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Abstract  We consider a two machine 3 step re-entrant line, with an infinite supply of work. We assume
that processing times are exponentially distributed. We show that this system is stable under LBFS priority
policy.
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1. Introduction

We consider a production system with two machines, and a 3 step production process, where
each part is processed first by machine one for the first step, then by machine two for the
second step, and finally again by machine one for the third step, before leaving the system.
The processing times for each of the 3 steps are independent sequences of independent
identically distributed random variables, with means m; and rates u; = 1/m;, i = 1,2, 3.
This system is the simplest example of a re-entrant line (as defined by Kumar [10]), which
in turn is a special case of a multi-class queueing network (as described by Harrison [8]).
This particular system has previously been studied in [3,5,9, 14].

It is known that if parts arrive at this system in a renewal stream, at rate «, then under
the condition p; = a(my +mg3) < 1, p, = amy < 1 the queues of parts waiting for each step
are stable, and in fact the system is positive Harris recurrent, for any work conserving policy
(Dai and Weiss [5]). It is also known that any re-entrant line with p; = o, m; < 1,
i = 1,...,1 (where the consecutive processing steps are k = 1,..., K, and steps k € C;
are performed at machine i) has stable queues, and is positive Harris recurrent, under the
LBFS (Last Buffer First Served) policy (Kumar and Kumar [11] and Dai and Weiss [5]).

If however the arrival rate « is high enough to equal the bottleneck processing rate,
i.e. max{a(m; + ms),amy} = 1, then the system is not stable: As time increases, the
queue length at some of the buffers will = oco. Thus such a system cannot work at a rate
max{py, po} = 1, without accumulating unbounded queues.

In this note we consider a different situation, which is typical of manufacturing systems.
We assume that there is an infinite supply of work available, so that there are always parts
ready for processing step 1. In that case machine 1 will always be busy. We investigate the
stability of this system under LBFS policy. In particular we show that if m; + mgz > my
then under LBFS policy machine 1 will work all the time (that is we will have p; = 1), but
the queues for steps 2,3 will be stable, and the system will be positive recurrent. This result
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has some practical applications in job-shop scheduling heuristics, for further explanations
and numerical experiments see [12,13, 15].

For simplicity we assume in this note that all the processing times are exponentially
distributed.

2. The Two Machine 3 Buffer Re-entrant Line with Virtual Infinite Queue in
Buffer 1, and with Exponential Processing Times

Our re-entrant line manufacturing system is described schematically in Figure 1. Processing

@\\

machine 1 machine 2

=0

Figure 1: A 2 machine 3 step system, with virtual infinite buffer

times at step i are i.i.d exponentially distributed with mean m;, rate y; = 1/m;, fori =1,2,3
and the three sequences are independent. Without loss of generality we scale time so that
p + po + pz = 1.

There are always parts available for processing of step 1. When parts finish processing
step 1 by machine 1, they queue in buffer 2 where they remain until they are processed by
machine 2 for step 2, and then they move to buffer 3, where they remain until they are
processed by machine 1 for step 3, at which time they leave the system. Each buffer is
processed in FIFO order. Processing is non-idling, that is a machine will always process a
part when there is work. We assume that machine 1 gives preemptive priority to buffer 3:
Whenever there are parts in buffer 3, machine 1 will work on the first of them. When
buffer 3 empties, machine 1 will immediately resume processing of a part in step 1. This is
possible by the assumption that there is an infinite supply of work. We can think of it as
if buffer 1 has an infinite queue of parts waiting for step 1. We call such a buffer a virtual
infinite queue. The queue is virtual because in practice buffer 1 need not contain many
parts, but it needs to be monitored so it will never be empty. If during the processing of
step 1 a part arrives from buffer 2 into buffer 3, machine 1 will preempt its work at buffer 1,
and immediately start processing buffer 3.

Since the processing times are exponential we can describe this system as a discrete
state continuous time Markov jump process, with the state given by the number of parts in
buffers 2,3, denoted ns, ng. The state of the system at time ¢ is X (¢) = (ng, n3),t > 0. The
transition rates of X (¢) are presented in Figure 2. They are:

(ng,n3) — (ng —1,n3+ 1) at rate py, ng >0
(ng,n3) — (n2,n3 —1) at rate p3, mnzg >0 (2.1)
(n2,0) — (ng+1,0) at rate py, ny >0
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Figure 2: Transition rates for the Markovian states of the re-entrant system

The sample paths of this Markov system evolve as follows: Whenever ng = 0 parts are
processed out of buffer 1 and ny increases until machine 2 completes the processing of a part
out of buffer 2, at which time the state is (ny — 1, 1), and machine 1 switches to buffer 3.
While buffer 3 is not empty, parts arrive at buffer 3 from buffer 2 at rate py and depart
out of buffer 3 at rate usz, so buffer 3 behaves like an M/M/1 queue, except that the total
number of arrivals into buffer 3 cannot exceed n,. Thus machine 1 stays at buffer 3 for a
truncated busy period of an M/M/1 queue: either the busy period ends before buffer 2 runs
out of parts, or buffer 2 empties first, and then machine 2 will idle while machine 1 will
complete the processing of all remaining parts in buffer 3. Note that in the latter case the
system will arrive at state (0,0), and the next transition will be to (1,0).

The dependence of the likely behavior of sample paths on the parameters is of interest:

Consider first the case my > my + m3. Jobs can enter buffer 3 out of buffer 2 at a rate
which must be < iy = 1/my. Hence, machine 1 will under LBFS be processing parts out
of buffer 3 at a rate not exceeding ps = 1/ms, and so the long term fraction of time that
machine 1 will be processing buffer 3 will not exceed poms = 2—; Therefore machine 1 will

be processing parts out of buffer 1 a fraction of time > 1 — 7 and so parts will be leaving
buffer 1 and entering buffer 2 at a rate > i (1—72). But piy (1 —72) — pp = #2200 > () if

mso > my+ms. Hence buffer 2 will fill up at a rate > 0. Hence almost surely for each sample
path of the process there will be a finite time after which buffer 2 will never be empty again.
Following that finite time, both buffer 1 and buffer 2 will have unlimited supply of work,
and so both machines 1 and 2 will work all the time. Buffer 3 will behave line an M/M/1
queue with arrival rate us and service rate 3, and machine 1 will work on buffer 1 in the
idle periods of buffer 3. In practice, if ms > m; + m3 we will not let the queue at buffer 2
grow indefinitely. In fact, it will be reasonable to replenish buffer 2 only when it falls below
some threshold Bs. In that case there will be some steady state probability that buffer 2
will fall to 0 before it is replenished, but by increasing B, we can make this probability
arbitrarily small and so make the throughput of the system arbitrarily close to fs.

We will show in this note that the system is stable if my < m; +ms3. We distinguish the
case when msz > msy , the case when my + ms > msy > mg, and the case when my = ms.

Consider first the case ms > my. In that case an M/M/1 queue with input rate o and
service rate 3 is unstable, hence there is a positive probability for each busy period to be
infinite. This probability is a lower bound on the probability that a truncated busy period
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starting with ny will deplete all the ny parts out of buffer 2 before emptying buffer 3. Hence,
there is a positive lower bound on the probability of returning to (0,0) at the end of each
busy period, no matter how many parts are in buffer 2 at the beginning of the busy period.
Hence we have a bound on the expected number of busy periods between visits to (0,0). On
the other hand, because the M/M/1 queue is unstable, the length of a busy period increases
without bound as the initial content of buffer 2, the value of ny at the beginning of the
truncated busy period, increases. So the main issue is to show that the average truncated
busy period has finite expected duration.

Consider next the case my +ms > my > m3. In that case an M/M/1 queue with input
rate o and service rate pg is stable. Hence we have a uniform bound on the expected
duration of each truncated busy period. On the other hand, the probability that a busy
period ends in state (0,0) tends to 0 as the initial level of buffer 2, ny — co. So now the
main issue is to show that the expected number of busy periods between visits to (0,0) is
finite.

Finally, in the case my = mg3 the M/M/1 queue is unstable, with busy periods which
are finite with probability 1, but the expected length of each busy period is infinite. Hence
in this case we do not have a uniform bound on the expected lengths of truncated busy
periods, and we also do not have a lower bound on the probability that a truncated busy
period will end with ny = ng = 0.

In the next Section 3 we give a formal proof of the stability. The proof uses a Lyapunov
function approach for the case m; +ms > my > mg, and uses stochastic domination for the
cases ms > M.

3. Stability of LBFS when m; + m3 > ms.
Our main result in this note is:

Theorem 3.1 Assume that mi+ms > my. Then the Markov jump process X (t) is positive
recurrent.
In the remainder of this Section we prove Theorem 3.1. We first make some preliminary
observations, define several processes and quantities related to X(¢), and introduce some
notation.

To prove that a Markov jump process is positive recurrent we need first to know that
the process is irreducible. That X (¢) is irreducible (i.e. it is possible to go from any state
to any other state in a finite number of steps) is obvious from a quick observation of the
transition rates (2.1) and Figure 2.

We can uniformize our chain to have Poisson events at rate 1. Such an event will with
probability p; be either a completion of the processing of a part in buffer ¢, if a machine is
working on buffer ¢ at the time, or it will be a null event. Denote by N(¢) the rate 1 Poisson
process which counts these uniformized transitions of X ().

Denote by X, s = 0,1,... the discrete time Markov chain of the states after each
jump of the Poisson process N(t). Then X, = X(0), Xy = X(t),t > 0. Note that
Figure 2 describes the transition probabilities of the Markov chain X (since we assumed
p1 + po + ps = 1). The process X has positive probability for a null transition in every
state. Hence it is a-periodic (in addition to being irreducible).

Clearly, X (¢) is positive recurrent if and only if X is positive recurrent.

Consider the visits of X to the set of states R = {(n,0),ny =0,1,2,...}, the states in
which buffer 3 is empty. Let 0 < Sy < 57 < S5 < ... be the times at which X, € R. Let Y}
be the embedded Markov chain defined by Y, = ny if Xg, = (n2,0),k=0,1,2,....
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The transition probabilities of the embedded Markov chain Y}, are given by:

ng — N with probability us,
no — mng+ 1  with probability puq, (3.1)
ne — mng — L with probability ps,

where L is the random number of parts processed in a busy period of an M/M/1 queue,
with arrival rate po and service rate ps, truncated by ny (the total number processed is
< ny).

There are several ways in which one can prove stability, or more precisely positive re-
currence of a discrete state discrete time Markov process; for a recent survey on the topic
see [6].

The first is to solve the balance equations, and check that the solution is positive and
converges to 1. Unfortunately the balance equations of our 2 machine 3 buffers re-entrant
line (as in most multi-class queueing networks) do not seem tractable '.

The second method is to prove that one of the states of the Markov chain is positive
recurrent: An a-periodic irreducible Markov chain is positive recurrent if we can find a single
state such that the expected time to return to it is bounded. More generally, one may be
able to show that a regenerative event happens at time intervals with a finite expectation.

The third method is to use the Foster-Lyapunov criterion (see for example [2,6,7])

Theorem 3.2 (Foster Lyapunov Criterion) Let Z, be a discrete state discrete time a-
periodic irreducible Markov chain. The following condition is sufficient for the chain to be
positive recurrent. There exist a finite set of states Sy, a non-negative function of the states
h, and positive constants B, e such that, conditional on Zy = z:

(i) Forall z € Sy, E,(h(Z,)) < B

(i) For all z ¢ Sy, E,(h(Z1)) — h(z) < —¢

The fourth method is to use stochastic domination: If we can show that the Markov
chain under discussion is dominated in the sense of stochastic ordering by a process which
is positive recurrent then the chain under discussion must also be recurrent.

A very powerful fifth method has been developed recently by Dai [4], to prove positive
Harris recurrence of multi-class queueing networks under given policy. Dai’s theorem states
that a multi-class queueing network is stable under a given policy (i.e. the general state-
apace Markov process which describes the behavior of the network under the policy is
positive Harris recurrent) if the corresponding fluid limit model of the multi-class network
under the policy is stable. Unfortunately, Dai’s theorem does not apply directly to our
network: Dai’s theorem assumes i.i.d. interarrival times, whereas in our network arrivals
occur only when buffer 3 is empty.

In our proof now we will use the Foster-Lyapunov criterion directly on Xy in the case
my > my, we will use the Foster-Lyapunov criterion on the embedded chain Y in the case
my + ms > mo > ma. Finally, we will use stochastic domination to show that the state
X(t) = (0,0) is positive recurrent for ms > mq. We also give a more direct proof that the
state X (t) = (0,0) is positive recurrent for mg > ms.

3.1. Proof of positive recurrence in the case m; > m»

This case is in fact covered by the subsequent two cases, but we discuss it separately because
it is much simpler. In this case we show that X is positive recurrent by the use of the Foster-

'Recently Adan and Weiss [1] have obtained a closed form formula for the steady state distribution
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Lyapunov criterion, where we take the set of states Sy = {(0,0)} and the linear Lyapunov
function h(nsg, ng) = 2ming + (my — ma)ns.

Clearly, Eq o) (h(X;)) = 2 is finite.

Conditional on the initial state zo = (n2,n3) # (0,0) we calculate:

_mitme _ mi—ms ns > 0

Esy (h(X1)) — h(z) = { _ (Z_ ~1) "

m2

n3:0,n2>0

Since this is less than a negative constant, the chain is positive recurrent.
It is easy to see that if m; < msy no function of the form h(ns,n3) = any + bns can serve
as a Lyapunov function for the process.

3.2. Proof of positive recurrence in the case m; + ms > my > ms

In this case the M/M/1 queue with arrival rates p5 and processing rate ug is stable. Hence
a busy period of this queue will serve a finite number of parts and last for a finite time. In
fact the expected number of parts to be served in a busy period is mz—m, and its expected
duration is ;%% (see for example textbook of Wolff [16]). An actual excursion of X (t)
away from R, starting from (ny —1,1), consists of such a busy period truncated by the total
number of arrivals < ny. Hence the expected length of time for X (¢) or X, to return to R
is bounded by ”’L’;ngg

Since the excursions away from the set of states R have expected duration bounded by
a constant, it follows that X, and X(¢) are positive recurrent if and only if Y; is positive
recurrent.

We now show that Y; is positive recurrent. We use the Lyapunov function h(ny) = na.

We have, for g = ns:
E,, (h(Y1)) — h(yo) = 11 — poE(number served in the truncated busy period)

But if ns is taken large enough then the truncated busy period will with high probability
equal an ordinary busy period, and the expected number of parts processed in the truncated

busy period will be arbitrarily close to m— We now choose § > 0 small enough, we then
choose ny large enough, and we define Sy = {0 1,...,mns}, so that for any yo & Sy we have:
mo mo — MMy — M3
h(Y1)) — h <l —pp——+6 = 0 < 0.
EyO( ( 1)) (y[]) = M2m2 — ms + ml(mZ - m3) *

On the other hand, for all yo € Sy
Ey, (h(Y1)) <yo+1<np+ 1.

This shows that Y is positive recurrent.
3.3. Dominance as msy increases, and proof for the case ms3 > my

Define the departure processes from the three buffers, D;(t) is the number of departures
from buffer i, for i = 1,2, 3 over the time period (0, ], so that the buffer levels are X;(t) =
Xi(0) + D;—1(t) — D;(t),i = 2,3. Let 7, = inf{t > 0 : X(¢) = (0,0)|X(0) = x}, be the
time to return to an empty system, state (0,0), from initial state x, and in particular let
To = T(1,0)- Note that in state (0,0) only buffer 1 is being processed, and the system always
transits to state (1,0) after a time ~ exp(p;). Hence 7y is the time to return to state (0,0)
measured from the instant that the process leaves state (0,0). To show that the system is
positive recurrent it is enough to show that E(7y) < oc.

(© Operations Research Society of Japan JORSJ (2004) 47-4
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We consider two systems as above, with parameters my, 1y, ms and mq, ms, ms respec-
tively. We shall distinguish quantities related to the two different system by superscribing
them with * or ©. We denote by >g¢r stochastic dominance (X >57 Vit P(X > z) >
P(Y > z) for all ). The following Proposition examines the effect of a change in msy on the
behavior of the process.

Proposition 3.1 Consider the two systems with )1(2(0) = X5(0) = x2 > 0 and )1(3(0) =
XQ(O) = I3. ]f Tflg > Tflg then 7:5,;2,1;3 25’T 711'2,:1:3

Proof. We do the proof by constructing coupled sample paths for both systems, in which
the required inequalities hold almost surely. This implies stochastic dominance.

Both systems start in the same state x = (z2,23) with o > 0. We generate the
sequences of processing times for successive parts at buffers 1,2,3 as follows: The sequences
of processing times at buffers 1 and 3 are the same for both systems. Processing times
for buffer 2 at both systems are generated as a sequence of exponential processing times
of rate yio. Each of these processing times completes a job and results in a departure from
buffer 2 in system >, while in the system - it only results in a departure with probability [l / [z

We consider the times before buffer 2 empties in either of the two systems, i.e. {t :

Xy(s) > 0,X5(s) > 0,0 < s < t}. Since buffer 2 in both systems is not empty until time ¢,
processing at buffer 2 proceeds for the full duration ¢ at both systems. Because buffer 2
processing times are longer (>) in system - we have Dy(t) < Ds(t) for every sample path.
Since departures out of buffer 2 occur earlier in system * than in system -, each part is
available for processing in buffer 3 in system * earlier than in system -. Hence (recalling
that buffer 3 has preemptive priority over buffer 1) parts start their processing earlier in

system *. This implies that Ds(t) < Ds(t) for every sample path. Finally, since system ~
devotes more time to buffer 3 than system -, all the remaining time, which is devoted to
buffer 1, is less in system * than in system -. Hence: bl(t) > D (t) for every sample path.
 We now have: X,(t) = @y + Dy(t) — Dy(t) > 2(0) + Di(t) — Do(t) = X,(t), and
Xo(t) + Xs(t) = g + x5 + Dy (t) — Ds(t) > x5 + x5 + Dy (t) — Ds(t) = Xo(t) + Xs(t) for

every sample path, as long as X5(s) > 0,0 < s < ¢. Of course for such ¢ we also have that
Xy(s) > 0,0 < s < t, since Xo(s) > Xo(s). But this implies that 7, > 7, for every sample
path. m

We have shown that our system is stable for average processing times m; + ms > ﬁlg >
ms. Hence for such a system E(7() < oo. Consider now ms > ry. By Proposition 3.1 we
have 7o >gr 7. Hence, E(7)) < (7() < oo. This proves positive recurrence for ms > 1.

3.4. Alternative proof of positive recurrence in the case ms > m,

We provide an alternative direct proof of the positive recurrence in the case mz > msy. This
proof is less elegant but more direct. It is of interest because it provides some estimates
on the recurrence time. In the case that ms > mgy the M/M/1 queue with arrival rate ps
and service rate pg is unstable. For such an unstable M/M/1 queue, any busy period has a
positive probability ¢, = 1 — Z—z of serving an infinite number of customers, and of being
non-ending (see for example textbook of Wolff [16]). Since an excursion of the process X (t)
away from R, which starts from a first state (ny — 1,1), will consist of a truncated busy
period, the probability that all ny jobs will be served in the truncated busy period is > .
But in that case, the state in R to which X (¢) will return will be (0,0).

This proves that 0 is a positive recurrent state of the chain Y, since it can be reached
from every state ns in a single step, with a probability > psq.. Hence Y; is a positive

(© Operations Research Society of Japan JORSJ (2004) 47-4



Sability of a Smple Re-Entrant Lineat p = 1 311

recurrent chain. It also follows that X, and X () are recurrent.

To show that X, and X () are positive recurrent, we need however to show that (0, 0) is
positive recurrent for X, and X (¢). Let "= min{t : ¢t > 0, X (t—) # (0,0), X (¢) = (0,0)} be
the first return time to (0,0). We need to find an upper bound on the expected return time
conditional on starting from (0,0), Eoo(7T) = E(T|X(0) = (0,0)). Following X (0) = (0,0)
the process jumps to X(7Tp) = (1,0) after time Ty ~ exp(uy). Hence Eoo(T) = E(Tp) +
E(T|X(0) = (1,0)) = my + E; o(7T"). Hence, we wish to find an upper bound on E; o (7).

Starting from (1,0) consider the joint sample paths of the three processes, X (t), X, Y%
over 0 <t < T. They start at X (0) = (1,0), Xo = (1,0), Yy = 1. Thereafter X (t) = Xy #
(0,0), 0 < t < T while X(T) = Xn(r) = (0,0). Outof s =0,1,...,N(T),let 0 = Sy < S; <
.-+ < Sg = N(T) be the discrete times at which X, € R, that is X5, = (Y},0),k=1,..., K,
withYy =1, Y, >0,k=2,...,K—1, Ygx =0. Define 7,75, ..., 7x as the durations which
satisfy N(my +-+-+7,—) < Sk, N(m+---+7) =Sk, k=1,..., K. Then 7,75, ..., T are
the durations between the times of jumps of N(¢) which take X (¢) into R or which leave
X(t)in R. Clearly, 1,79, ..., Tk sum up to the return time 7" (conditional on X (0) = (1,0)).

Each random variables 7, consists of a single Poisson interval, plus with probability s
a busy period of the M/M/1 queue truncated by Y, ;.

We are now ready to estimate E; o(7'):

]ELO(]U :fE(Tl%-TQ4—"'+‘TK|}6 ::1)

= E (ZlKZkTHYO = 1)

k=1

P(K > k|Yo = D)E(r | K >k, Yo = 1)

[
NE

=
Il
—_

[l
I

P(K>k|Yo=1)) PYi1=y|K >k Yo=1E(r|Ysi1=y, K>k Yo =1)

y>0

but K

v

k<Y >0,...,Y,1 >0, and 7|Ys_; is independent of Y7, ..., Y, o, hence:

SR 2 k|Yo = 1) By =y K > b, Y= 1)B(re | Yis =)

k=1 y>0

We now use the following facts:

(i) The probability that 75 includes a busy period is pe. If a busy period starts then it
will deplete buffer 2 and lead to state (0,0) with a probability which exceeds 1 — e
Therefore, P(Yy, > 0 Yy—1 > 0) <1 —pp(1 — 72) =1 — (p2 — p13). Hence:

P(K > k) < (1— (u2 — p3))* "

(ii) It is always the case that Y, < Y, 141, with equality only if a part completes processing
at buffer 1 (which happens with probability ). Therefore Y; < k + 1.

(iii) The expected length of a busy period of the M/M /1 queue truncated at y input parts is
no more than the expected sum of the processing times of all the parts by both machines,
that is: mo(y — 1) + mgay. 7 includes a busy period with probability po. Hence:

Mo + M3

E(mg | Yicr = vy) < 14 pa(mo(y —1) +may) =y -
2
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we therefore get:

E, o(T)
= Y PK>k|Yo=1)> PYi1=y|K >k Yo=1E(r|Yi1=y)
k=1 y>0
00 k
k-1 o . mg + mg
< Z(l—(w—%)) ZP(YkA—WKZk,Yo—l) A
k=1 y=1
= _ me +m
< Z (1= (2 —ps)" ™" b
k=1 ma
L
(k2 — p3)? 3

This completes the proof.
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