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Abstract This paper presents an overview of stochastic stability methods, mostly motivated by (but not
limited to) stochastic network applications. We work with stochastic recursive sequences, and, in particular,
Markov chains in a general Polish state space. We discuss, and frequently compare, methods based on (i)
Lyapunov functions, (ii) fluid limits, (iii) explicit coupling (renovating events and Harris chains), and (iv)
monotonicity. We also discuss existence of stationary solutions and instability methods. The paper focuses
on methods and uses examples only to exemplify the theory. Proofs are given insofar as they contain some
new, unpublished, elements, or are necessary for the logical reading of this exposition.

Keywords: Applied probability, stability, ergodicity, coupling, stationary processes,
Markov chains, Harris chains, stochastic networks, stochastic recursive sequences, Lya-
punov functions

1. Introduction

Our goal in this paper is to summarize some important methods used in deciding the stability
of a stochastic system. We are principally concerned with those methods that are applicable
to stochastic networks. However, many of them can be useful in stochastic dynamical
systems, beyond the realm of queueing theory. These systems include, but are not limited to,
iterated random functions, Markov chains, simulation algorithms, and stochastic nonlinear
systems.

The area of stability, even in classical dynamical systems, has largely been driven by
phenomena discovered in specific models (e.g., specific differential equations). Attempts to
unify the observations have created stability “theories” which, in their turn, have found
applications in systems other than the ones originally designed for. We observe the same
trend in the area of stability in stochastic systems of applied probability. Queueing theory
(stochastic networks) in particular, has led to important techniques which only now appear
to be finding a solid place in the mathematics literature.

In writing this paper, we had to make several choices. Choosing to present methods
rather than models was our first choice (compromise). Our second choice was to limit
the presentation mostly to discrete-time systems, mainly to avoid technical complications,
but also because our target applications can often be described (at least as regards their
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276 S. Foss & T. Konstantopoulos

question of stability) by stochastic recursive sequences (abbreviated SRS henceforth). An
exception to this are the fluid approximation methods which can be stated in continuous
time but proved by a discrete-time embedding. Also, we were forced to make injustice to
many excellent research papers written in the field, because, due to space limitations, we
could not include a complete or extensive bibliographical survey. So, our third choice was
to deal with this problem by making the greatest possible injustice: we basically limit to
research books and monographs, especially recent ones, and quote only the very few papers
that contain parts of the proofs exposed here, and which we cannot fully complete due to
space limitations. In a sense, we are referring to many research papers through the books
and monographs cited here.

Some comments about the level/method of exposition: first of all, we give emphasis
to the most general (in our opinion) methods and stress recent results. In particular, we
survey, sometimes quite briefly, some research results of ours. Second, we present proofs
only if they contain new (unpublished) elements in them or are necessary for the readability
of the paper. Third, we present results that can be easily used and read without a full
background in the area. Fourth, our discussion between theorems also contains material
that should be considered as an integral part of our paper; however, we decided not to call
them, formally, theorems, because they may contain ideas that need a lot of space for their
rigorous proof/exposition.

Just as in classical deterministic dynamical systems (or, perhaps, worse yet) there are
many notions of stability and instability. So the reader who will search for our definition of
stability in this paper will not find it. This is on purpose: we use stability as idea, rather
than as precise mathematical definition. For instance, at the level of Markov chains, stability
may mean weak convergence to a stationary distribution, starting from a specific state, or
starting from any state. It could also mean convergence over subsequences. But it could
also mean “strong” convergence, due to coupling. It is true that, in concrete situations,
the above may coincide, but there are important classes of systems for which the notions
are and should be distinct. On the other hand, many stochastic systems of interest lack
the Markovian property.1 We give emphasis to SRS, i.e., to systems recursively defined by
Xn+1 = f(Xn, ξn), where {ξn} is a stationary (and often ergodic) sequence and f a certain
deterministic function. If the {ξn} are i.i.d., then {Xn} is Markov. On the other hand, any
Markov chain in a Polish space (or, more generally, in a measurable space with a countably-
generated σ-field) can be represented as a SRS; see Kifer [24]. To ask whether the SRS
is stable, in its strongest form, is to ask whether its solution, starting, say, from a specific
state converges to a stationary one; namely, there is a stationary process {X̃n} such that the
entire future (Xn, Xn+1, . . .) after an index n, converges, in total variation, to (X̃0, X̃1, . . .);
this stationary process satisfies the SRS. We may call this stationary process, the stationary
version of {Xn} but not always “the stationary solution of the SRS”. A stationary solution
of the SRS is a stationary process which satisfies the SRS. Clearly, such a stationary process
may not be unique. If it is, then it can be called “the stationary solution of the SRS”.
As will be seen in Section 4 this distinction is oftentimes cast as the distinction between
Harris theory and renovation theory: the former deals with the totality of the solutions of
a Markovian SRS; the latter deals with a solution of an SRS.

Examples of SRS include: (i) The famous single-server queue, as represented by the
Lindley recursion Wn+1 = (Wn + σn − τn)+, where {σn}, {τn} are sequences of service,
interarrival times, respectively; they should be assumed to be jointly stationary and ergodic;

1But even if they possess it, using it in order to prove stability may be a hindrance rather than an aid.

c© Operations Research Society of Japan JORSJ (2004) 47-4



Stochastic Stability Methods 277

see [5]. (ii) A multiclass queueing network, whose recursion, of a rather daunting form, will
not be written here; but see Section 3. (iii) A linear system Xn+1 = AnXn +Bn, in R

d, with
{An, Bn} being a stationary-ergodic sequence of matrices of appropriate dimensions. (iv)
Iterates of a deterministic function: Xn+1 = f(Xn); even one-dimensional such functions are
of interest to researchers in nonlinear systems (Lasota and Mackey [25]; Boyarski and Góra
[10]); indeed, the existence of a non-trivial probability measure that is invariant under f
and stability of the above recursion describe the “statistical properties” of the deterministic
system. (v) Iterated random functions–another word for a Markovian SRS when emphasis
is given to choosing a function fθ, depending on a parameter θ, by randomly selecting θ
according to a probability measure µ living on a parameter space Θ. This is the statistician’s
description of a Markovian SRS; see Diaconis and Freedman [16] for a survey of this area.
(vi) SRS with nonstationary {ξn} are of interest, e.g., in adaptive estimation and control.
Stochastic approximations are typical applications. In such cases, a.s. convergence is also
a notion of stability that makes sense; see, e.g., Duflo [17]; we shall not be concerned with
these models in the present paper.

The first set of stability methods deals with Lyapunov functions (Section 2). In it, we
present the proof of the most complete, to-date theorem, that deals with state-dependent
drift criteria for a general state-space Markov chain. Section 3 deals with fluid approximation
methods. Starting with a paper by Rybko and Stolyar [35], generalized in a paper of Dai [15],
they have nowadays become a de facto “intuitive” set of criteria for stability. We show how
their proof can be derived from the Lyapunov function methods with state-dependent drift
and exemplify the technique in a multiclass queue and in Jackson-type networks. Section
4 deals with explicit coupling methods. These include renovation theory and Harris chains.
Both subjects, as well as their relationships, are discussed. Section 5 deals entirely with
the stationarity problem, i.e., that of existence of a stationary solution to a SRS. In fact,
it focuses on a technique that is not based on regeneration. Section 6 studies monotone
recursions, like the ones that were presented in what is thought of as the grandfather of
stochastic stability for queues, i.e., the paper by Loynes [28]. Section 7 gives some recent
results on instability methods based on Lyapunov functions. Finally, a few remarks on
other methods are also presented. The reader should note that related questions, such
as convergence rates and continuity, while natural consequences of some of the methods
presented here, are not in fact studied in this paper.

2. Lyapunov Function Methods

Let {Xn} be a time-homogeneous2 Markov chain in some Polish space X . Let V : X → R+

be a measurable function that is to be interpreted as a “norm”, “Lyapunov” or “energy”
function. We adopt the the standard notation Px(A) = P (A|X0 = x), and ExY stands for
expectation with respect to Px. The drift of V under the Markov chain X in n time units
is the function x �→ Ex[V (Xn) − V (X0)]. Suppose that g : X → N is another measurable
function that is to be interpreted as a state-dependent time. The drift of V in g(x) steps is
the function

x �→ Ex[V (Xg(x)) − V (X0)].

Finally, let h : X → R be a third measurable function such that −h will provide an estimate
on the size of the drift, in g(x) steps. In order for the theorem below to be of any use at all,
we must assume that supx V (x) = ∞, and we shall do so everywhere in this paper. Assume
that:

2Time-inhomogenous Markov chains can also be treated in a similar way, but more conditions are needed.
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(L1) h is bounded below: infx∈X h(x) > −∞.

(L2) h is eventually positive3: limV (x)→∞ h(x) > 0.

(L3) g is locally bounded above: supV (x)≤N g(x) <∞, for all N > 0.

(L4) g is eventually bounded by h: limV (x)→∞ g(x)/h(x) <∞.
For a measurable set B ⊆ X define τB = inf{n > 0 : Xn ∈ B} to be the first return time4

to B. The set B is called recurrent if Px(τB < ∞) = 1 for all x ∈ B. It is called positive
recurrent if supx∈B ExτB < ∞. It is this last property that is determined by a suitably
designed Lyapunov function. This is the content of Theorem 1 below. That this property
can be translated into a stability statement is the subject of later sections.
Theorem 1. Suppose that the drift of V in g(x) steps satisfies the “drift condition”

Ex[V (Xg(x)) − V (X0)] ≤ −h(x),
where V, g, h satisfy (L1)–(L4). Let

τ ≡ τN = inf{n > 0 : V (Xn) ≤ N}.
Then there exists N0 > 0, such that for all N > N0 and any x ∈ X , we have Exτ < ∞.
Also, supV (x)≤N Exτ <∞.

Proof. We follow an idea that is essentially due to Tweedie [38]. From the drift condition, we
obviously have that V (x) − h(x) ≥ 0 for all x. We choose N0 such that infV (x)>N0 h(x) > 0
and supV (x)>N0

g(x)/h(x) <∞. Then, for N ≥ N0, h(x) strictly positive, and we set

d = sup
V (x)>N

g(x)/h(x).

Then 0 < d <∞ as follows from (L2) and (L4). We also let

−H = inf
x∈X

h(x),

and H < ∞, from (L1). We define an increasing sequence tn of stopping times recursively
by

t0 = 0, tn = tn−1 + g(Xtn−1), n ≥ 1.

By the strong Markov property, the variables

Yn = Xtn

form a (possibly time-inhomogeneous) Markov chain with, as easily proved by induction on
n, ExV (Yn+1) ≤ ExV (Yn) +H, and so ExV (Yn) < ∞ for all n and x. Define the stopping
time

γ = inf{n ≥ 1 : V (Yn) ≤ N} ≤ ∞.

Observe that
τ ≤ tγ, a.s.

3The slightly unconventional notation used here is defined by limV (x)→∞ h(x) = supK>0 infx:V (x)>K h(x).
Also, limV (x)→∞ h(x) = − limV (x)→∞ −h(x). The notation is used regardless of whether V is a norm or
not.
4This τB is a random variable. Were we working in continuous time, this would not, in general, be true,
unless the paths of X and the set B were sufficiently “nice” (an instance of what technical complexities may
arise in a continuous-time setup).
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Let Fn be the sigma field generated by Y0, . . . , Yn. Note that γ is a predictable stopping
time in that 1(γ ≥ i) ∈ Fi−1 for all i. We define the “cumulative energy” between 0 and
γ ∧ n by

En =

γ∧n∑
i=0

V (Yi) =
n∑

i=0

V (Yi)1(γ ≥ i),

and estimate the change Ex(En − E0) (which is finite) in a “martingale fashion”:5

Ex(En − E0) = Ex

n∑
i=1

Ex(V (Yi)1(γ ≥ i) | Fi−1)

= Ex

n∑
i=1

1(γ ≥ i)Ex(V (Yi) | Fi−1)

≤ Ex

n∑
i=1

1(γ ≥ i)Ex(V (Yi−1) − h(Yi−1) | Fi−1)

≤ Ex

n+1∑
i=1

1(γ ≥ i− 1)Ex(V (Yi−1) − h(Yi−1) | Fi−1)

= ExEn − Ex

n∑
i=0

h(Yi)1(γ ≥ i),

where we used that V (x) − h(x) ≥ 0 and, for the last inequality, we also used 1(γ ≥ i) ≤
1(γ ≥ i− 1) and replaced n by n+ 1. From this we obtain

Ex

n∑
i=0

h(Yi)1(γ ≥ i) ≤ ExV (X0) = V (x). (1)

Assume V (x) > N . Then V (Yi) > N for i < γ, by the definition of γ, and so

h(Yi) ≥ d−1g(Yi) > 0, for i < γ, (2)

by the definition of d. Also,
h(Yi) ≥ −H, for all i, (3)

by the definition of H. Using (2) and (3) in (1) we obtain:

V (x) ≥ Ex

n∑
i=0

h(Yi)1(γ > i) + Ex

n∑
i=0

h(Yi)1(γ = i)

≥ d−1Ex

(γ−1)∧n∑
i=0

g(Yi) −HPx(γ ≤ n),

Recall that g(Y0) + · · · + g(Yk) = tk+1, and so the above gives:

V (x) ≥ d−1Extγ∧(n+1) −HPx(γ ≤ n).

Now take limits as n→ ∞ (both relevant sequences are increasing in n) and obtain that

Extγ ≤ V (x) +H

d
.

5albeit we do not make use of explicit martingale theorems
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It remains to see what happens if V (x) ≤ N . By conditioning on Y1, we have

Exτ ≤ g(x) + Ex(EY1τ1(V (Y1 > N))

≤ g(x) + Ex(d
−1(V (Y1) +H)1(V (Y1) > N))

≤ g(x) + d−1H + d−1(V (x) +H).

Hence,

sup
V (x)≤N

Exτ ≤ sup
V (x)≤N

g(x) + d−1(2H +N),

where the latter is a finite constant, by assumption (L3).

Discussion: The theorem we just proved shows something quite strong about the set
BN = {x ∈ X : V (x) ≤ N}. Namely, this set is positive recurrent. It is worth seeing
that the theorem is a generalization of many more standard methods. When g(x) = 1 and
h(x) = ε−C11(V (x) ≤ C2), we have the classical Foster-Lyapunov criterion [22]. (This, in
the particular case when X = Z is often called Pakes’ lemma [32].) Equivalently, the Foster-
Lyapunov criterion seeks a function V such that Ex(V (X1) − V (X0)) ≤ −ε < 0, when
V (x) > C2, and supV (x)≤C2

ExV (X1) < ∞. When g(x) = �V (x)� (where �t� = inf{n ∈
N : t ≤ n}, t > 0), and h(x) = εV (x)−C11(V (x) ≤ C2), we have Dai’s criterion [15] which
is the same as the “fluid limits” criterion. (See Section 3 for a further development of this.)
Finally, when h(x) = g(x)−C11(V (x) ≤ C2) we have the Meyn-Tweedie criterion [30]. The
reader may also consult the monograph by Fayolle, Malyshev and Menshikov [18].

Observe that we never required the set {x : V (x) ≤ N} to be “small” (in the sense that
it is a finite or a compact set). Of course, if we are interested in stability, we must arrange
that we prove that compact sets are positive recurrent, but the theorem above can be used
to ensure that non-compact sets are positive recurrent. There are applications where one
might, e.g., want to show that a half-space is positive recurrent.

Remark: condition (L4) is not only a technical condition. Its indispensability can be seen
in the following simple example: Consider X = N, and transition probabilities

p1,1 = 1, pk,k+1 ≡ pk, pk,1 = 1 − pk ≡ qk, k = 2, 3, . . . ,

where 0 < pk < 1 for all k ≥ 2 and pk → 1, as k → ∞. Thus, jumps are either of size +1 or
−k, till the first time state 1 is hit. Assume, for instance, qk = 1/k, k ≥ 2. Then, starting
with X0 = 2, we have P (τ = n) = 1/(n + 1)n, n = 1, 2, . . .. So Eτ = ∞. Therefore the
Markov chain cannot be positive recurrent. Take now

V (k) = log(1 ∨ log k), g(k) = k2.

We can estimate the drift and find

Ek[V (Xg(k)) − V (k)] ≤ −h(k), (4)

where h(k) = c1V (k) − c2, and c1, c2 are positive constants. It is easily seen that (L1)-
(L3) hold, but (L4) fails. This makes Theorem 1 inapplicable in spite of the negative drift
(4). Physically, the time horizon g(k) over which the drift was computed is far too large
compared to the estimate h(k) for the size of the drift itself.
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3. Fluid Approximation Methods

In this section, we give essentially an application of Lyapunov methods to the so-called
stability via fluid limits, a technique which became popular in the 90’s. Roughly speaking,
fluid approximation refers to a functional law of large numbers which can be formulated for
large classes of Markovian and non-Markovian systems. Instead of trying to formulate the
technique very generally, we focus on a quite important class of stochastic models, namely,
multiclass networks. For statements and proofs of the functional approximation theorems
used here, the reader may consult the texts of Chen and Yao [13], Whitt [39] and references
therein.

3.1. Exemplifying the technique in a simple case

To exemplify the technique we start with a GI/GI/1 queue with general non-idling, work-
conserving, non-preemptive service discipline6, with arrival rate λ and service rate µ. Let
Q(t), χ(t), ψ(t) be, respectively, the number of customers in the system, remaining service
time of customer at the server (if any), and remaining interarrival time, at time t. The three
quantities, together, form a Markov process (in continuous time). We will scale the whole
process by

N = Q(0) + χ(0) + ψ(0).

Although it is tempting, based on a functional law of large numbers (FLLN), to assert that
Q(Nt)/N has a limit, as N → ∞, this is not quite right, unless we specify how the individual
constituents of N behave. So, we assume that7

Q(0) ∼ c1N, χ(0) ∼ c2N, ψ(0) ∼ c3N, as N → ∞,

where c1, c2, c3 > 0, with c1 + c2 + c3 = 1. Then

Q(Nt)

N
→ Q(t), as N → ∞,

uniformly on compact8 sets of t, a.s., i.e.,

lim
N→∞

P ( sup
0≤t≤T

|Q(kt)/k −Q(t)| > ε, for some k > N) = 0, for all T, ε > 0.

The function Q is defined by:

Q(t) =



c1, t < c3

c1 + λ(t− c3), c3 ≤ t < c2

(c1 + λ(c2 − c3) + (λ− µ)(t− c2))
+, t ≥ c2

, if c3 ≤ c2,

Q(t) =



c1, t < c2

(c1 − µ(t− c2))
+, c2 ≤ t < c3

((c1 − µ(c3 − c2))
+ + (λ− µ)(t− c3))

+, t ≥ c3

, if c2 < c3.

It is clear that Q(t) is the difference between two piecewise linear, increasing, functions. We
shall not prove this statement here, because it is more than what we need: indeed, as will

6This means that when a customer arrives at the server with σ units of work, then the server works with
the customer without interruption, and it takes precisely σ time units for the customer to leave.
7Hence, strictly speaking, we should introduce an extra index N to denote this dependence, i.e., write
Q(N)(t) in lieu of Q(t), but, to save space, we shall not do so.
8We abbreviate this as “u.o.c.”; it is the convergence also known as compact convergence.
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be seen later, the full functional law of large numbers tells a more detailed story; all we
need is the fact that there is a t0 > 0 that does not depend on the ci, so that Q(t) = 0 for
all t > t0, provided we assume that λ < µ. This can be checked directly from the formula
for Q. (On the other hand, if λ > µ, then Q(t) → ∞, as t → ∞.) To translate this FLLN
into a Lyapunov function criterion, we use an embedding technique: we sample the process
at the n-th arrival epoch Tn. (We take T0 = 0.) It is clear that now we can omit the state
component ψ, because

Xn := (Qn, χn) := (Q(Tn), χ(Tn))

is a Markov chain with state space X = Z+ × R+. Using another FLLN for the random
walk Tn, namely,

T[Nλt]

N
→ t, as N → ∞, u.o.c., a.s.,

we obtain, using the usual method via the continuity of the composition mapping,

Q[Nλt]

N
→ (1 + (λ− µ)t)+, as N → ∞, u.o.c., a.s..

Under the stability condition λ < µ and a uniform integrability (which shall be proved
below–see the proof of Theorem 2) of Q[Nλt]/N, χ[Nλt]/N , N ∈ N, we have:

EQ[Nλt]

N
→ 0,

Eχ[Nλt]

N
→ 0, as N → ∞, for t ≥ t0.

In particular there is N0, so that EQ[2Nλt0] + Eχ[2Nλt0] ≤ N/2 for all N > N0. Also, the
same uniform integrability condition, allows us to find a constant C such that EQ[2Nλt0] +
Eχ[2Nλt0] ≤ C for all N ≤ N0. To translate this into the language of a Lyapunov criterion,
let x = (q, χ) denote a generic element of X , and consider the functions

V (q, χ) = q + χ, g(q, χ) = 2(q + χ)λt0, h(q, χ) = (1/2)(q + χ) − C1(q + χ ≤ N0).

The last two inequalities can then be written as Ex(V (Xg(x))− V (X0)) ≤ −h(x), x ∈ X . It
is easy to see that the function V, g, h satisfy (L1)-(L4). Thus Theorem 1 shows that the
set {x ∈ X : V (x) = q + χ ≤ N0} is positive recurrent.

3.2. Fluid limit stability criterion for multiclass queueing networks

We now pass on to multiclass queueing networks. Rybko and Stolyar [35] first applied the
method to a two-station, two-class network. Dai [15] generalized the method and his paper
established and popularized it.

Meanwhile, it became clear that the natural stability conditions 9 may not be sufficient
for stability and several examples were devised to exemplify this phenomena; see, e.g., the
paper by Bramson [11] which gives an example of a multiclass network which is unstable un-
der the natural stability conditions, albeit operating under the “simplest” possible discipline
(FIFO).

To describe a multiclass queueing network, we let {1, . . . , K} be a set of customer classes
and {1, . . . , J} a set of stations. Each station j is a single-server service facility that serves
customers from the set of classes c(j) according to a non-idling, work-conserving, non-
preemptive, but otherwise general, service discipline. It is assumed that c(j) ∩ c(i) = ∅ if

9By the term “natural stability conditions” in a work-conserving, non-idling, queueing network we refer to
the condition that says that the rate at which work is brought into a node is less than the processing rate.
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i �= j. There is a single arrival stream10, denoted by A(t), which is the counting process of
a renewal process, viz.,

A(t) = 1(ψ(0) ≤ t) +
∑
n≥1

1(ψ(0) + Tn ≤ t),

where Tn = ξ1+· · ·+ξn, n ∈ N, and the {ξn} are i.i.d. positive r.v.’s with Eξ1 = λ−1 ∈ (0,∞).
The interpretation is that ψ(0) is the time required for customer 1 to enter the system,
while Tn is the arrival time of customer n ∈ N. (Artificially, we may assume that there is
a customer 0 at time 0.) To each customer class k there corresponds a random variable
σk used as follows: when a customers from class k is served, then its service time is an
independent copy of σk. We let µ−1

k = Eσk. Routing at the arrival point is done according
to probabilities pk, so that an arriving customer becomes of class k with probability pk.
Routing in the network is done so that a customer finishing service from class k joins class 

with probability pk,�. Let Ak(t) be the cumulative arrival process of class k customers from
the outside world. Let Dk(t) be the cumulative departure process from class k. The process
Dk(t) counts the total number of departures from class k, both those that are recycled
within the network and those who leave it. Of course, it is the specific service policies that
will determine Dk(t) for all k. If we introduce i.i.d. routing variables {αk(n), n ∈ N} so that
P (αk(n) = 
) = pk�, then we may write the class-k dynamics as:

Qk(t) = Qk(0) + Ak(t) +
K∑

�=1

D�(t)∑
n=1

1(α�(n) = k) −Dk(t).

In addition, a number of other equations are satisfied by the system: Let W j(t) be the
workload in station j. Let Cjk = 1(k ∈ c(j)). And let V (n) =

∑n
m=1 σk(n) be the sum of the

service times brought by the first n class-k customers. Then the total work brought by those
customers up to time t is Vk(Qk(0)+Ak(t)), and part of it, namely

∑
k CjkVk(Qk(0)+Ak(t))

is gone to station j. Hence the work present in station j at time t is

W j(t) =
∑

k

CjkVk(Qk(0) + Ak(t)) − t+ Y j(t),

where Y j(t) is the idleness process, viz.,∫
W j(t)dY j(t) = 0.

The totality of the equations above can be thought of as having inputs (or “primitives”) the
{Ak(t)}, {σk(n)} and {αk(n)}, and are to be “solved” for {Qk(t)} and {W j(t)}. However,
they are not enough: more equations are needed to describe how the server spends his
service effort to various customers, i.e, we need policy-specific equations; see, e.g., [13].

Let Qj(t) =
∑

k∈c(j)Qk(t). Let ζj
m(t) be the class of the m-th customer in the queue of

station j at time t, so that ζj(t) := (ζj
1(t), ζ

j
2(t), . . . , ζ

j
Qj(t)

(t)) is an array detailing the classes

of all the Qj(t) customers present in the queue of station j at time t, where the leftmost
one refers to the customer receiving service (if any) and the rest to the customers that
are waiting in line. Let also χj(t) be the remaining service time of the customer receiving

10But do note that several authors consider many independent arrival streams
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service. We refer to Xj(t) = (Qj(t), ζj(t), χj(t)) as the state11 of station j. Finally, let
ψ(t) be such that t+ ψ(t) is the time of the first exogenous customer arrival after t. Then
the most detailed information that will result in a Markov process in continuous time is
X(t) := (X1(t), . . . , XJ(t);ψ(t)). To be pedantic, we note that the state space of X(t) is
X = (Z+ ×K∗ × R+)J × R+, where K∗ = ∪∞

n=0{1, . . . , K}n, with {1, . . . , K}0 = {∅}, i.e.,
X is a horribly looking creature–a Polish space nevertheless.

We now let

N =
J∑

j=1

(Qj(0) + χj(0)) + ψ(0),

and consider the system parametrized by this parameter N . While it is clear that A(Nt)/N
has a limit as N → ∞, it is not clear at all that so do Dk(Nt)/N . The latter depends on the
service policies, and, even if a limit exists, it may exist only along a certain subsequence.
This was seen even in the very simple case of a single server queue.

To precise about the notion of limit point used in the following definition, we say that
X(·) is a limit point of XN(·) if there exists a deterministic subsequence {N�}, such that,
XN�

→ X, as 
→ ∞, u.o.c., a.s.

Definition 1 (fluid limit and fluid model). A fluid limit is any limit point of the
sequence of functions {D(Nt)/N, t ≥ 0}. The fluid model is the set of these limit points.

If D(t) = (D1(t), . . . , DK(t)) is a fluid limit, then we can define

Qk(t) = Qk(0) + Ak(t) +
K∑

�=1

D�(t)p�,k −Dk(t), k = 1, . . . , K.

The interpretation is easy: Since D(Nt)/t → D(t), along, possibly, a subsequence, then,
along the same subsequence, Q(Nt)/N → Q(t). This follows from the FLLN for the arrival
process and for the switching process.

Definition 2 (stability of fluid model). We say that the fluid model is stable, if there
exists a deterministic t0 > 0, such that, for all fluid limits, Q(t) = 0 for t ≥ t0, a.s.

To formulate a theorem, we consider the state process at the arrival epochs. So we
let12 Xn := X(Tn). Then the last state component (the remaining arrival time) becomes
redundant and will be omitted. Thus, Xn = (X1

n, . . . , X
J
n ), with Xj

n = (Qj
n, ζ

j
n, χ

j
n). Define

the function

V :
(
(qj, ζj, χj), j = 1, . . . , J

) �→ J∑
j=1

(qj + χj).

Theorem 2. If the fluid model is stable, then there exists N0 such that the set BN0 :=
{x : V (x) ≤ N0} is positive recurrent for {Xn}.
Remarks:

(i) The definition of stability of a fluid model is quite a strong one. Nevertheless, if it
holds – and it does in many important examples – then the original multiclass network is
stable.

(ii) It is easy to see that the fluid model is stable in the sense of Definition 2 if and only

11Note that the first component is, strictly speaking, redundant as it can be read from the length of the
array ζj(t).
12We tacitly follow this notational convention: replacing some Y (t) by Yn refers to sampling at time t = Tn.
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if there exist a deterministic time t0 > 0 and a number ε ∈ (0, 1) such that, for all fluid
limits, Q(t0) ≤ 1 − ε, a.s.

(iii) If all fluid limits are deterministic (non-random) – like in the examples below –
then the conditions for stability of the fluid model either coincide with or are close to the
conditions for positive recurrence of the underlying Markov chain {Xn}. However, if the
fluid limits remain random, stability in the sense of Definition 2 is too restrictive, and the
following weaker notion of stability may be of use:

Definition 3 (weaker notion of stability of fluid model). The fluid model is (weakly)
stable if there exist t0 > 0 and ε ∈ (0, 1) such that, for all fluid limits, EQ(t0) ≤ 1 − ε.

There exist examples of stable stochastic networks whose fluid limits are a.s. not stable
in the sense of Definition 2, but stable in the sense of Definition 3 (“weakly stable”). The
statement of Theorem 2 stays valid if one replaces the word “stable” by “weakly stable”.
Proof of Theorem 2. Let

g(x) := 2λt0V (x), h(x) :=
1

2
V (x) − C1(V (x) ≤ N0),

where V is as defined above, and C, N0 are positive constants that will be chosen suitably
later. It is clear that (L1)–(L4) hold. It remains to show that the drift criterion holds.
Let Q be a fluid limit. Thus, Qk(Nt)/N → Qk(t), along a subsequence. Hence, along the
same subsequence, Qk,[Nλt]/N = Qk(T[Nλt])/N → Qk(t). All limits will be taken along the
subsequence referred to above and this shall not be denoted explicitly from now on. We
assume that Q(t) = 0 for t ≥ t0. So,

lim
N→∞

1

N

∑
k

Qk,[2λt0N ] ≤ 1/2, a.s. (5)

Also,

lim
n→∞

1

n

∑
j

χj
n = 0, a.s. (6)

To see the latter, observe that, for all j,

χj
n

n
≤ 1

n
max
k∈c(j)

max
1≤i≤Dk,n+1

σk(i) ≤
∑

k∈c(j)

Dk,n + 1

n

max1≤i≤Dk,n+1 σk(i)

Dk,n + 1
. (7)

Note that
1

m
max

1≤i≤m
σk(i) → 0, as m→ ∞, a.s.,

and so

Rk := sup
m

1

m
max

1≤i≤m
σk(i) <∞, a.s.

The assumption that the arrival rate is finite, implies that

lim
n→∞

Dk,n + 1

n
<∞, a.s. (8)

In case the quantity of (8) is zero then χj(n)/n → 0, because Rk is finite. Otherwise, if it
is positive, then, along any subsequence for which the limit of Dk,n is infinity, we have that
the limit of the last fraction of (7) is zero and so, again, χj(n)/n → 0. We next claim that
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that the families {Qk,[2λt0N ]/N}, {χj
[2λt0N ]/N} are uniformly integrable. Indeed, the first one

is uniformly bounded by a constant:

1

N
Qk,[2λt0N ] ≤ 1

N
(Qk,0 + A(T[2λt0N ])) ≤ 1 + [2λt0N ]/N ≤ 1 + 4λt0.

To see that the second family is uniformly integrable, observe that, as in (7), and if we
further loosen the inequality by replacing the maximum by a sum,

1

N
χj

[2λt0N ] ≤
∑

k∈c(j)

1

N

Dk,[2λt0N ]+1∑
i=1

σk(i),

where the right-hand-side can be seen to be uniformly integrable by an argument similar to
the one above. From (5) and (6) and the uniform integrability we have

lim
n→∞

1

N

(∑
k

EQk,[2λt0N ] +
∑

j

Eχj
[2λt0N ]

)
≤ 1/2,

and so there is N0, such that, for all N > N0,

E

(∑
k

Qk,[2λt0N ] +
∑

j

χj
[2λt0N ] −N

)
≤ −N/2,

which, using the functions introduced earlier, and the usual Markovian notation, is written
as

Ex[V (Xg(x)) − V (X0)] ≤ −1

2
V (x), if V (x) > N0,

where the subscript x denotes the starting state, for which we had set N = V (x). In
addition,

Ex[V (Xg(x)) − V (X0)] ≤ C, if V (x) ≤ N0,

for some constant C < ∞. Thus, with h(x) = V (x)/2 − C1(V (x) ≤ N0), the last two
displays combine into

Ex[V (Xg(x)) − V (X0)] ≤ −h(x).

In the sequel, we present two special, but important cases, where this assumption can
be verified, under usual stability conditions.

3.3. Multiclass queue

In this system, a special case of a multiclass queueing network, there is only one station,
and K classes of customers. There is a single arrival stream A with rate λ. Upon arrival,
a customer becomes of class k with probability pk. Let Ak be the arrival process of class-k
customers. Class k customers have mean service time µ−1

k . Let Qk(t) be the number of
customers of class k in the system at time t, and let χ(t) be the remaining service time (and
hence time till departure because service discipline is non-preemptive) of the customer in
service at time t. We scale according to N =

∑
k Qk(0) + χ(0). We do not consider the

initial time till the next arrival, because we will apply the embedding method of the previous
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section. The traffic intensity is ρ :=
∑

k λk/µk = λ
∑

k pk/µk. Take any subsequence such
that

Qk(0)/N → Qk(0), χ(0)/N → χ(0), a.s.,

Ak(Nt)/N → Ak(t) = λkt, Dk(Nt)/N → Dk(t), u.o.c., a.s.

That the first holds is a consequence of a FLLN. That the second holds is a consequence of
Helly’s extraction principle (c.f. Chung [14, pg. 83]). Then Q(Nt)/N → Q(t), u.o.c., a.s.,
and so any fluid limit satisfies

Qk(t) = Qk(0) + Ak(t) −Dk(t), k = 1, . . . , K∑
k

Qk(0) + χ(0) = 1.

In addition, we have the following structural property for any fluid limit: define

I(t) := t−
∑

k

µ−1
k Dk(t), W k(t) := µ−1

k Qk(t).

Then I is an increasing function, such that∫ ∞

0

∑
k

W k(t)dI(t) = 0.

Hence, for any t at which the derivative exists (which exists a.e., owing to Lipschitz continuity–
see also the discussion in Section 3.4), and at which

∑
k W k(t) > 0,

d

dt

∑
k

W k(t) =
d

dt

(∑
k

µ−1
k

(
Qk(0) + Ak(t)

)− t

)
− d

dt
I(t) = −(1 − ρ).

Hence, if the stability condition ρ < 1 holds, then the above is strictly bounded below zero,
and so, an easy argument shows that there is t0 > 0, so that

∑
k W k(t) = 0, for all t ≥ t0.

N.B. This t0 is given by the formula t0 = C/(1 − ρ) where C = max{∑k µ
−1
k qk + χ : qk ≥

0, k = 1, . . . , K, χ ≥ 0,
∑

k qk +χ = 1}. Thus, the fluid model is stable, Theorem 2 applies,
and so we have positive recurrence.

3.4. Jackson-type network

Here we consider another special case, where there is a customer class per station. Tradi-
tionally, when service times are exponential, we are dealing with a classical Jackson network.
This justifies our terminology “Jackson-type”, albeit, in the literature, the term “generalized
Jackson” is also encountered.

Let J := {1, . . . , J} be the set of stations (= set of classes). There is a single arrival
stream A(t) = 1(ψ(0) ≤ t)+

∑
n≥1 1(ψ(0)+Tn ≤ t), t ≥ 0, where Tn = ξ1 + · · ·+ξn, n ∈ N,

and the {ξn} are i.i.d. positive r.v.’s with Eξ1 = λ−1 ∈ (0,∞). Upon arrival, a customer
is routed to station j with probability p0,j, where

∑J
j=1 p0,j = 1. To each station j there

corresponds a random variable σj with mean µj, i.i.d. copies of which are handed out as
service times of customers in this station. We assume that the service discipline is non-idling,
work-conserving, and non-preemptive. {X(t) = [(Qj(t), ζj(t), χj(t), j ∈ J );ψ(t)], t ≥ 0}, as
above.

The internal routing probabilities are denoted by pj,i, j, i ∈ J : upon completion of
service at station j, a customer is routed to station i with probability pj,i or exits the
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network with probability 1 −∑J
i=1 pj,i. We assume that the spectral radius of the matrix

[pj,i]j,i∈J is strictly less than 1. We describe the (traditional) stability conditions in terms of
an auxiliary Markov chain which we call {Yn} and which takes values in {0, 1, . . . , J, J+1}, it
has transition probabilities pj,i, j ∈ {0, 1, . . . , J}, i ∈ {1, . . . , J}, and pj,J+1 = 1 −∑J

i=1 pj,i,
j ∈ {1, . . . , J}, pJ+1,J+1 = 1, i.e. J + 1 is an absorbing state. We start with Y0 = 0 and
denote by π(j) the mean number of visits to state j ∈ J :

π(j) = E
∑

n

1(Yn = j) =
∑

n

P (Yn = j).

Firstly we assume (and this is no loss of generality) that π(j) > 0 for all j ∈ J . Secondly,
we assume that

max
j∈J

π(j)µ−1
j < λ−1.

Now scale according to N =
∑J

j=1[Qj(0) + χj(0)]. Again, due to our embedding tech-
nique, we assume at the outset that ψ(0) = 0. By applying the FLLN it is seen that any
fluid limit satisfies

Qj(t) = Qj(0) + Aj(t) +
J∑

i=1

Di(t)pi,j −Dj(t), j ∈ J
∑

j

[Qj(0) + χj(0)] = 1,

Aj(t) = λjt = λp0,jt, Dj(t) = µj(t− Ij(t)),

where Ij is an increasing function, representing cumulative idleness at station j, such that

J∑
j=1

∫ ∞

0

Qj(t)dIj(t) = 0.

We next show that the fluid model is stable, i.e., that there exists a t0 > 0 such that Q(t) = 0
for all t ≥ t0.

We base this on the following facts: If a function g : R → R
n is Lipschitz then it

is a.e. differentiable. A point of differentiability of g (in the sense that the derivative of
all its coordinates exists) will be called “regular”. Suppose then that g is Lipschitz with∑n

i=1 gi(0) =: |g(0)| > 0 and ε > 0 such that (t regular and |g(t)| > 0) imply |g(t)|′ ≤ −ε;
then |g(t)| = 0 for all t ≥ |g(0)|/ε. Finally, if h : R → R is a non-negative Lipschitz function
and t a regular point at which h(t) = 0 then necessarily h′(t) = 0.

We apply these to the Lipschitz function Q. It is sufficient to show that for any
I ⊆ J there exists ε = ε(I) > 0 such that, for any regular t with mini∈I Qi(t) > 0
and maxi∈J−I Qi(t) = 0, we have |Q(t)|′ ≤ −ε. Suppose first that I = J . That is, sup-
pose Qj(t) > 0 for all j ∈ J , and t a regular point. Then Qj(t)

′ = λj +
∑J

i=1 µipi,j − µj

and so |Qj(t)|′ = λ −∑J
j=1

∑J
i=1 µipi,j −

∑J
j=1 µj = λ −∑J

i=1 µipi,J+1 =: −ε(J ). But

µi > π(i)λ and so ε(J ) > λ(1 −∑J
i=1 π(i)pi,J+1) = 0, where the last equality follows from∑J

i=1 π(i)pi,J+1 =
∑J

i=1

∑
n P (Yn = i, Yn+1 = J+1) =

∑
n P (Yn �= J+1, Yn+1 = J+1) = 1.

Next consider I ⊂ J . Consider an auxiliary Jackson-type network that is derived from
the original one by σj = 0 for all j ∈ J − I. It is then clear that this network has routing
probabilities pIi,j that correspond to the Markov chain {Y I

m}, defined as a subsequence of
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{Yn} at those epochs n for which Yn ∈ I ∪ {J + 1}. Let πI(i) the mean number of visits
to state i ∈ I by this embedded chain. Clearly, πI(i) = π(i), for all i ∈ I. So the
stability condition maxi∈I π(i)µi < λ−1 is a trivial consequence of the stability condition
for the original network. Also, the fluid model for the auxiliary network is easily derived
from that of the original one. Assume then t is a regular point with mini∈I Qi(t) > 0
and maxi∈J−I Qi(t) = 0. Then |Qj(t)|′ = 0 for all j ∈ J − I. By interpreting this as a
statement about the fluid model of the auxiliary network, in other words that all queues
of the fluid model of the auxiliary network are positive at time t, we have, precisely as
in the previous paragraph, that Qj(t)

′ = λpI0,j +
∑

i∈I µip
I
i,j − µj, for all j ∈ I, and so

|Q(t)|′ = λ−∑i∈I µip
I
i,J+1 =: −ε(I). As before, ε(I) > λ(1 −∑i∈I π(i)pIi,J+1) = 0.

We have thus proved that, with ε := minI⊆J ε(I), for any regular point t, if |Q(t)|′ > 0,
then |Q(t)| ≤ −ε. Hence the fluid model is stable.
Remark: We also refer to the recent monographs by Chen and Yao [13, Ch. 8] and Robert
[34, Ch. 9] regarding the fluid limit technique.

4. Methods Based on Explicit Coupling

When we pass from the Markovian to the non-Markovian world, criteria for stability change
in nature. This should come as no surprise, for a SRS, albeit a dynamical system on the
space of paths, loses its semigroup property on the space of probability measures. In the
first part of this section, we discuss the method of renovating events, due to Borovkov, which
finds applications in several non-Markovian systems. The method is intimately related to
the so-called Harris theory, which is presented in the second part of the section.

4.1. Coupling and renovating events

We will focus on the SRS

Xn+1 = f(Xn, ξn),

where {ξn,∈ Z} is a stationary-ergodic sequence of random variables taking values in some
measurable space (Y ,BY). The variables Xn take values in another measurable space
(X ,BX ) and f : X × Y → X is measurable. We refer everything to a probability space
(Ω,F , P ) with a P -preserving ergodic flow θ such that ξn◦θ = ξn+1. (This can always be
done by, say, using the space of paths of ξ· as Ω-see [5].) The process {Xn} may be defined
from some index n onwards, or for all n ∈ Z. Our goal is to find conditions for which a
stationary-ergodic {Xn} exists and is unique.

A key role in this are played by various notions of coupling. We shall need three of them.
Below, {Xn}, {Yn} are sequences of random variables. A notation that is used is

X−m
n := Xm+n◦θ−m.

To understand the meaning of this notation, it is best to think in terms of an SRS: sup-
pose we start with X0 = x0, some fixed value, and solve the SRS forward. Then Xn

is a certain function Xn = f (n)(x0, ξ0, . . . , ξn−1). Using the stationarity of {ξn}, we have
X−m

n = f (m+n)(x0, ξ−m, . . . , ξ0, . . . , ξn−1), i.e., we start the recursion at time −m ≤ 0 and
solve till we reach n ≥ 0. The notation X−m

n reflects this, but need not refer to this specific
situation always. We now give definitions for three notions of coupling.

Definition 4.

Simple coupling: Let ν = inf{n ≥ 0 : Xk = Yk for all k ≥ n}. We say that X couples
with Y if ν <∞ a.s. This ν is the minimal coupling time.
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Strong coupling (or strong forward coupling): Let σ(m) = inf{n ≥ 0 : X−m
k =

Yk for all k ≥ n} and σ = supm≥0 σ(m). We say that X strongly couples with Y if
σ <∞ a.s. This σ is the minimal strong coupling time.

Backward coupling: Let τ(m) = inf{n ≥ 0 : X−n
m = X

−(n+k)
m for all k ≥ 0} and

τ = supm≥0 τ(m). We say that X backward-couples if τ < ∞ a.s. This τ is the
minimal backward coupling time.

Remarks:
(i) The last definition is intrinsic to X: it requires no additional sequence.
(ii) If ν < ∞, a.s., then any random time ν ′, with ν ′ ≥ ν is a coupling time. Likewise, any
σ′ > σ is a strong coupling time, and any τ ′ > τ is a backward coupling time.
(iii) Note also that the definitions can be simplified in case X and Y obey the same SRS,
because we can remove the quantifier “for all” in each of the definitions above.
(iv) If Y is stationary, then simple coupling of X with Y implies that X converges in total
variation in the sense that

lim
n→∞

sup
B∈B∞

X
|P ((Xn, Xn+1, . . .) ∈ B) − P ((Yn, Yn+1, . . .) ∈ B)| = 0.

(v) Strong coupling implies simple coupling.
(vi) Suppose Y is stationary. Then strong coupling is equivalent to backward coupling:
in fact, τ , has the same distribution as σ, and Y itself can be constructed from X, since
backward coupling is, after all, an intrinsic criterion.
(vii) If there is backward coupling, then we set

X̃0 = Xτ ◦θ−τ = X−τ
0 ,

X̃n = X̃0◦θn, n ∈ Z.

The latter is the stationary sequence with which X strongly couples.
We now formulate a criterion for strong coupling. We say that A is a renovating event

for the SRS X at time n if, at time n + 1, there is a “decoupling” of Xn+1 from its past,
namely, if there is a deterministic function g : Y → R such that Xn+1 = g(ξn) a.s. on the
event A. Roughly speaking, such a decoupling, if it happens frequently enough, ensures that
coupling will take place, which in turn ensures existence of a unique stationary solution. In
fact, this decoupling may not take place at time n but at some future time n+m+ 1, so it
is necessary to bring this into the definition as well. More precisely:

Definition 5. We say that A is an 〈n,m, g〉 renovating event for the SRS X if Xn+m+1 =
g(ξn, . . . , ξn+m) a.s. on A.

If a sequence {An} of positive13 stationary renovating events exists then we have strong
coupling. More precisely:

Theorem 3. Let X be SRS with stationary-ergodic driver. If there is n0 such that for
each n ≥ n0 there is a 〈n,m, g〉 renovating event An, and {An} is stationary-ergodic with
P (An) > 0 then there is backward coupling.

This theorem is not the most general one in the area. First, there is a theorem that
ensures backward coupling when the sequence {An} is only asymptotically stationary; for
details, see Borovkov [8]. Second, there are processes that are not necessarily SRS. They

13i.e., P (An) > 0
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could, for instance be functions of the process X. It was proved in [20] that a renovating
events criterion does exist in this case as well (extended renovation theory).

Here is a sketch of the proof of Theorem 3, based on [8, 9, 20]. Define the time

γ = inf{n ≥ 0 : 1A−n = 1}.

Observe first that γ is a.s. finite due to ergodicity. Observe next that the probability that
the family of processes {X−k

· , k ≥ n} all couple after some deterministic time is not smaller
than P (γ ≤ n). Finally, let n → ∞ to conclude that backward coupling, as defined in Def.
4 does indeed take place.

A stationary process {X̃n} can then be constructed as follows:

X̃n := X−γ
n = Xγ+n◦θ−γ, n ≥ 0. (9)

It can then be checked that this X̃ satisfies the same SRS, and that there is strong coupling
between X and X̃.

An interesting example here is a system comprising of an infinite number of queues in
tandem. It can be proved that there is stability in the sense that each finite collection of
queues strongly couples with their stationary versions. In this example, and frequently more
generally, the assumption of stationarity of {ξn, n ∈ Z} may be replaced by coupling station-
arity, i.e., with the condition that the driving sequence strongly couples with a stationary
one.

It is interesting to note that equation (9) can be the cornerstone for modern perfect
simulation algorithms. See, e.g., [20].

4.2. Harris chains

Specializing to the Markovian case, consider a Markov chain in a Polish space X . Let

P n(x, ·) := Px(Xn ∈ ·) = P (Xm+n ∈ · | Xm = x).

We assume that there is a recurrent set R, i.e.,

τR <∞, Px − a.s., for all x ∈ X ,

and an integer 
 such that the family of probability measures {P �
n(x, ·), x ∈ R} have a

common component Q:14

P �(x, ·) ≥ pQ(·), for all x ∈ R,

where Q is a probability measure, and 0 < p < 1. We then say that the chain possesses
the Harris property, or that it is Harris recurrent, or simply a Harris chain.15 The set R

14A family {Pα} of probability measures possesses a common component, if there is a finite measure µ
such that µ ≤ infα Pa. Then it is possible to define, on a common probability space, random variables
{Xα,n, n ∈ N} such that for each n, Xα,n has law Pα, and such that τ := inf{n : Xα,n = Xβ,n for all α, β} <
∞, a.s. This is done by first writing Pα = pQ + (1 − p)Pα, where p = ||µ||, Q = µ/||µ||, and Pα another
probability measure defined by the same relation, and then considering independent sequences of random
variables: {ζn, n ∈ N}, {Yn, n ∈ N}, {Y α,n, n ∈ N}, such that the {ζn, n ∈ N} are i.i.d. with P (ζn = 1) =
1 − P (ζn = 0) = p, the {Yn, n ∈ N} are i.i.d. with P (Yn ∈ ·) = Q, the {Y α,n, n ∈ N} are, for each α, i.i.d.
with P (Y α,n ∈ ·) = P . Based on these, the Xα,n are explicitly defined by Xα,n = ζnYn + (1 − ζn)Y α,n. It
is clear that P (Xα,n ∈ ·) = Pα and that τ ≤ inf{n : ζn = 1} which is obviously a.s. finite.
15Note that there is no universal “standard” definition of a Harris chain; different authors may use different
definitions.
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is often called a regeneration set. The discussion that follows justifies the terminology and
shows that a Harris chain always possesses an invariant measure (which may possibly have
infinite mass).

Suppose X0 = x ∈ R. Write Xx
� for the Markov chain at time 
. As described in the

footnote 14, we may realize the family of random variables {Xx
� , x ∈ R} in a way that

P (Xx
� = Xy

� for all x, y ∈ R) > 0. This is done by generating a single random variable, say
Y , with law Q, and by tossing a coin with probability of success p. If successful, we let
Xx

� = Y , for all x ∈ R. If not, we distribute according to the remaining probability.
We now show that each Harris chain has an invariant measure. This is basically done

by an inverse Palm construction. Start the chain according to the law Q. Let TR,k, k ∈
N be the times at which the chain hits R. For each such TR,k consider a 0/1 r.v. ζk
with P (ζk = 1) = p and a r.v. Yk with P (Yk ∈ ·) = Q. Let K = inf{k : ζk = 1}.
Consider the path {Xn, 0 ≤ n ≤ TR,K}. Forcefully set XTR,K+� = YK . Realize the path
{Xn, TR,K < n < TR,K + 
} conditionally on the values XTR,K

and XTR,K+�. The path
C0 := {Xn, 0 ≤ n ≤ TR,K + 
} is the first cycle of the chain. Considering the iterates of

TR,K , namely, T
(m+1)
R,K = T

(m)
R,K + TR,K◦θT

(m)
R,K , m ≥ 0, T

(0)
R,K ≡ 0, we obtain the successive

cycles Cm+1 = Cm◦θT
(m)
R,K . It is clear that XTR,K+� has law Q and that the sequence of cycles

is stationary. (This is referred to as Palm stationarity.) Moreover, we have a regenerative

structure: {T (m)
R,K , 0 ≤ m ≤ n} is independent of {Cm,m ≥ n + 1}, for all n. The only

problem is that the cycle durations may be random variables with infinite mean.
Now let PQ be the law of the chain when X0 is chosen according to Q. Define the

measure

µ(·) = EQ

TR,K∑
n=1

1(Xn ∈ ·).

Strong Markov property ensures that µ is stationary, i.e.,

µ(·) =

∫
X
P (x, ·)µ(dx).

If, in addition, to the Harris property, we also have

EQ(TR,K) <∞, (10)

we then say that the chain is positive Harris recurrent. In such a case, π(·) = µ(·)/EQ(TR,K)
defines a stationary probability measure. Moreover, the assumption that R is recurrent
ensures that there is no other stationary probability measure.

A sufficient condition for positive Harris recurrence is that

sup
x∈R

ExτR <∞. (11)

This is a condition that does not depend on the (usually unknown) measure Q. To see the
sufficiency, just use the fact that TR,K may be represented as a geometric sum of r.v.’s with
uniformly bounded means, so that (11) implies (10). To check (11) the Lyapunov function
methods of Section 2 are very useful. Let us also offer a further remark on the relation
between (11) and (10): it can be shown that if (10) holds, then there is a R′ ⊆ R such that

sup
x∈R′

ExτR′ <∞.
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We next give a brief description of the stability by means of coupling, achieved by a positive
Harris recurrent chain. To avoid periodicity phenomena, we assume that the discrete ran-
dom variable TR,K has aperiodic distribution under PQ. (A sufficient condition for this is:
PQ(TR,K = 1) > 0.) Then we can construct a successful coupling between the chain starting
from an arbitrary X0 = x0 and its stationary version. Assume that Ex0τR < ∞. (This x0

may or may not be an element of R.) Let {Xn} be the resulting chain. Then one can show,
by means of backwards coupling construction, that the process {Xn} strongly couples (in
the sense of the definition of the previous subsection). with the stationary version. (The
paper [21] contains the proof of this assertion for the special case where R is a singleton;
however, the construction can be extended to the general case.)

4.3. Relation between Harris theory and renovating events

Consider a Harris chain in a Polish space X and represent it as an SRS:

Xn+1 = f(Xn, ξn),

where {ξn} are i.i.d.r.v.’s, which, without loss of generality, can be taken to be uniformly
distributed in the unit interval [0, 1], and f(x, ξ0) has distribution P (x, ·). Assuming that a
regeneration set R exists, we can represent the chain by another SRS. To simplify, suppose

 = 1. Introduce random variables {(ξn, ζn, Zn), n ∈ Z}, which are i.i.d., and such that
{ξn}, {ζn}, {Zn} are independent. The first sequence is as before. The second one is 0/1–
valued with P (ζn = 1) = 1 − P (ζn = 0) = p. The third one has P (Zn ∈ ·) = Q(·). Let
f(x, ξ0) be distributed according to P (x, ·), as before, and f(x, ξ0) according to P (x, ·) :=
(1 − p)−1(P (x, ·) − pQ(·)). Consider then the SRS

Xn+1 = h(Xn; ξn, ζn, Zn)

= f(Xn, ξn)1(Xn �∈ R) + (ζnZn + (1 − ζn)f(Xn, ξn))1(Xn ∈ R).

It is clear that P (Xn+1 ∈ · | Xn = x) = P (x, ·), and so the second SRS defines the same
chain in law. Observe that the event

An := {Xn ∈ R, ζn = 1}
is 〈n, 0, g〉–renovating, with g(Zn) ≡ Zn, i.e., on {Xn ∈ R, ζn = 1}, we have Xn+1 = Zn.
The difficulty with this type of event is that the sequence {An} is non-stationary, and so
Theorem 3 does not immediately apply. Although there is an analog of it for non-stationary
renovating events, we chose not to present it in this paper.

To describe a rigorous connection, consider first the case where R = X , i.e., the whole
state space is a regeneration set. Then the event

An := {ζn = 1}
is 〈n, 0, g〉–renovating, and the sequence {An} is stationary. Here Theorem 3 applies imme-
diately.

Now, more generally, assume that {Xn} is a Harris process for which

ExτR <∞, for all x ∈ X .
Then {Xn} has a stationary version {X̃n} and there is strong coupling between the two
processes. It is known that, for any process which strongly couples with a stationary one,
there exists a sequence of stationary positive renovating events (see Borovkov [8]). In this
sense, there is an intimate connection between Harris ergodicity of a Markov chain and
existence of a stationary sequence of renovating events.
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5. Existence not Based on Regeneration or Renovation

While renovating events provide criteria for strong stability, it is frequently the case that
such strong stability may not take place, and that we only have weak convergence, if any
convergence at all. Going to the other extreme, we should therefore ask when stationary
solutions exist, ignoring problems of uniqueness or convergence. For such questions, very
little is known outside the Markovian world.

A setup developed in [1, 2] adopts the following point of view: think of the SRS as a flow
on an enriched probability space and ask whether there exists a measure invariant under
this flow. If there is, then projecting this measure back to the original probability space will
provide a stationary solution. We refer to this procedure as “weak stationary solution” and
describe it in the sequel.

5.1. General method: weak stationary solutions

Consider an SRSXn+1 = f(Xn, ξn) as before, and let (Ω,F , P ) be the underlying probability
space, equipped with a measurable bijection θ : Ω → Ω that preserves P and which is also
ergodic. In addition, assume that Ω is a Polish space (i.e., a complete, separable, metrizable
topological space) with F being the σ-algebra the Borel sets of Ω.

Define, for each ω ∈ Ω, the map ϕ0(ω) : X → X by

ϕ0(ω)(x) := f(x, ξ0(ω))

and assume that there is a Polish space X , such that P (ϕ0 ∈ X ) = 1. Letting ϕn(ω) :=
ϕ0(θn(ω)), our SRS reads Xn+1 = ϕn(Xn). Clearly, {ϕn} is a stationary-ergodic sequence
of random elements of X . Next consider the enlarged probability space Ω × X and, on it,
define the new flow (or “shift”)

Θ : Ω ×X → Ω ×X ;

Θ(ω, x) := (θω, ϕ0(ω)(x)).

It is clear that Ω ×X is a Polish space itself and that powers of Θ behave as:

Θn(ω, x) = (θnω, ϕn−1(ω) · · ·ϕ0(ω)(x)),

where successive dots in the formula mean composition of functions. We would like to equip
the Polish space Ω×X with an appropriate probability measure Q. First, we define extended
random variables Xn, ϕn, on Ω ×X , by:

X0(ω, x) = x, ϕ0(ω, x) = ϕ0(ω),

Xn(ω, x) = X0(Θ
n(ω, x)), ϕn(ω, x) = ϕ0(Θ

n(ω, x)).

Then we observe that

Xn(ω, x) = ϕn−1(ω) · · ·ϕ0(ω)(x), ϕn(ω, x) = ϕn(ω),

and so

Xn+1(ω, x) = ϕn(Xn(ω, x)),

which, upon omitting the argument (ω, x), as in common probability usage, reads

Xn+1 = ϕn(Xn).
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The point is this: if Q is Θ-invariant and has Ω-marginal P (i.e., if Q is a lifting of P from
Ω to Ω × X ) then the last recursion is identical, in law, to the original one, because the
P -stationarity of {ϕn} on Ω is tantamount to the Q-stationarity of {ϕn} on Ω × X and
because the P -law of {ϕn} coincides with the Q-law of {ϕn}. The existence of such a Q is
therefore what we are after:

Definition 6. A probability measure Q on Ω ×X that is Θ-stationary and has Ω-marginal
P is called a weak stationary solution to the SRS.

The following theorem basically says that, under some assumptions, tightness translates
into existence of a weak stationary solution.

Theorem 4. Let Q0 be a probability measure on Ω × X with Ω-marginal P . Suppose that
the sequence of probability measures {Q0◦Θn} is tight, and that Θ is continuous. Then there
exists a weak stationary solution.

Since continuity may be too strong, it should be weakened. Define

Qn =
1

n

n−1∑
i=0

Qi. (12)

Then:

Theorem 5. Suppose the continuity assumption for Θ in the preceding theorem is replaced
by any of the following conditions:
• The set of discontinuities of Θ is Q-null, for some weak limit point Q of {Q◦Θn}.
• There exists a sequence {Θ�} of continuous maps on Ω×X and a sequence {U�} of open

subsets of Ω×X such that Θ� = Θ outside U�, for all 
, and lim�→∞ limn→∞Qn(U�) = 0
Then the conclusion still holds: there is a weak stationary solution.

To prove Theorems 4–5, we use the continuity condition or the weaker conditions of
Theorem 5 in order to extract a subsequential limit Q of the Cesàro averages (12). It can
then be checked that any such subsequential limit satisfies Q◦Θ−1 = Q and has Ω-marginal
P , and so, according to Definition 6, it qualifies as a weak stationary solution.

To check tightness on the enlarged probability space is not as bad as it sounds, be-
cause checking tightness on the original probability space is enough. Indeed, pick any
x0 ∈ X and let Qx0

0 be the distribution of (ω, x0). If we can show tightness of the sequence
{ϕn−1 · · ·ϕn(x), n = 1, 2, . . .} on the original probability space, then we have also shown
tightness of {Qx0

0 ◦Θ−n, n = 1, 2, . . .}.
5.2. Compact state space

A particular case of interest is that of a compact state space. It might, at first sight,
appear that any SRS in a compact state space, and with stationary driver, admits a (weak)
stationary solution. Here is a counterexample. Consider the deterministic SRS, in [0, 1],
defined by

Xn+1 =
1

2
Xn1(0 < Xn ≤ 1) + 1(Xn = 0).

It is easy to see that there is no probability measure on [0, 1] that remains invariant for this
SRS. What is bad here is the discontinuity at 0.

To remedy the situation, consider Xn+1 = ϕn(Xn), where {ϕn} are stationary-ergodic
random continuous maps of X into itself, where X is a compact Polish space. We can
realize this recursion on the probability space (Ω,F ), where Ω = C(X ,X )Z. Here, C(X ,X )
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is the space of continuous maps from X into X , equipped with the topology of uniform
convergence. It can be proved that C(X ,X ) is Polish. The σ-field on C(X ,X ) is taken to
be the Borel σ-field generated by the open sets of C(X ,X ). So, Ω is then the set of doubly-
infinite sequences of elements of C(X ,X ), and F is the product σ-field. The space Ω is also
Polish. The shift θ is the canonical one-step shift. It is easy to see that the extended shift
Θ is also continuous, owing to the continuity of ϕ0. Hence the previous Theorem holds, and
so the SRS has a weak stationary solution.

5.3. An application

Here is a methodological application of this last fact. Suppose that {Xn} is a Markov
chain that can be represented as SRS Xn+1 = f(Xn, ξn) = ϕn(Xn) with f(·, ξn) ≡ ϕn(·) a
continuous function. Suppose that we can prove (e.g., using Lyapunov function methods)
that there exists a compact set R which is positive recurrent:

sup
x∈R

ExτR <∞.

Suppose also that any of the conditions of Theorem 5 hold. Then there exists a stationary
version for the entire chain. The reason is as follows: Consider the embedded chain {XR

k }
at those times at which the original chain is in R. Then, owing to the discussion in the
previous paragraph, this embedded chain possesses a stationary version. Indeed, if Tk is the
k-th time n at which Xn ∈ R, we have

XR
k+1 = XTk+1

= ϕTk+1−1ϕTk+1−2 . . . ϕTk
(XTk

) ≡ ψk(X
R
k ),

where ψk := ϕTk+1−1ϕTk+1−2 . . . ϕTk
. Composition of continuous functions is continuous

and XR lives in a compact state space. Hence the last SRS possesses a weak stationary
solution. This, together with the fact that R is positive recurrent enable us to construct a
stationary version for the original chain. This is a method for existence that is not based
on regeneration.

6. Monotonicity Methods

The paper of Loynes [28] was the first to consider a system (single queue, and, later, queues
in tandem) with stationary-ergodic driver. The classical recursion Xn+1 = (Xn + ξn)+

studied by Loynes is monotone. We next provide a little survey about the important area
of monotone recursions.

6.1. General statements on monotone and homogeneous recursions

There are many applications, especially in queueing networks, where monotonicity in the
dynamics can be exploited to prove existence and uniqueness of stationary solutions. Al-
though the theory can be presented in the very general setup of a partially ordered state
space (see Brandt et al. [12]) we will only focus on the case where the state is R

d. Consider
then the SRS

Xn+1 = f(Xn, ξn) =: ϕn(Xn)

and assume that ϕ0 : R
d
+ → R

d
+ is increasing and right-continuous, where the ordering is

the standard component-wise ordering16 on R
d. Let θ be stationary and ergodic flow on

(Ω,F , P ) and assume that ϕn = ϕ0◦θn, n ∈ Z. In other words, {ϕn} is a stationary-ergodic

16For x = (xi, i = 1, . . . , d), y = (yi, i = 1, . . . , d), we say that x ≤ y iff xi ≤ yi for all i. A function
ϕ : R

d → R
d is said to be increasing iff x ≤ y ⇒ ϕ(x) ≤ ϕ(y).

c© Operations Research Society of Japan JORSJ (2004) 47-4



Stochastic Stability Methods 297

sequence of random elements of the space of right-continuous increasing functions on R
d
+.

We first explain Loynes’ method. Define

Φn := ϕn−1 · · ·ϕ0.

Thus, Φn(Y ) is the solution of the SRS at n ≥ 0 when X0 = Y , a.s. Since 0 is the least
element of (Rd

+,≤), we have Φn(0) ≤ Φn(Y ), a.s., for any Rd
+–valued r.v. Y . Next consider

Φm+n(0)◦θ−m = ϕn−1 · · ·ϕ−m(0), n ≥ −m,
and interpret Φm+n(0) as the solution of the SRS at time n ≥ −m, starting with 0 at time
−m. Clearly, Φm+n(0) increases as m increases, because:

Φ(m+1)+n(0)◦θ−(m+1) = ϕn−1 · · ·ϕ−mϕ−(m+1)(0)

= ϕn−1 · · ·ϕ−m(ϕ−(m+1)(0))

≥ ϕn−1 · · ·ϕ−m(0) = Φm+n(0)◦θ−m.

Finally define
X̃n := lim

m→∞
Φm+n(0)◦θ−m, n ∈ Z.

The r.v. X̃n is either finite a.s., or is infinite a.s., by ergodicity. Assuming that the first case
holds, we further have

X̃n+1 = lim
m→∞

Φm+(n+1)(0)◦θ−m

= lim
m→∞

ϕm+nϕm+n−1 · · ·ϕ0(0)◦θ−m

= lim
m→∞

ϕnϕn−1 · · ·ϕ−m(0)

= lim
m→∞

ϕn(ϕn−1 · · ·ϕ−m(0))

= lim
m→∞

ϕn(Φm+n(0)◦θ−m)

= ϕn(X̃n).

Provided then that we have a method for proving P (X̃0 <∞) > 0, Loynes’ technique results
in the construction of a stationary-ergodic solution {X̃n} of the SRS.

Without further assumptions and structure, not much can be said. Assume next that,
in addition, ϕ0 is homogeneous, i.e.,

ϕ0(x+ c1) = ϕ0(x) + c1,

for all x ∈ R
d
+ and all c ∈ R. Such is the case, e.g., with the usual Lindley function

ϕ0 : R+ → R+, with ϕ0(x) = max(x+ ξ0, 0). The homogeneity assumption is quite frequent
in queueing theory. It is easy to see that

|ϕ0(x) − ϕ0(y)| ≤ |x− y|,
where |x| := max(|x1|, . . . , |xd|). Suppose then that {Xn}, {Yn} are two stationary solutions
of the SRS. Then |Xn+1 − Yn+1| = |ϕn(Xn) − ϕn(Yn)| ≤ |Xn − Yn|, for all n, a.s., and
since {|Xn − Yn|, n ∈ Z} is stationary and ergodic, this a.s. monotonicity may only hold if
|Xn − Yn| = r, for some constant r ≥ 0. Thus, a necessary and sufficient condition for the
two solutions to coincide is that

P (|ϕ0(X0) − ϕ0(Y0)| < |X0 − Y0|) > 0.
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A classical example where this is the case is the G/G/s queue, that is, the s-server queue
with stationary-ergodic data. Let λ, µ be the arrival and service rates, respectively. Here,
there is a minimal and a maximal stationary solution which, provided that λ < sµ, coincide
a.s. For details see Brandt et al. [12].

6.2. The Monotone-Homogeneous-Separable (MHS) framework

Consider a recursion of the form

Wn+1 = f(Wn, ξn, τn),

where ξn are general marks, and τn ≥ 0. The interpretation is that τn is the interarrival
time between the n-th and n+ 1-th customer, and Wn is the state just before the arrival of
the n-th customer. We consider arrival epochs {Tn} such that Tn+1 − Tn = τn. We write
Wm,n for the solution of the recursion at index n when we start with a specific state, say 0,
at m ≤ n. Finally we consider a functions of the form

X[m,n] = fm+n−1(Wm,n;Tm, . . . , Tn; ξm, . . . , ξn),

which will be thought of as epochs of last activity in the system. For instance, when we
have an s-server queue, X[m,n] represents the departure time of the last customer when
the queue is fed only by customers with indices from m to n. Correspondingly, we define
the quantity

Z[m,n] := X[m,n] − Tn,

the time elapsed between the arrival of the last customer and the departure of the last
customer. The framework is formulated in terms of the X[m,n], Z[m,n] and their dependence
on the {Tn}. For c ∈ R, let {Tn} + c = {Tn + c}. For c > 0, let c{Tn} = {cTn}. Define
{Tn} ≤ {T ′

n} if Tn ≤ T ′
n for all n. We require a set of four assumptions:

(A1) Z[m,n] ≥ 0

(A2) {Tn} ≤ {T ′
n} ⇒ X[m,n] ≤ X ′

[m,n].

The first assumption is natural. In the second one, X ′
[m,n] are the variables obtained by

replacing each Tn by T ′
n; it says that delaying the arrival epochs results in delaying of the

last activity epochs.

(A3) {T ′
n} = {Tn} + c⇒ X ′

[m,n] = X[m,n] + c.

This is a time-homogeneity assumption.

(A4) For m ≤ 
 < 
+ 1 ≤ n, X[m,�] ≤ T�+1 ⇒ X[m,n] = X[�+1,n].

If the premise X[m,�] ≤ T�+1 of the last assumption holds, we say that we have separability at
index 
. It means that the last activity due to customers with indices in [m, 
] happens prior
to the arrival of the 
+1-th customer, and so the last activity due to customers with indices
in [m,n] is not influenced by those customers with indices in [m, 
]. Basic consequences of
the above assumptions are summarized in:

Lemma 1. (i) The response Z[m,n] depends on Tm, . . . , Tn only through the differences
τm, . . . , τn−1.
(ii) Let a ≤ b be integers. Let T ′

n = Tn + Z[a,b]1(n > b), T ′′
n = Tn − Z[a,b]1(n ≤ b). And let

X ′
[m,n], X

′′
[m,n] be the corresponding last activity epochs. Then both of them exhibit separabil-

ity at index b.
(iii) The variables X[m,n], Z[m,n] increase when m decreases.
(iv) For a ≤ b < b+ 1 ≤ c, Z[a,c] ≤ Z[a,b] + Z[b+1,c].
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Proof. (i) Follows from the definition Z[m,n] = X[m,n] − Tn and the homogeneity assumption
(A3).
(ii) Obviously, Z[a,b] ≤ τb + Z[a,b], and so X[a,b] − Tb ≤ τb + Z[a,b], which implies X[a,b] ≤
Tb+1 + Z[a,b]. The right-hand side is T ′

b+1, by definition. The left-hand side is equal to X ′
[a,b]

because T ′
n = Tn for n ≤ b. So X ′

[a,b] ≤ T ′
b+1 and this is separability at index b. Similarly for

the other variable.
(iii) Let a = b = m in (ii). Since we have separability at index m, we conclude that
X ′′

[m,n] = X ′′
[m+1,n]. But T ′′

k = Tk for k ∈ [m + 1, n] and so X ′′
[m+1,n] = X[m+1,n]. On the

other hand, {T ′′
k } ≤ {Tk} and so, by (A2), X ′′

[m,n] ≤ X[m,n]. Thus X[m,n] ≥ X[m+1,n]. And so
Z[m,n] ≥ Z[m+1,n] also.
(iv) Apply (ii) again. Since {Tk} ≤ {T ′

k}, (A2) gives X[a,c] ≤ X ′
[a,c]. By separability at index

b, as proved in (ii), we have X ′
[a,c] = X ′

[b+1,c]. Because T ′
k = Tk + Z[a,b] for all k ∈ [b + 1, c],

we have, by (A3), X ′
[b+1,c] = X[b+1,c] + Z[a,b]. Thus, X[a,c] ≤ X[b+1,c] + Z[a,b]. Subtracting Tc

from both sides gives the desired.
Introduce next the usual stationary-ergodic assumptions. Namely, consider (Ω,F , P )

and a stationary-ergodic flow θ. Let ξn = ξ0◦θn, τn = τ0◦θn, set T0 = 0, and suppose
Eτ0 = λ−1 ∈ (0,∞), EZ0,0 < ∞. Stability of the original system can, in specific but
important cases, be translated in a stability statement for Z[m,n]. Hence we shall focus on
it. Note that Z[m,n]◦θk = Z[m+k,n+k] for all k ∈ Z. For any c ≥ 0, introduce the epochs
c{Tn} = {cTn} and let X[m,n](c), Z[m,n](c) be the quantities of interest. The subadditive
ergodic theorem gives that

γ(c) := lim
n→∞

1

n
Z[−n,−1](c) = lim

n→∞
1

n
EZ[−n,−1](c)

is a nonnegative, finite constant. The previous lemma implies that γ(c) ≥ γ(c′) when c > c′.
Similarly, limn−1X[1,n](c) = γ(c) + λ−1c, and the latter quantity increases as c increases.

Monotonicity implies that Z[−n,−1](c) increases as n increases, and let Z̃(c) be the limit.

Ergodicity implies that P (Z̃(c) <∞) ∈ {0, 1}. Put Z̃ = Z̃(1). The stability theorem17 is:

Theorem 6. If λγ(0) < 1 then P (Z̃ <∞) = 1. If λγ(0) > 1 then P (Z̃ <∞) = 0.

Proof. Assume first that λγ(0) > 1. Fix n ≥ 1. Define T ′
k = T−n for all k ∈ Z. Hence

X ′
[−n,0](1) ≤ X[−n,0](1) = Z[−n,0](1), by (A2). On the other hand, by (A3), X ′

[−n,0](1) =

X[−n,0](0) + T−n = Z[−n,0](0) + T−n. Thus, n−1Z[−n,0](1) ≥ n−1Z[−n,0](0) + n−1T−n, and,
taking limits as n→ ∞, we conclude lim inf n−1Z[−n,0](1) ≥ γ(0) − λ−1 > 0, a.s.

Assume next that λγ(0) < 1. Let γn(0) := EZ[−n+1,0](0)/n. Since γ(0) = limn→∞ γn(0) =
infn γn(0), we can find an integer K such that λγK(0) < 1. Consider next an auxil-
iary single server queue with service times sn := Z[−Kn+1,−K(n−1)](0) and interarrival times

tn :=
∑−K(n−1)

i=−Kn+1 τi. Notice that {(tn, sn), n ∈ Z} is stationary-ergodic and consider the wait-
ing timeWn of this auxiliary system: Wn+1 = (Wn+sn−tn)+. Since Esn = γK < λ−1 = Etn,
the auxiliary queue is stable. Since the separability property holds, we have the following
domination:

Z[−nK+1,0](1) ≤ Wn◦θ−n + s0, a.s.,

where Wn here is the waiting time of the n-th customer if the queue starts empty. By
the Loynes’ scheme, Wn◦θ−n converges (increases) to an a.s. finite random variable. Hence
Z̃ = limn Z[−nK+1,0](1) is also a.s. finite.

17This is known as the “saturation rule”
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Remark: The saturation rule (in an extended form) was first introduced in the paper by
Baccelli and Foss [6]. A variant of the particular version presented here appears also in the
book by Baccelli and Brémaud [5].

7. Instability

In this last section, we present some new criteria for instability. We focus on a Markov chain
{Xn} in a Polish space X and adopt the following strong notion of transience (which is not
a standard one): a set B ⊆ X is called transient if Px(τB = ∞) > 0 for all x ∈ X , where
τB = inf{n ≥ 1 : Xn ∈ B} is the first return time to B. By instability, here, we mean that
the members of a certain class of sets is transient. More precisely, let L : X → R+ be a
“norm-like” function, i.e., suppose (at least) that L is unbounded. We say that the chain is
transient if each set of the form BN = {x ∈ X : L(x) ≤ N} is transient.

In the sequel, we will present criteria that decide whether limn→∞ L(Xn) = ∞, Px-a.s.
Clearly then, this will imply transience of each BN .

Thinking of L as a Lyapunov function, it is natural to seek criteria that are, in a sense,
opposite to those of Theorem 1. One would expect that if the drift Ex[L(X1) − L(X0)]
is bounded from below by a positive constant, outside a set of the form BN , then that
would imply instability. However, this is not true and this has been a source of difficulty
in formulating a general enough criterion thus far. To the best of our knowledge, the most
general criterion is Theorem 2.2.7. of Fayolle et al. [18] which is, however, rather restrictive
because (i) it is formulated for countable state Markov chains and (ii) it requires that a
transition from a state x to a state y, with L(x) − L(y) larger than a certain constant, is
not possible. However, it gives insight as to what problems one might encounter: one needs
to regulate, not only the drift from below, but also its size when the drift is large.

The theorem below is a generalization of the one mentioned above. First, define

σN := τBc
N

= inf{n ≥ 1 : L(Xn) > N}
∆ := L(X1) − L(X0).

We then have:

Theorem 7. Suppose there exist N,M, ε > 0 and a measurable h : [0,∞) → [1,∞) with
the property that h(t)/t be concave-increasing on 1 ≤ t < ∞, and

∫∞
1
h(t)−1dt < ∞, such

that

(I1) Px(σN <∞) = 1 for all x.

(I2) infx∈Bc
N
Ex[∆,∆ ≤M ] ≥ ε.

(I3) The family {Px(h(∆) ∈ ·), x ∈ Bc
N} is uniformly integrable,

i.e., limK→∞ supx∈Bc
N

∫∞
K
tP (h(∆) ∈ dt) = 0.

Then Px(limn→∞ L(Xn) = ∞) = 1, for all x ∈ X .

This theorem is proved in detail in [19]. We remark that there are extensions for non-
homogeneous Markov chains. Condition (I1) says that the set Bc

N is recurrent. Of course, if
the chain itself forms one communicating class, then this condition is automatic. Condition
(I2) is the positive drift condition. Condition (I3) is the condition that regulates the size of
the drift. We also note that an analog of this theorem, with state-dependent drift can also
be derived. (The theorem of Fayolle et al. does use state-dependent drift.)
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To see that (I3) is essential, consider the following example: Let X := Z+, and {Xn} a
Markov chain with transition probabilities

pi,i+1 = 1 − pi,0, i ≥ 1,

p0,1 = p0,0 = 1/2.

Suppose that 0 < pi,0 < 1 for all i, and
∑

i pi,0 < ∞. Then the chain forms a single
communicating class. Also, with τ0 the first return to 0, we have

Pi(τ0 = ∞) =
∏
j≥i

(1 − pj,0) > 0.

So the chain is transient. However note that the natural choice for L, namely L(x) ≡ x
trivially makes (I2) true.

We finally mention that, frequently, the choice h(t) := t1+δ, for some δ ∈ (0, 1), may be
a suitable one. In such a case, only conditions (I1) and (I2) are needed.
Remark: We presented here a criterion in terms of drifts of the original Markov chain.
There exist recent results for instability of a stochastic network in terms of conditions
for their fluid limits (see, e.g., Meyn [29], Puhalskii and Rybko [33], and Gamarnik and
Hasenbein [23]).

8. Other Methods

We have not covered every possible method in this paper. In fact, there are other ones,
some of which are more case-specific.

For instance, there are comparison methods. Frequently, it is the case that one can
somehow dominate the system under study by a system whose stability is known or can
easily be deciphered. Quite useful for this kind of method are the stochastic ordering
concepts; see, e.g., Baccelli and Brémaud [5].

Another method is based on contractivity: Suppose that the Markov chain {Xn} in
a Polish space X with metric ρ is represented by the SRS Xn+1 = f(Xn, ξn) which is
contractive in the first argument in the following sense: There is x0 ∈ X such that

ρ(f(x, ξ0), f(x0, ξ0)) ≤ ρ(x, x0), a.s., for all x ∈ X .
Suppose also that the set BN0 = {x : ρ(x, x0) ≤ N} is positive recurrent and compact.
Write Xx

n for the chain started at x (i.e., the solution of the SRS started at x). In addition
to the above, assume that there is m ∈ N, γ, δ ∈ (0, 1), such that

P (ρ(Xx
m, X

x0
m ) ≤ γρ(x, x0)) > δ, for all x ∈ BN0 .

Since contractivity implies continuity, we can use what is described in Sections 5.2, 5.3 to
prove that there exists at least one stationary distribution. Then we can use the inequal-
ities stipulated above to prove convergence toward this stationary distribution; see, e.g..
Borovkov [8].

We also mention that, in several applications, direct use of the subadditive ergodic
theorem (see, e.g., Liggett [26, pg. 277]) is used to prove stability. It played a key role,
for instance, in Section 6.2, where the “monotone-homogeneous-separable” framework was
discussed.

Martingale arguments are used either explicitly or implicitly. For example, the instability
considerations of Section 7 depend crucially on martingale arguments (c.f. [19]). Also, the
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proof of Theorem 1 makes implicit use of martingale arguments; special cases of it are
frequently formulated in terms of supermartingales. (For standard basic martingale theory
see, e.g., Chung [14] and Shiryayev [36].)

Finally, large deviation techniques (which we did not touch at all in this survey) have
also been used in stability and instability studies of various stochastic systems; see, e.g.,
Puhalskii and Rybko [33], and Gamarnik and Hasenbein [23].
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