (bE2

1 , b
E2
2 ) = (bK2

1 , bK2
2 ), then clearly bE1

2 ≥ bK2
2 = bE2

2 . Hence F1 = E1 and bF1
1 = bE1

1 .
On the other hand, if (bE2

1 , b
E2
2 ) = (bh2

1 , b
h2
2 ), we have to compare bE1

2 with bE2
2 = bh2

2 . From the
definition, if bE1

2 ≥ bh2
2 , then F1 = E1 and bF1

1 = bE1
1 . If bE1

2 ≤ bh2
2 , then F1 is the arc between

(b01, 0) and (bh2,c
1 , bh2

2 ), and the infimum is attained at the latter end point.
The fact that E1

⋂ E2 = φ is proved as follows. From (ii) above, Ek is in the region
{(a1, a2) : ak ≤ ak′ ≤ 0}. Further from the definition (4.13) and (vi) of Lemma 7.1, Ek

contains a point (a1, a2) on the line a1 = a2 only when ak = hk(ak) = ak′ , and this may
happen only when rk′k = 1. The stability condition requires that r12r21 < 1. Hence either
E1 or E2 does not contain any points on the line a1 = a2, and they are disjoint. ♦

Now we consider the case r21 = 0. The set F ′
2 was defined in (6.28).

Lemma 7.3 Assume that r21 = 0. Then the following properties hold.
(i) bh1

1 = b01 < 0 and bh1
2 = 0.

(ii) E1 = F1 = {(b01, 0)}, and hence bE1
1 = b01 and bF1

1 = b01.
(iii) F ′

2 consists of points of F2 other than two end points. F ′
2 is nonempty.

Proof (i) We can prove b01 < 0 in a similar manner to the proof of (iv) of the previous
lemma. The equalities bh1

1 = b01 and bh1
2 = 0 are direct consequences of the fact h1(a1) ≡ 0.

(ii) The statement is trivial from the definitions (4.13) and (4.15) and from (i) above.
(iii) The statement is clear from the definitions (4.15) and (6.28). Both bh2

1 and b01 < 0
are negative. Hence the two end points of F2 cannot be identical. ♦

Now we consider the case r21 > 0. To describe the set Gk(bk′) defined in (6.31) concretely,
we introduce notations for coordinates of intersections of the straight line ak′ = bk′ with Kloop.
For a variable bk′ such that bhk

k′ ≤ bk′ < 0, let θk(bk′) and θc
k(bk′) be the k-th coordinates of

the intersections such that θk(bk′) ≤ θc
k(bk′).

Lemma 7.4 Assume that r21 > 0. Then the following properties hold.
(i) If bh1,c

2 > bh1
2 and θc

1(b
h1
2 ) = bh1

1 (this is the case where, when we trace the arc E1 from

the end point (b01, 0), we first meet the point (bK1
1 , bK1

2 ), next meet (b
K(2)
1 , b

K(2)
2 ) and then

finally reach the other end point (bh1
1 , b

h1
2 ) ), for b2 such that bh1

2 < b2 < 0, G1(b2) is
the arc of Kloop between points (b01, 0) and (θ1(b2), b2) contained in E1, for b2 such that

b
K(2)
2 ≤ b2 ≤ bh1

2 , G1(b2) is the union of two arcs, one between (b01, 0) and (θ1(b2), b2) and

one between (θc
1(b2), b2) and (bh1

1 , b
h1
2 ), and for b2 ≤ b

K(2)
2 , G1(b2) is the arc between (b01, 0)

and (bh1
1 , b

h1
2 ) (the same one as E1 except for end points). If bh1,c

2 ≤ bh1
2 or θ1(b

h1
2 ) = bh1

1 ,
for b2 such that bh1

2 < b2 < 0, G1(b2) is the arc of Kloop between points (b01, 0) and
(θ1(b2), b2) contained in E1, and for b2 ≤ bh1

2 , G1(b2) = G1(b
h1
2 ). The set in the latter

case is the arc of Kloop between points (b01, 0) and (bh1
1 , b

h1
2 ) and same as E1 except for

end points. In any case, G1(b2) is nonempty but contains no end points. G2(b1) is given
in a similar manner.
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(ii) χk(bk′) = θk(bk′) if bk′ ≥ bEk
k′ , and χk(bk′) = bEk

k if bk′ ≤ bEk
k′ . Hence the function χk is

negative and continuous. It is strictly increasing in the interval [bEk
k′ , o) and is constant

equal to bEk
k in the interval (−∞, bEk

k′ ]. Further χk(b
Ek
k′ ) = bEk

k and χk(b
Ek′
k′ ) = bFk

k .

Proof (i) The form of Gk given in the statement is clear from the definition (6.31).
(ii) This property is easily derived from (i) above. ♦

8. Proofs of Propositions

Proof of Proposition 4.1 For brevity of discussion, we prove the case r21 > 0. The case
r21 = 0 can be proved in a similar manner. When the system is of Jackson type, i.e. arrivals
are Poissonian and services are exponential, the functions take the following form:

φk(ak) = λk (e−ak − 1) , ψ(ak) = µk (e−ak − 1) , and

ψ(−ak + hk′(ak′)) = µk

(
eak−hk′ (ak′ ) − 1

)
= µke

ak (rkk′e−ak′ + rk0) − µk .
(8.1)

A straightforward calculation shows that

κ(a1, a2) = µ1 (1 − ρ1e
−a1)

(
ea1−h2(a2) − 1

)
+ µ2 (1 − ρ2e

−a2)
(
ea2−h1(a1) − 1

)
. (8.2)

For the intersection (bh1
1 , b

h1
2 ), we substitute h1(a1) for a2 in (8.2). Then

κ(a1, h1(a1)) = µ1

(
1 − ρ1e

−a1

) (
ea1−h2(h1(a1)) − 1

)
= 0. (8.3)

As shown in (vi) of Lemma 7.1, a1 < h2(h1(a1)) when a1 < 0. So the equation has a unique
negative solution a1 = log ρ1. Hence bh1

1 = log ρ1 and bh1
2 = h1(b

h1
1 ) = − log(r21ρ

−1
1 + r20).

Similarly bh2
2 = log ρ2 and bh2

1 = h2(b
h2
2 ) = − log(r12ρ

−1
2 + r10). It is also seen from (8.2) that

the point (a1, a2) = (log ρ1, log ρ2) is on Kloop. It follows that bh1,c
2 = log ρ2 and bh2,c

1 = log ρ1,

and hence bh1,c
2 = bh2

2 and bh2,c
1 = bh1

1 . We shall check four possible cases individually.
(i) When bh1,c

2 ≤ bh1
2 and bh2,c

1 ≤ bh2
1 , we have bh1

2 ≥ bh1,c
2 = bh2

2 and bh2
1 ≥ bh2,c

1 = bh1
1 . This

case corresponds to the first line of the right hand side of (4.29), and (bF1
1 , bF2

2 ) = (bh1
1 , b

h2
2 ) =

(log ρ1, log ρ2).
(ii) When bh1,c

2 ≤ bh1
2 and bh2,c

1 ≥ bh2
1 , we have to compare bK2

1 with bh1
1 . From (i) of

Lemma 7.1 and the condition bh2,c
1 ≥ bh2

1 , we have bh2
1 ≤ bK2

1 ≤ bh2,c
1 = bh1

1 . Hence this case
corresponds to the third line of the right hand side of (4.29), and (bF1

1 , bF2
2 ) = (bh1

1 , b
h1,c
2 ) =

(log ρ1, log ρ2).
(iii) When bh1,c

2 ≥ bh1
2 and bh2,c

1 ≤ bh2
1 , we can use a similar argument to (ii) above by

interchanging the roles of node 1 and node 2. This case corresponds to the fifth line of the
right hand side of (4.29), and (bF1

1 , bF2
2 ) = (log ρ1, log ρ2) again.

(iv) The case bh1,c
2 ≥ bh1

2 and bh2,c
1 ≥ bh2

1 cannot occur since bh1,c
2 = bh1

1 and bh2,c
1 = bh2

2

and, as noted just above Corollary 4.1, the case bh1
2 ≤ bh2

2 and bh2
1 ≤ bh1

1 cannot occur.
Thus, in any of the four cases, we see that (bF1

1 , bF2
2 ) = (log ρ1, log ρ2). ♦

Proof of Proposition 4.2 When r21 = 0, node 1 reduces to an ordinary MAP/PH/1 queue
satisfying the local stability condition ρ1 = λ1/µ1 < 1. In this case h1(a1) ≡ 0, and as shown
in Lemma 7.3, bh1

1 = b01 < 0 and F1 consists of a single point (b01, 0). Hence η1 = exp{b01}.
From (4.23), b01 is a negative solution of the equation κ(a1, 0) = φ1(a1) + ψ1(−a1) = 0.
This equation is equivalent to (1.2) if f(x) and g(y) are replaced with f1(x) and g1(y).
By applying Proposition 9 of Glynn and Whitt [6] to the above equation, we see that
limn→∞ 1

n
log p1(n) = exp{b01}, and η∗1 = exp{b01} = η1. ♦
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Proof of Proposition 4.3 When the system is a two-stage tandem queueing system,
λ2 = 0, r12 = 1 and r21 = 0. Therefore for a tandem queueing system MAP/M/1 → /M/1,
the functions are reduced to h1(a1) = 0, h2(a2) = a2, φ2(a2) = 0, ψ1(a1) = µ1 (e−a1 − 1),
ψ2(a2) = µ2 (e−a2 − 1) and κ(a1, a2) = φ1(a1) + µ1 (ea1−a2 − 1) + µ2 (ea2 − 1). From Propo-
sition 4.2, our upper bound η1 for node 1 coincides with the exact decay rate η∗1. As shown
in Lemma 7.3, the set F1 consists of a single point (b01, 0) and hence bF1

1 = b01. From (4.29),
candidates for bFk

2 are the three numbers, bh2
2 , bK2

2 and bh1,c
2 . First, bh2

2 is a solution of
the equation φ1(a2) + µ2 (ea2 − 1) = 0. Next, bK2

2 is the second coordinate of a solution
(a1, a2) of the pair of equations κ(a1, a2) = φ1(a1) + µ1 (ea1−a2 − 1) + µ2 (ea2 − 1) = 0 and

∂
∂a1
κ(a1, a2) = φ′(a1) + µ1e

a1 = 0. Finally, bh1,c
2 is given by log(µ1η1/µ2).

Ganesh and Anantharam [4] gave the exact decay rates as a solution of a set of equations
for a tandem queueing system GI/M/1 → /M/1. The set of equations there is the same
as the one given here. Hence, our upper bounds coincide with the exact decay rates for
MAP/M/1→/M/1 tandem queue.

Acknowledgments: The authors express their sincere thanks to the editor and anonymous
referees for their helpful comments, which contribute largely to improve the manuscript.

A. List of symbols

(T k,U k), (bk,Sk) : MAPk and PHk representation, and we write σ�
k = −Ske

�

rkj : routing probability (rk0 + rk1 + rk2 = 1, r12 > 0)
Nk(t), Ik(t), Jk(t) : number of customers, phase of MAP, and of PH in node k at time t
N , Ik, Jk : set of positive integers, MAPk’s phase and PHk’s phase
X(t) : Markov chain defined in (2.1)
S : state space of chain {X(t)}
λk, µk : rate of external arrivals to node k, and service rate of node k
ρk : traffic intensity of node k
p(n1, n2)i1,i2,j1,j2 : state probability of {X(t)} in the steady state
p(n1, n2) : joint queue length probability
pk(nk) : marginal queue length probability of node k
C(n1, n2) : Cell(n1, n2), set of states defined in (3.4)
p(n1, n2) : vector of state probabilities corresponding to states in C(n1, n2)
η∗k : decay rate of the marginal queue length distribution of node k defined in (3.3)
ηk : upper bound for η∗k defined in (4.16)
fk : asymptotic LST of the external interarrival times defined in (3.8)
gk : Laplace-Stieltjes transform of PHk

φk, ψk : inverse function of log fk and log gk

ν, νk, νk : vectors defined in (3.12), (3.13) and (3.14) respectively
κ, hk : function defined in (4.10) and (4.8) respectively
Kloop, Ek, Fk, K, Kk, b

Ek
k , bFk

k : sets and numbers defined in (4.12)∼(4.16)

b0k, b
hk,c
k′ , (bhk

1 , b
hk
2 ), (b

K(k)
1 , b

K(k)
2 ), (bKk

1 , bKk
2 ) : numbers and points used for a concrete

representation of ηk in Corollary 4.2
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