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Abstract The network reliability in multi-server environment is measured by the connectivity between a
vertex and a vertex subset (NA-connectivity). The problem of augmenting a graph by adding the smallest
number of new edges to meet NA-edge(vertex)-connectivity requirement is an important optimization prob-
lem that contributes to the network design problem to increase the reliability of a current network by adding
the smallest number of links. This problem is a generalization of the well-known connectivity augmentation
problems.

In this paper, we focus on the NA-edge-connectivity augmentation problem. First, we prove the NP-
completeness of the problem which determines whether we can augment a graph to a 1-NA-edge-connected
graph by adding a given number or less new edges. Next, we prove that the problem of augmenting a
1-NA-edge-connected graph or a 0-NA-edge-connected graph to be 2-NA-edge-connected graph by adding
the smallest number of edges can be solved in polynomial time.

Keywords: Combinatorial optimization, graph theory, algorithm, connectivity augmen-
tation problem

1. Introduction

The network reliability of a communication network has been measured by its connectivity,
because a reliable network must ensure a route between any two nodes even if some links or
nodes fail. In recent communication networks, many WWW (World Wide Web) sites offers
their services by using some mirror servers which have the same contents as an original
server. In such a multi-server environment, it is more practical and important for a reliable
network to ensure some independent routes between a node and the set of nodes in which
an original and its mirror servers are located. From this point of view, the NA-edge(resp.,
vertex)-connectivity between a vertex and a vertex subset was proposed in [7, 8], which is
an extended measure of the edge(resp., vertex)-connectivity and it is equal to the number
of edge(resp., vertex)-independent paths between the vertex and the vertex subset [7, 8].
When a graph and a family of its vertex subsets (areas) are given, if the minimum of the
NA-edge(resp., vertex)-connectivity for all pairs of a vertex and an area is k, the graph
is called k-NA-edge(resp., vertex)-connected. Some optimization problems based on the
concept of the NA-connectivity have been extensively studied. For example, the problem of
locating areas with NA-connectivity requirement (e.g. [9]) and the problem of determining
a spanning subgraph of a given NA-connectivity with the smallest cost (e.g. [11]) are closely
related to the practical network design problems.

In this paper, we investigate the problem of augmenting a graph by adding the small-
est number of new edges with NA-edge-connectivity requirement. Our contribution is the
following two results:
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NA-Edge-Connectivity Augmentation Problems 225

1. The problem of determining whether we can augment a graph to a 1-NA-edge-
connected graph by adding a given number or less new edges is NP-complete.

2. The problem of augmenting a 1 or 0 -NA-edge-connected graph to be a 2-NA-
edge-connected graph by adding the smallest number of edges can be solved in
O(pn + m) time, where n, m, and p are the number of vertices, edges, and areas.

From the similar motivation, the augmentation problems to meet edge(resp., vertex)-
connectivity requirement by adding the smallest number of new edges are closely related to
the NA-edge(resp., vertex)-augmentation problem, and they have been extensively studied
as an important subject, and many algorithms have been developed so far.

As to the edge-connectivity augmentation problem to determine whether a graph can be
a λ-edge-connected graph by adding b or less new edges, where λ and b are positive integers,
it can be solved in polynomial time (e.g. [13–16]).

Our results are in contrast to these known results. Indeed, the problem of augmenting
a graph to a 1-NA-edge-connected graph is NP-complete, although the edge-connectivity
augmentation problem can be always solved in polynomial time.

As to the vertex-connectivity augmentation problem defined analogously, the problem
augmenting a graph to a κ-vertex-connected graph can be solved in polynomial time for
κ = 2 [1, 5], for κ = 3 [5, 17], and κ = 4 [4].

The NA-edge(vertex)-connectivity augmentation problem has been also investigated,
since this problem was proposed and studied for the first time in [12]. In the report,
for the problem of augmenting a graph to a λ-NA-edge-connected graph, we proved that
the problem for λ = 1 is NP-complete and that the problem for λ = 2 can be solved in
polynomial time. In [6], it was proved based on the edge-splitting operation [2, 14] that
the problem for λ ≥ 3 can be solved in polynomial time (O(m + n(λ3 + n2)(p + λn +
n log n) log λ + pλn3 log(n/λ)) time). But the problems for λ ≤ 2 have not been solved by
the approach based on the edge-splitting operation so far.

The paper is organized as follows: In section 2, we define our problem after introducing
some basic notations. In section 3, we prove the NP-completeness of the problem which
determines whether we can augment a graph to a 1-NA-edge-connected graph by adding a
given number or less new edges. In section 4 and section 5, we prove that the problem of
augmenting a 1-NA-edge-connected graph and a 0-NA-edge-connected graph to be 2-NA-
edge-connected graph by adding the smallest number of edges can be solved in polynomial
time, respectively. In section 6, we give concluding remarks.

2. Preliminaries

Let G be an undirected multigraph with a vertex set V (G) and an edge set E(G). We define
an area graph (G,W) as a pair of a graph G and W = {Wi | Wi ⊆ V (G), i = 1, 2, . . . , p}.
We refer to each Wi as an area. If a vertex subset of G has a non-empty intersection with
every area of W , we say that the subset is area-complete.

The edge set between S and T (S, T ⊆ V (G), S ∩ T = ∅) is defined as E(S, T ; G) =
{(vi, vj) ∈ E(G) | vi ∈ S, vj ∈ T}. Let |E(S, T ; G)| be denoted by d(S, T ; G). When
T = V (G) − S, we refer to d(S, T ; G) as d(S; G). S is called a cut, when S and V (G) − S
are non-empty, and d(S; G) is called the cut size of S. A cut of size k is called a k-cut.

For vertex subsets P and Q (P ∩Q = ∅), when S satisfies that P ⊆ S and Q ⊆ V (G)−S,
we say that cut S separates P and Q. When d(S; G) ≥ k for all cuts S that separate P
and Q, P and Q is called k-edge-connected. Let λ(P,Q; G) be defined as the maximum
positive integer k such that P and Q is k-edge-connected. For P and Q where P ∩ Q �= ∅,
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let λ(P,Q; G) be defined as ∞. Let λ(G) be defined as minP,Q⊆V (G) λ(P,Q; G).
For W ⊂ V (G) and v ∈ V (G), λ(v,W ; G) is referred to as the NA-edge-connectivity

between v and W in G, and we say that v and W is k-NA-edge-connected in G for all
k ≤ λ(v,W ; G). We say that (G,W) is k-NA-edge-connected, when v and W is k-NA-edge-
connected for all pairs of v ∈ V (G) and W ∈ W. The maximum positive integer k such
that (G,W) is k-NA-edge-connected is referred to as the NA-edge-connectivity of (G,W).

There exists the partition (D1, D2, . . . , Dq) of V (G) (i.e. Di �= ∅, Di ∩ Dj = ∅ for
1 ≤ i, j(�= i) ≤ q, and V (G) =

⋃q
k=1 Dk ) such that λ(vp, vq; G) ≥ k holds for any two vertices

vp, vq if and only if vp, vq ∈ Di. We refer to each Di as a k-edge-connected component.
For a 1-edge-connected component, each subgraph induced by the vertices in the resultant
equivalence class is also called a 1-edge-connected component.

Now, we define the NA-edge-connectivity augmentation problem.

NA-Edge-Connectivity Augmentation Problem ((λ, δ)-NAECAP)
INSTANCE: A λ-NA-edge-connected graph (G,W), positive integers δ and b.
QUESTION: Is there an edge set Ê whose size is b or less such that the area graph (Ĝ,W)
defined by Ĝ = (V (G), E(G) ∪ Ê) is (λ + δ)-NA-edge-connected ?

In this paper, we show the following results:

Theorem 2.1
(0, 1)-NAECAP is NP-complete.

Theorem 2.2
(1, 1)-NAECAP can be solved in O(|W||V (G)| + |E(G)|) time.

Theorem 2.3
(0, 2)-NAECAP can be solved in O(|W||V (G)| + |E(G)|) time.

3. NP-completeness of (0, 1)-NAECAP

In this section, we prove Theorem 2.1 by reducing the set splitting problem which is NP-
complete.

Set Splitting Problem (SSP)[3]
INSTANCE: Collection C of subsets of a finite set S.
QUESTION: Is there a partition of S into two subsets S1 and S2 such that no subset in
C is entirely contained in either S1 or S2?

Proof of Theorem 2.1 : (0, 1)-NAECAP belongs to the class NP. Therefore, we show
its NP-hardness.

We construct an instance of NAECAP from an instance (S,C) of SSP as follows: Let
the area graph (G,W) be defined by G = (S, ∅) and W = C, and let the upper bound of
the number of augmented edges be |V (G)| − 2.

We can construct a solution of SSP from a solution of NAECAP as follows: Parti-
tion arbitrarily a set {D1, D2, . . . , Dp} of all 1-edge-connected components contained in a
1-NA-edge-connected area graph of a solution of NAECAP into two non-empty subclasses
{D1, D2, . . . , Di} and {Di+1, Di+2, . . . , Dp}. Let S1 (resp., S2) denote the vertex set com-
posed of those vertices appearing in the first (resp., second) class. As every 1-edge-connected
component has a common vertex with every area of W , S1 and S2 have a common vertex
with every set of C(= W), respectively. Therefore, these sets are a solution of SSP.
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Conversely, when a partition into S1 and S2 is a solution of SSP, we can make a solution
of NAECAP as two trees which span S1 and S2. Note that the number of all the edges in
these trees is |V (G)|−2, which is equal to the upper bound of NAECAP. Therefore, we can
make a solution of NAECAP from a solution of SSP.

From the above examination, NAECAP has a solution if and only if SSP has a solution.
Therefore, SSP is reducible to NAECAP in polynomial time. Consequently, NAECAP is
NP-hard.

4. (1, 1)-NAECAP

In this section, we prove Theorem 2.2.
The set of all 1-cuts of a 1-edge-connected graph can be compactly represented by a tree

T by shrinking each 2-edge-connected component to a vertex. In addition, we can make the
tree T ∗ such that T is a subdivision of T ∗. Therefore, a 1-edge-connected graph has its tree
representation T ∗ such that there are no vertices whose degree is less than or equal to two
except its leaves. As a 1-NA-edge-connected area graph is composed of some area-complete
1-edge-connected components, the area graph has its forest representation that is the set
of the tree representations of the 1-edge-connected components. We can make the forest
representation of an area graph in linear time. Therefore, in the rest of this paper, we
assume that an area graph is given by its forest representation.

When a 2-edge-connected component which is not area-complete is shrinked to a leaf in
the forest representation, we refer to the leaf as an ill vertex. We refer to a tree representation
of a 1-edge-connected component as a Type A tree if it includes only one ill vertex and as
a Type B tree if it includes two or more ill vertices. If there is a component C which is
neither a Type A tree nor a Type B tree, it is already 2-NA-edge-connected, since it has no
ill vertex. In addition, V (G) −C is area-complete, as a 1-NA-edge-connected area graph is
composed of some area-complete 1-edge-connected components. Therefore, in this section,
we assume that every 1-edge-connected component in an area graph is either a Type A tree
or a Type B tree.

There are only nine cases in Table 1 for combination of the number of Type A trees and
Type B trees in an area graph. We can determine the case to which an area graph belongs
in O(|W||V (G)|) time.

Table 1: A classification of area graphs
Type B:0 Type B:1 Type B:two or more

Type A:0 Case1 Case4 Case7
Type A:1 Case2 Case5 Case8

Type A:two or more Case3 Case6 Case9

Note: For example, ‘Type A:1’ means that the number of Type A trees is one.

Now, we use the following property to estimate the number of added edges.

Theorem 4.1 (Ito and Yokoyama [10])
An area graph (G,W) is λ-NA-edge-connected, if and only if all i-edge-connected compo-
nents C for 1 ≤ i ≤ λ satisfy at least one of the following conditions:
(1) C is area-complete,
(2) d(C; G) ≥ λ.

In (1, 1)-NAECAP, it is necessary to add at least �|K|/2
 edges where K is the set of the
ill vertices in an area graph, because each ill vertex must have at least two edges connected
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to other vertices by Theorem 4.1. We estimate the lower bound of the number of added
edges in the following lemma.

Lemma 4.1
The lower bound of the number of added edges for (1, 1)-NAECAP is{ |K|/2 + 1 (If a given area graph satisfies either the following Condition A or B)

�|K|/2
 (otherwise)

Condition A: The given area graph belongs to Case4, |K| is even, V (T ) is not area-
complete, and d(V (T ); G) = 1, where T is the minimal tree spanning all the vertices of
K.

Condition B: The given area graph belongs to Case5, |K| is even, and there is no ill vertex
v such that V (H) − {v} is area-complete, where H is the Type B tree.

Proof: First, assume that a given area graph satisfies the Condition A. As the area graph
of this case is a tree (note that a 1-NA-edge-connected area graph is given by a forest
representation), T is unique. We can make some 2-edge-connected-components by adding
|K|/2 edges to the ill vertices (i.e. the leaves of T ). In these components, there is at least
one 2-edge-connected-component whose cut size is one. Indeed, if V (T ) becomes a 2-edge-
connected-component, its cut size is one, from the condition that d(V (T ); G) = 1. If the
2-edge-connected-components are properly included in V (T ), there is a 2-edge-connected-
component which corresponds to a leaf in the tree representation, and its cut size is one. In
addition, no 2-edge-connected-components are area-complete, as V (T ) is not area-complete.
Therefore, there is a 2-edge-connected-component such that its cut size is one and that it
is not area-complete. It follows that we cannot satisfy the conditions of Theorem 4.1 by
adding |K|/2 edges. Hence, at least |K|/2 + 1 edges are necessary.

Next, assume that a given area graph satisfies the Condition B. Let P be the set of all
the ill vertices in H. Note that |P |(= |K|−1) is odd. The ill vertex in the Type A tree must
be connected to an ill vertex v in P . We show that there is at least one 2-edge-connected-
component whose cut size is one after (|P | − 1)/2 = |K|/2 − 1 edges are added to all the
ill vertices except v in P . The 2-edge-connected-components are included in V (T ) − {v},
where T is the minimal tree spanning all the vertices of P . If H has an area-complete
leaf, V (H) − {v} is area complete for every ill vertex v in P ; hence, it contradicts to the
Condition B. Therefore, H has no area-complete leaf, that is, H = T . It follows that all
2-edge-connected-components are included in V (H)−{v}. If V (H)−{v} becomes a 2-edge-
connected-component, its cut size is one. If the 2-edge-connected-components are properly
included in V (H) − {v}, there is a 2-edge-connected-component which corresponds to a
leaf in the tree representation, and its cut size is one. In addition, no 2-edge-connected-
components are area-complete, as V (H) − {v} is not area-complete. Therefore, there is a
2-edge-connected-component such that its cut size is one and it is not area-complete. It
follows that we cannot satisfy the conditions of Theorem 4.1 by adding 1 + (|P | − 1)/2 =
1 + |K|/2 − 1 = |K|/2 edges. Hence, at least |K|/2 + 1 edges are necessary.

Based on the algorithm proposed in [15], we define procedure CEA (Cyclic Edge Aug-
mentation) for a Type B tree H as follows: Let the set of the ill vertices and the set of
area-complete leaves in H be P and Q, respectively. Let T be the minimal tree spanning all
the vertices of P . As H is a tree by the assumption that a 1-NA-edge-connected area graph
is given by a forest representation, T is unique and it can be found in linear time. Let T (a)
be the subgraph of T and the minimal tree spanning all the ill vertices of P − {a}.
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Procedure CEA

Step.1 If |P | is odd and Q is empty, choose an ill vertex v∗. If |P | is odd and Q is not
empty, choose an ill vertex v∗ such that d(V (T (v∗)); H) ≥ 2. Let P̃ be P − {v∗}. If
|P | is even, let P̃ be P . Let T̃ be the minimal tree spanning all the vertices of P̃ .

Step.2 Scan T̃ in depth-first-search manner from a vertex in V (T̃ ), and number all ill
vertices vi (i = 1, 2, . . . , |P̃ |) in the order that they are first encountered. These
vertices are ordered cyclically so that the last ill vertex v|P̃ | is followed by the first ill
vertex v1.

Step.3 Add an edge between vi and vi+|P̃ |/2 for all i (i = 1, 2, . . . , |P̃ |/2), then stop.

If |P | is odd and Q is not empty, there is an ill vertex v∗ such that d(V (T (v∗)); H) ≥
2. Indeed, if d(V (T (v)); H) = 1 for an ill vertex v in P , we can take an ill vertex in
V (T )− {v} as v∗. We can find it in linear time. Therefore, we can execute procedure CEA
in O(V (H) + E(H)) time.

Figure 1 shows an example of procedure CEA.

: an ill vertex

Added edges

| P | is even : 

v1 v2 v3 v4 v5 v6

Added edges

v
*

v1 v2 v3 v4

| P | is odd : 

T

T

Figure 1: An example for CEA

Lemma 4.2
When procedure CEA is applied to Type B tree H, V (T̃ ) becomes a 2-edge-connected
component.

Proof: Assume that the last ill vertex v|P̃ | is followed by the first ill vertex v1. For any

1-cut C in T̃ , all the ill vertices in C have consecutive numbers, and V (H) − C has also
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consecutive numbers. Without loss of generality, we can assume that C contains less than
or equal to |P̃ |/2 ill vertices and that vi ∈ C. It follows that vi+|P̃ |/2 must lie in V (H)−C.

Therefore, the size of any 1-cut of T̃ is increased at least by one, as the edge (vi, vi+|P̃ |/2)
bridges C and V (H) − C. In addition, as H is a tree, there is no 2-edge-connected vertex
subset which includes T̃ properly. Hence, V (T̃ ) becomes a 2-edge-connected component.

Lemma 4.3
In a Type B tree H, if |P | ≥ 4, there are two ill vertices a and b such that d(V (T (a, b)); H) ≥
2, where T (a, b) is the minimal tree spanning all the ill vertices except {a, b} in H.

Proof: Number all the ill vertices in a manner similar to procedure CEA. If |P | ≥
4, the ill vertices in P − {v1, v�|P |/2�+1} does not have consecutive numbers. Therefore,
d(V (T (v1, v�|P |/2�+1)); H) ≥ 2.

The outline of the proposed algorithm is described as follows: For a 1-NA-edge-connected
area graph (G,W), we determine the case to which the area graph belongs. Then, we execute
the procedure of its case.

We describe the procedure for each case in Table 1.

Case1:
Procedure: If (G,W) belongs to Case1, then stop.

Case2:
Procedure: Add an edge between the ill vertex and another area-complete leaf. Then stop.
(see Figure 2)

: an area-complete vertex

: an ill vertex

Type A  tree

An added edge

This cycle C is 
an area-complete 2-edge-connected component.

apply the procedure 
of Case2

Figure 2: An example for case2

Case3:
Procedure: Make pairs of the Type A trees as many as possible, and then add an edge
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between two ill vertices in each pair. When the number of the Type A trees is odd, add an
edge to the remaining Type A tree by the procedure of Case2. Then stop. (see Figure 3)

Added edges

A 1-NA-edge-connected area graph 
that has three 1-edge-connected components (Type A trees).

: an area-complete vertex

: an ill vertex

Figure 3: An example for case3

From Case4 to Case6, let H, P , and Q be the Type B tree in (G,W), the set of the
ill vertices in H, and the set of the area-complete leaves in H, respectively. Let T be the
minimal tree spanning all the vertices in P . Let T (a) (resp., T (b, c)) be the subgraph of T
and the minimal tree spanning all the ill vertices except {a} (resp., {b, c}). Let K be the
set of all the ill vertices in (G,W).

Case4:
In this case, G = H, and K = P .

(4-1) |K|(= |P |) is even.
Procedure: Apply procedure CEA to H. If (G,W) satisfies the Condition A, then add
an edge between a vertex in P and a vertex in Q (we refer to this edge as the extra edge).
Then stop. (see Figure 4 and Figure 5)

(4-2) |K|(= |P |) is odd.
Procedure: Apply procedure CEA to H. If Q is not empty, add an edge between v∗ and
a vertex in Q; otherwise, add an edge between v∗ and an arbitrary vertex in V (T ) − {v∗}.
Then stop. (see Figure 6)

Case5:
(5-1) |K| is even
Procedure: If (G,W) satisfies the Condition B, apply procedure CEA to H, then add an
edge between v∗ and the ill vertex in the Type A tree. Furthermore, add an edge between
a vertex in V (H)−{v∗} and a vertex in the Type A tree (we refer to this edge as the extra
edge). Otherwise, if Q is not empty, find an ill vertex w such that d(V (T (w)); H) ≥ 2;
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A Type B tree H that 
satisfies the condition A.

(4-1) | P | is even : 

v1 v2 v3 v4

T: the tree spanning all the vertices of  P . 
V(T) is not area-complete.

v1 v2 v3 v4

This vertex subset including V(T) becomes 
an area-complete 2-edge-connected component.

Added edges

extra edge

: an area-complete vertex

: an ill vertex

Figure 4: An example (1) for |P | is even in case4

A Type B tree H that does not 
satisfies the condition A.

(4-1) | P | is even : 

v1 v2 v3 v4 v1 v2 v3 v4

Added edges

: an area-complete vertex

: an ill vertex

T : the tree spanning all the vertices of  P . 

V(T) becomes a 2-edge-connected component, 
and the cut size of V(T) is more than or 
equal to two .

Figure 5: An example (2) for |P | is even in case4

if Q is empty, find an ill vertex w such that V (H) − {w} is area-complete. Then, apply
procedure CEA to H by using w as v∗, and add an edge between v∗(= w) and the ill vertex
in the Type A tree. Then stop. (see Figure 7 and Figure 8)

(5-2) |K| is odd
Procedure: Apply procedure CEA to H, then add an edge between a vertex in V (T ) and
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(4-2) | P | is odd : 

Added edges

v1 v
*

v2 v1 v
* v2

: an area-complete vertex

: an ill vertex

This vertex subset including V(T) becomes 
an area-complete 2-edge-connected component.

T : the tree spanning all the vertices of  P .
The cut size of V(T)-{v*}is more 
than or equal to two .

Figure 6: An example for |P | is odd in case4

the ill vertex in the Type A tree. Then stop. (see Figure 9)

v1 v
*

v2

(5-1) | K | is even : 

: an area-complete vertex

: an ill vertex

Added edges

A Type B tree H that satisfies the condition B.

Added edge
(Extra edge)

Type A tree

Type B tree

apply the procedure 
of Case5

This vertex subset including V(T) becomes 
an area-complete 2-edge-connected component.

Figure 7: An example (1) for |K| is even in case5

Case6:
Procedure: If |P | ≥ 4, find two ill vertices a and b such that d(V (T (a, b)); H) ≥ 2;
otherwise, choose two ill vertices a and b in P . Add the edges (t1, a) and (t2, b) for the
ill vertices t1 and t2 in different two Type A trees. If |P | ≥ 4, apply procedure CEA to
the resultant tree. Then, apply the procedure of Case1, Case2, or Case3 according to the
number of the resultant Type A trees. Then stop. (see Figure 10)
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v1 v
*

= w

v2

(5-1) | K | is even : 

: an area-complete vertex

: an ill vertex

Added edges

Type A tree Type B tree

This vertex subset becomes 
a 2-edge-connected component and 
its cut size becomes more than or equal to two.

A Type B tree H that does not satisfies the condition B.

Figure 8: An example (2) for |K| is even in case5

(5-2) | K | is odd : 

: an area-complete vertex

: an ill vertex

v1 v2 v3 v4

Added edges

Type A tree Type B tree

This vertex subset becomes 
a 2-edge-connected component and 
its cut size becomes more than or equal to two .

Figure 9: An example for |K| is odd in case5

From Case7 to Case9, let Hi, Pi, and Qi (1 ≤ i ≤ t) be a Type B tree in (G,W), the set
of the ill vertices in Hi, and the set of the area-complete leaves in Hi, respectively. Let Ti be
the minimal tree spanning all the vertices in Pi. If |Pi| < 4, let ai and bi be two ill vertices in
Hi; otherwise, let ai and bi be two ill vertices in Hi such that d(V (Ti(ai, bi)); Hi) ≥ 2, where
Ti(ai, bi) be the subgraph of Ti and the minimal tree spanning all the ill vertices except
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: an area-complete vertex

: an ill vertex

a v1 b v2

Added edges

Type A tree Type B tree Type A tree

This vertex subset becomes 
a 2-edge-connected component and 
its cut size becomes more than or equal to two .

Figure 10: An example for case6

{ai, bi}. Let K be the set of all the ill vertices in (G,W).

Case7:
Procedure: Add edges (b1, a2), (b2, a3), . . ., (bt−1, at), (bt, a1). We refer to these edges
as the cycle edges. If the resultant graph is 2-NA-edge-connected, then stop. If the tree
representation of the resultant graph is a Type A (resp., Type B) tree, apply the procedure
of Case2 (resp., Case4), then stop. (see Figure 11)

Case8:
Procedure: Add edges (b1, a2), (b2, a3), . . ., (bt−1, at), (bt, a1). If the resultant graph is
2-NA-edge-connected, apply the procedure of Case2 to the remaining Type A tree, then
stop. If the tree representation of the resultant graph is a Type A (resp., Type B) tree,
apply the procedure of Case3 (resp., Case5), then stop.

Case9:
Procedure: Add edges (b1, a2), (b2, a3), . . ., (bt−1, at), (bt, a1). If the resultant graph is
2-NA-edge-connected, apply the procedure of Case3 to the remaining Type A trees, then
stop. If the tree representation of the resultant graph is a Type A (resp., Type B) tree,
apply the procedure of Case3 (resp., Case6), then stop.

Now, we prove Theorem 2.2.

Proof of Theorem 2.2 : First, we prove that a given area graph (G,W) becomes 2-NA-
edge-connected with the smallest number of the added edges by the procedure of each case.

Case1:
(G,W) is already 2-NA-edge-connected.

c© Operations Research Society of Japan JORSJ (2004) 47-4



236 H. Miwa & H. Ito

: an area-complete vertex

: an ill vertex

a1 b1

Added edges

Type B tree Type B treeType B tree

a2 b2
a3 b3

A tree representation of
the resultant graph

v1 v2 v3 v4

Added edges

This vertex subset becomes 
a 2-edge-connected component and 
its cut size becomes more than or equal to two .

Figure 11: An example for case7

Case2:
The edge added by the procedure makes a cycle C including the ill vertex. V (C) is an
area-complete 2-edge-connected component, because C includes the area-complete leaf.

There exists at least one area-complete leaf in G. Assume that there is no area-complete
leaf but only one ill vertex. It follows that G is not area-complete, because G is composed
of only one ill vertex. This contradicts to the assumption that G is 1-NA-edge-connected.
Therefore, there is at least one area-complete leaf, and we can execute the procedure.

Consequently, the area graph to which an edge is added by the procedure satisfies the
conditions of Theorem 4.1.

In addition, the number of the added edge by the procedure is the smallest, because
�|P |/2
 = 1 is the lower bound by Lemma 4.1.

Case3:
The degree of every ill vertex becomes two. Therefore, the resultant area graph satisfies the
conditions of Theorem 4.1.

The number of edges added by the procedure is �|P |/2
. It is the smallest by Lemma 4.1.
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Case4:
(4-1) |K|(= |P |) is even.
When procedure CEA is applied to H, V (T ) becomes a 2-edge-connected component by
Lemma 4.2.

If V (T ) is area-complete, the resultant area graph satisfies the conditions of Theorem 4.1.
Even if V (T ) is not area-complete, the resultant area graph also satisfies the conditions

of Theorem 4.1. We show this fact as follows: (1) When d(V (T ); H) ≥ 2, the conditions
of Theorem 4.1 are satisfied. (2) When d(V (T ); H) = 1, the area graph satisfies the Con-
dition A. In this case, the extra edge between P and Q is added by the procedure. It is
possible to add the extra edge, because Q �= ∅ from the assumption that d(V (T ); H) = 1.
The extra edge makes a new cycle. The union U of this cycle and V (T ) becomes a 2-
edge-connected component. In addition, U is area-complete, as U includes a vertex in Q.
Hence, the resultant area graph also satisfies the conditions of Theorem 4.1. (3) When
d(V (T ); H) = 0, T = H. This implies that V (T ) is area-complete. But it contradicts that
V (T ) is not area-complete. Therefore, this case is impossible.

If (G,W) satisfies the Condition A, the number of edges added by the procedure is
|P |/2 + 1; otherwise, it is |P |/2. It is the smallest by Lemma 4.1.

(4-2) |K|(= |P |) is odd.
When procedure CEA is applied to H, V (T )−{v∗} becomes a 2-edge-connected component
by Lemma 4.2. Furthermore, the union U of the new cycle including v∗ and V (T ) − {v∗}
becomes a 2-edge-connected component. If Q is not empty, U is area-complete, as U includes
a vertex in Q. If Q is empty, U is also area-complete, as U is equal to V (T ) which is area-
complete. Consequently, the resultant area graph satisfies the conditions of Theorem 4.1.

The number of edges added by the procedure is �|P |/2
. It is the smallest by Lemma 4.1.

Case5:
(5-1) |K| is even
Note that |P | is odd. If (G,W) satisfies the Condition B, the resultant area graph is 2-NA-
edge-connected. We show this fact as follows: Note that H = T , as shown in the proof in
Lemma 4.1. When procedure CEA is applied to H, V (T )−{v∗}(= V (H)−{v∗}) becomes a
2-edge-connected component by Lemma 4.2. Furthermore, as the procedure makes the cycle
including the extra edge and v∗, the union U of this cycle and V (H) − {v∗} becomes a 2-
edge-connected component. U is area-complete, as U includes V (H) which is area-complete.
Consequently, the resultant area graph satisfies the conditions of Theorem 4.1.

If (G,W) does not satisfy the Condition B, the resultant area graph is also 2-NA-edge-
connected. We show this fact as follows: V (T )−{w} becomes a 2-edge-connected component
by procedure CEA. If Q is empty, V (T )−{w}(= V (H)−{w}) is area-complete. Otherwise,
d(V (T (w)); H) ≥ 2. Consequently, in both cases, the resultant area graph satisfies the
conditions of Theorem 4.1.

If the area graph satisfies the Condition B, the number of edges added by the procedure
is |K|/2 + 1(= |P − 1|/2 + 2) , otherwise, |K|/2(= |P − 1|/2 + 1). It is the smallest by
Lemma 4.1.

(5-2) |K| is odd
Note that |P | is even. When procedure CEA is applied to H, V (T ) becomes a 2-edge-
connected component by Lemma 4.2. If T = H, V (T )(= V (H)) is area-complete. Other-
wise, as there is an area-complete leaf, d(V (T ); Ĝ) ≥ 2 where Ĝ is the resultant area graph.
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Consequently, in both cases, Ĝ satisfies the conditions of Theorem 4.1.
The number of edges added by the procedure is �|K|/2
(= |P |/2 + 1). It is the smallest

by Lemma 4.1.

Case6:
When two edges (t1, a) and (t2, b) are added, the set of the ill vertices in H becomes P−{a, b}.
If |P −{a, b}| is even (note that |P | ≥ 4), V (T (a, b)) becomes a 2-edge-connected component
by Lemma 4.2, and d(V (T (a, b)); H) ≥ 2 by Lemma 4.3. Therefore, the resultant tree
becomes 2-NA-edge-connected. If |P − {a, b}| is odd, the resultant tree becomes a Type A
tree. If |P − {a, b}| = 0, the resultant tree is 2-NA-edge-connected. Consequently, the
resultant area graph has only Type A trees. By applying the procedure of Case1, Case2,
or Case3 according to the number of the resultant Type A trees, the area graph becomes
2-NA-edge-connected.

The number of edges added by the procedure is �|K|/2
. It is the smallest by Lemma 4.1.

Case7:
As the tree representation of the resultant graph by adding the cycle edges is a Type A
(resp., Type B) tree, it is a 2-NA-edge-connected component by applying the procedure of
Case2 (resp., Case4).

If the tree representation of the resultant graph by adding the cycle edges is a Type A tree
or a 2-NA-edge-connected graph, the number of edges added by the procedure is �|K|/2
,
which is the smallest by Lemma 4.1. If it is a Type B tree (let it be denoted by H̄), it
does not satisfies the Condition A. We show this fact as follows: Let P̄ and T̄ be the set
of the ill vertices in H̄ and the minimal tree spanning all the vertices in P̄ , respectively.
Assume that d(V (T̄ ); H̄) = 1. This implies that (1) V (T̄ ) was a 1-cut included in a Type B
tree or that (2) d(∪V (Ti); G) = 1. In the former case, P̄ has consecutive numbers, but it
contradicts to how to add the cycle edges. Hence, this case is impossible. In the latter case,
∪V (Ti) is area-complete, because there exits an area-complete tree Tp (1 ≤ p ≤ t) such that
d(Tp; Hp) = 0. Therefore, H̄ does not satisfies the Condition A. Consequently, the number
of added edges is �|K|/2
, which is the smallest by Lemma 4.1.

Case8:
The resultant area graph is obviously 2-NA-edge-connected.

If the tree representation of the resultant graph by adding the cycle edges is a Type A tree
or a 2-NA-edge-connected graph, the number of edges added by the procedure is �|K|/2
,
which is the smallest by Lemma 4.1. If it is a Type B tree (let it be denoted by H̄), it
does not satisfies the Condition B, because V (H̄)− {v} for an ill vertex v in H̄ includes an
area-complete Type B tree. Consequently, the number of added edges is �|K|/2
, which is
the smallest by Lemma 4.1.

Case9:
The resultant area graph is obviously 2-NA-edge-connected. And the number of added edges
is �|K|/2
, which is the smallest by Lemma 4.1.

Next, we estimate the computational complexity. Let n, m, and p be |V (G)|, |E(G)|, and
|W|, respectively. O(n+m) is necessary to make a forest representation in depth-first-search
manner. O(pn) is necessary to determine whether every tree in a forest representation is
a Type A or Type B tree by checking the areas including each vertex. Therefore, it takes
O(pn + m) time to determine the case to which the area graph belongs.
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O(n + m) time is necessary to execute the procedure of Case2 and Case3, respectively.
O(n+m) time is necessary to execute the procedure of Case4, because it takes O(n+m)

time to check the Condition A and it takes O(n + m) time to execute procedure CEA.
O(pn + m) time is necessary to execute the procedure of Case5. Because it takes O(pn)

time to check the Condition B and to find a vertex w, in addition to O(n + m) time to
execute procedure CEA.

O(n+m) time is necessary to execute the procedure of Case6, as it takes O(n+m) time
to find two ill vertices a and b such that d(V (T ) − {a, b}; H) ≥ 2 and other procedures can
be executed in O(n + m) time.

O(pn+m) time is necessary to execute the procedure of Case7, because it takes O(pn)+
O(n + m) time to check whether a tree representation of the resultant graph is a Type A
tree, Type B tree, or a 2-NA-edge-connected area graph.

O(pn+m) time is necessary to execute the procedure of Case8 (resp., Case9), because it
takes O(pn) + O(n + m) time to check whether a tree representation of the resultant graph
is a Type A tree, Type B tree, or a 2-NA-edge-connected area graph and to execute the
procedure of Case5 (resp., Case6).

Consequently, O(pn + m) time is necessary in total.

5. (0, 2)-NAECAP

In this section, we prove Theorem 2.3.
We assume that every 1-edge-connected component in an area graph is either a Type A

tree or a Type B tree by the following reason: Let C be a component which is neither a
Type A tree nor a Type B tree. C is already 2-NA-edge-connected. If V (G) − C is area-
complete, we apply the algorithm for (1, 1)-NAECAP or (0, 2)-NAECAP to the area graph
after removal of C; otherwise, we apply the algorithm for (0, 2)-NAECAP to the area graph
in which we regard C as an ill vertex. The smallest number of edges added to the modified
area graph is less than or equal to that to the original area graph, because the lower bound
B of the number of added edges does not change and we can augment an given area graph to
a 2-NA-edge-connected graph by adding B edges as we show in Theorem 2.2 and Theorem
2.3.

First, we estimate the lower bound of the number of added edges. In a forest represen-
tation of a 0-NA-edge-connected area graph, some trees which are not area-complete are
included. Let the set of such trees be F . We assume that F �= ∅. When a tree in F is
composed of an ill vertex v, we convert it to a Type B tree which is a complete graph on two
ill vertices included by the same areas as v. The number of added edges does not change by
this operation. Therefore, we can assume that all the trees included in F are the Type B
trees which are not area-complete. Let the set of the Type B trees not included in F be Ĥ.
Let the minimal tree spanning all the ill vertices in a Type B tree H in Ĥ be T and the set
of such trees be T̂ . Let the set of all the ill vertices in (G,W) be K.

If (G,W) satisfies the following conditions, the lower bound of the number of added
edges is |K|/2 + 1.

Condition C: (G,W) belongs to Case5 and |K| is even.

Condition D: (G,W) belongs to Case7, V (T̂ ) ∪ V (F ) is not area-complete, |K| is even,
and d(V (T̂ ) ∪ V (F ); G) = 1.

Condition E: (G,W) belongs to Case8, |K| is even, and there is no ill vertex v included
in a Type B tree with three or more ill vertices such that V (Ĥ) ∪ V (F ) − {v} is area-
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complete.

We show that, if the above conditions are satisfied, the lower bound of the number of
added edges is |K|/2 + 1.

Condition C:

In this case, Ĥ = ∅ and V (F ) is not area-complete. Because, if V (F ) is area-complete,
F is composed of an area-complete Type B tree and it contradicts to the assumption.
Therefore, two edges must be added between the Type B tree in F and the Type A tree
to increase the cut size of V (F ) to two. As at least |K|/2 edges are necessary to increase
the degree of all the ill vertices to two, only one edge is added between the Type A tree
and the Type B tree in F by the addition of |K|/2 edges. Therefore, more one extra
edge must be added between the Type B tree in F and the Type A tree. Consequently,
at least |K|/2 + 1 edges must be added.

Condition D:

We must add at least |K|/2 edges to increase the degree of all the ill vertices to two.
But more one edge must be added between V (T̂ ) ∪ V (F ) and V (G) − (V (T̂ ) ∪ V (F )),
because V (T̂ ) ∪ V (F ) is not area-complete and d(V (T̂ ) ∪ V (F ); G) = 1. Therefore, at
least |K|/2 + 1 edges must be added.

Condition E:

When (G,W) satisfies the Condition E, there are two cases; (1) there is no ill vertex v
such that V (Ĥ)∪ V (F )−{v} is area-complete, or (2) there is an ill vertex v included in
a Type B tree with two ill vertices such that V (Ĥ) ∪ V (F ) − {v} is area-complete.

The former case (1): It is necessary to add an edge to increase the cut size of V (Ĥ)∪
V (F ) − {v} from one to two for an ill vertex v. |K|/2 edges are necessary to increase
the degree of all the ill vertices to two. In addition to the edge between v and the
ill vertex in the Type A tree, |K|/2 − 1 edges are necessary for |K| − 2 ill vertices in
V (Ĥ)∪V (F )−{v}. Therefore, we cannot increase the cut size of V (Ĥ)∪V (F )−{v} to two
by adding |K|/2 edges; hence, one extra edge must be added between V (Ĥ)∪V (F )−{v}
and V (G)− (V (Ĥ)∪V (F )−{v}). Consequently, at least |K|/2+1 edges must be added.

The latter case (2): An edge between v and the ill vertex in the Type A tree must be
added. There is a Type B tree with three or more ill vertices, because the number of the
ill vertices in V (Ĥ) ∪ V (F ) is odd. Therefore, for any |K|/2 edges augmentation, there
is a path Pv from v to an ill vertex v′ in a Type B tree with three or more ill vertices.
V (Ĥ)∪V (F )−V (Pv) is not area-complete, because, otherwise, there exists the ill vertex
v′ included in a Type B tree with three or more ill vertices such that V (Ĥ) ∪ V (F ) −
{v′} is area-complete, which contradicts to the Condition E. In addition, the cut size of
V (Ĥ) ∪ V (F ) − V (Pv) is one. Therefore, there is no |K|/2 edges augmentation to meet
the requirement, and |K|/2 + 1 edges must be added.

The algorithm is basically the same as that of (1, 1)-NAECAP, but we modify the fol-
lowing procedures:

Case5: If the number of the ill vertices in the Type B tree H ′ in F is less than or equal to
three, let a and b be two ill vertices in H ′; otherwise, let a and b be two ill vertices in
H ′ such that d(V (H ′(a, b)); H ′) ≥ 2 where H ′(a, b) is the minimal tree spanning all the
ill vertices except {a, b} in H ′. Add an edge between vertex a (resp., vertex b) and an
area-complete leaf (resp., the ill vertex) in the Type A tree. Apply procedure CEA to
the resultant area graph. Then, if |K| is even, add an edge between v∗ and a vertex in
the Type A tree.
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Case7: Apply the procedure of Case7. If (G,W) satisfies the Condition D, add an extra
edge between a vertex in V (T̂ ) ∪ V (F ) and a vertex in V (G) − (V (T̂ ) ∪ V (F )).

Case8: When |K| is odd or when |K| is even and the Condition E is satisfied: Let a0 and
b0 be an area-complete leaf and the ill vertex in the Type A tree, respectively, and choose
ai and bi in every Type B tree Hi (1 ≤ i ≤ t) in the similar manner to Case7. Add the
cycle edges (b0, a1), (b1, a2), . . ., (bt−1, at), (bt, a0). Then, apply procedure CEA to the
resultant graph.
When |K| is even and the Condition E is not satisfied: If d(V (T̂ ) ∪ V (F ); G) ≥ 1, add
the cycle edges to the trees and choose an ill vertex v∗; otherwise, let v∗ be an ill vertex
included in a Type B tree with three or more ill vertices such that V (Ĥ) ∪ V (F )− {v∗}
is area-complete, and add the cycle edges to the trees induced by V (Ĥ) ∪ V (F ) − {v∗}
from the Type B trees. Then, when the tree representation of the resultant graph is a
Type A tree (resp., a Type B tree), apply the procedure of Case3 (resp., apply procedure
CEA to the resultant graph and add an edge between v∗ and the ill vertex in the Type A
tree).

Case9: Make pairs of the Type A trees as many as possible, and then add an edge between
two ill vertices in each pair. If the number of the Type A trees is even (resp., odd), apply
the procedure of Case7 (resp., Case8) to the remaining area graph.

Proof of Theorem 2.3 : As F �= ∅, we can exclude Case1, Case2, and Case3.
Case4: There are no Type B trees except F . Therefore, (G,W) is a 1-NA-edge-connected
area graph. By the same proof as that in the section 4, the resultant area graph becomes a
2-NA-edge-connected area graph and the number of the added edges is the smallest.
Case5: The 2-edge-connected component including all the ill vertices becomes area-complete,
as an area-complete leaf is included. Therefore, the resultant area graph becomes a 2-NA-
edge-connected area graph. If |K| is odd (resp., even), the number of the added edges is
2 + (|K| − 3)/2 = �|K|/2
 (resp., 2 + �(|K| − 3)/2
 = |K|/2 + 1). Therefore, the number of
the added edges is the smallest.
Case6: After an edge between the Type B tree in F and each of two Type A trees is
added, the Type B tree in F becomes a 2-NA-edge-connected area graph, an area-complete
Type A, or an area-complete Type B tree. Therefore, by the same proof as Case6, the
resultant area graph becomes a 2-NA-edge-connected area graph. The number of the added
edges is �|K|/2
, which is the smallest.
Case7: If there is no Type B tree except F , V (F ) must be area-complete, because (G,W)
is composed of some Type B trees in F and they have all areas in W . Therefore, by the
procedure, the resultant area graph becomes a 2-NA-edge-connected area graph. If there
are some Type B trees except F and (G,W) does not satisfy the Condition D, V (T̂ )∪V (F )
is area-complete, |K| is odd, or d(V (T̂ ) ∪ V (F ); G) ≥ 2. Therefore, by procedure CEA,
V (T̂ )∪V (F ) satisfies the conditions of Theorem 4.1. If there are some Type B trees except
F and (G,W) satisfies the Condition D, the cut size of V (T̂ ) ∪ V (F ) becomes two by the
extra edge, and the conditions of Theorem 4.1 are satisfied. If the area graph satisfies the
Condition D, the number of the added edges is |K|/2 + 1, which is the smallest; otherwise,
�|K|/2
 edges are added, which is also the smallest.
Case8: When |K| is odd or when |K| is even and the Condition E is satisfied: the
2-edge-connected component including all the ill vertices becomes area-complete, as an
area-complete leaf is included. Therefore, the resultant area graph becomes a 2-NA-edge-
connected area graph. When |K| is even and the Condition E is satisfied, the number of the
added edges is 2+ �(|K|−3)/2
 = |K|/2+1; when |K| is odd, 2+ �(|K|−3)/2
 = �|K|/2
.
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Therefore, the number of the added edges is the smallest.
When |K| is even and the Condition E is not satisfied: If d(V (T̂ ) ∪ V (F ); G) ≥ 1, the cut
size of the 2-edge-connected component including all the ill vertices in V (T̂ )∪ V (F )−{v∗}
becomes two. If d(V (T̂ ) ∪ V (F ); G) = 0, the 2-edge-connected component including all
the ill vertices in V (T̂ ) ∪ V (F ) − {v∗} becomes area-complete. Therefore, the resultant
area graph becomes a 2-NA-edge-connected area graph. The number of the added edges is
1 + (|K| − 2)/2 = |K|/2, which is the smallest.
Case9: The resultant area graph obviously becomes a 2-NA-edge-connected area graph,
and the number of the added edges is the smallest.

For the computational complexity, O(pn + m) time is obviously necessary in total to
execute the procedure.

6. Conclusions

In this paper, we investigated the problem to augment a given area graph to an area graph
with a given NA-edge-connectivity by adding the smallest number of new edges. As a result,
we proved the NP-completeness of the problem which determines whether we can augment
an area graph to a 1-NA-edge-connected area graph by adding a given number or less new
edges. In addition, we proved that the problem of augmenting a 1-NA-edge-connected area
graph or a 0-NA-edge-connected area graph to be a 2-NA-edge-connected area graph by
adding the smallest number of edges can be solved in polynomial time.

We have no results for the NA-vertex-connectivity augmentation problem. These are
remained for the future works.
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