
Journal of the Operations Research
Society of Japan

2004, Vol. 47, No. 4, 199-223

GRAPH ALGORITHMS FOR NETWORK CONNECTIVITY PROBLEMS

Hiroshi Nagamochi
Kyoto University

(Received September 30, 2003; Revised February 4, 2004)

Abstract This paper surveys the recent progress on the graph algorithms for solving network connectivity
problems such as the extreme set problem, the cactus representation problem, the edge-connectivity aug-
mentation problem and the source location problem. In particular, we show that efficient algorithms for
these problems can be designed based on maximum adjacency orderings.

Keywords: Graph theory, network flow, algorithm, MA ordering, minimum cut, edge-
connectivity, graph augmentation, source location problem

1. Introduction

Connectivity of networks is one of the most fundamental and useful notions for analyzing
various types of network problems in the practical applications such as communication
networks and VLSI layouts. Many graph algorithms have been developed for solving the
network connectivity problems. Needless to say, the minimum cut maximum flow theorem
discovered by P. Elias, A. Feinstein and C. F. Shannon [6] and L. R. Ford and D. R. Fulkerson
[7] is the basis of most of those algorithms. In particular, a maximum flow algorithm
that finds a maximum flow and a minimum cut between two specified vertices has been
used as a building block of many algorithms for solving connectivity problems. In the
last two decades, development of fast maximum flow algorithms has been an important
issue, and the time to solve the maximum flow problem in a network with n vertices and
m edges has been reduced to nearly O(nm) (see [1]). Contrary to this, H. Nagamochi
and T. Ibaraki [30] devised a new algorithm that finds a global minimum cut without
constructing any maximum flow. The algorithm consists of a graph traversal procedure
for computing a vertex ordering called a maximum adjacency ordering (MA ordering for
short), and can be implemented to run in O(mn+n2 log n) time, which is the currently best
time bound for computing a minimum cut deterministically. Afterwards, many efficient
algorithms for solving graph connectivity problems have been obtained by making use of
MA orderings. In particular, O(mn+n2 log n) time algorithms are obtained to the problem
such as the extreme set problem, the cactus representation problem, the edge-connectivity
augmentation problem, the edge-splitting problem and the source location problem with the
edge-connectivity requirement. In this survey, we show how such efficient algorithms can be
designed based on MA orderings.

The paper is organized as follows. After introducing basic definitions on connectivities
and flows in sections 2 and 3, we show useful properties of MA orderings in section 4. In
section 5, we review four basic structural representations of a given network, a Gomory-
Hu tree, maximal components, extreme sets and a cactus representation. We then show
O(mn + n2 log n) time algorithms that compute extreme sets and a cactus representation

199

© 2004 The Operations Research Society of Japan

200 H. Nagamochi

in sections 6 and 7, respectively. Based on these algorithms, we in section 8 prove that the
edge-connectivity augmentation problem and the edge-splitting problem can be solved in
O(mn + n2 log n) time. In section 9, reviewing the recent progress on the source location
problem, we show efficient algorithms for solving the problem with the edge- or vertex-
connectivity requirement.

2. Preliminaries

Let � (resp., �+) denote the set of reals (resp., nonnegative reals), and Z (resp., Z+) denote
the set of integers (resp., nonnegative integers). A singleton set {x} may be simply written
as x, and “ ⊂ ” implies proper inclusion while “ ⊆ ” means “ ⊂ ” or “ = ”.

Let V be a finite set. For two subsets A,B ⊂ V , we say that a subset X ⊆ V separates
A and B if A ⊆ X ⊆ V − B or B ⊆ X ⊆ V − A holds. For two subsets X,Y ⊆ V , we say
that X and Y intersect each other if X ∩ Y �= ∅, X − Y �= ∅ and Y −X �= ∅ hold, and that
X and Y cross each other if, in addition, V − (X ∪Y) �= ∅ holds. A family X ⊂ 2V is called
laminar if no two subsets in X intersect each other. A laminar family X ⊂ 2V is represented
by a rooted tree T = (V , E) as follows, where we use term “nodes” for tree representations.

(i) The node set V of T consists of nodes each of which corresponds to the set V or a subset
X ∈ X , i.e., V = X ∪ {V }, where the root corresponds to V . A node corresponding to
a subset X ⊆ V is denoted by uX .

(ii) For two nodes uX and uY , uX is a child of uY in T if and only if X ⊂ Y holds and X
contains no set X ′ with X ⊂ X ′ ⊂ Y . The set of children of a node u is denoted by
Ch(u).

Let G = (V,E) be an undirected graph with a vertex set V and an edge set E, where
each edge e may be weighted by a nonnegative real cG(e) ∈ �+. The weight cG(e) of an edge
e = (u, v) may be written as cG(u, v). A graph G is called unweighted if cG(e) = 1 for all
edges in E. The vertex set and edge set of a graph G may be denoted by V (G) and E(G),
respectively. Edges with the same end vertices are called multiple edges. A graph is called
multiple if it is allowed to have multiple edges; it is called simple otherwise. We say that
two vertices u and v are connected by a path consisting of edges with positive weights. Let
E+(G) denote the set of unordered pairs of vertices u, v ∈ V such that E contains an edge
e = (u, v) with cG(e) > 0. We denote n = |V |, e = |E| and m = |E+(G)|. The input size of
a multiple graph G = (V,E) is measured by n and e. However, a multigraph G = (V,E) can
be represented by an edge-weighted graph in which each cG(u, v) is defined by the number
of multiple edges between u and v. In this case, the input size is O(n+m). Figure 1 shows
an integer weighted graph G, where the number of lines between two vertices represents the
weight of the edge between them. Note that the graph G can be viewed as a multigraph
with multiplicity equal to the edge weight.

For a vertex v ∈ V , let ΓG(v) denote the set of neighbours of u (i.e., vertices adjacent
to v). For a subset X ⊆ V , let ΓG(X) = ∪v∈XΓG(v) − X. For two disjoint subsets
X,Y ⊂ V , EG(X,Y) denotes the set of edges joining a vertex in X and a vertex in Y ,
and dG(X,Y) denotes

∑
e∈EG(X,Y) cG(e). In particular, they may be written as EG(X) and

dG(X), respectively, if Y = V−X. Also EG(X,Y) and dG(X,Y) may be written as E(X,Y)
and d(X,Y), respectively, if G is clear from context.

A partition {X,V−X} of V such that X is a nonempty and proper subset of V is called
a cut of G. A cut {X,V −X} may be denoted by X for convenience. A subset E ′ ⊆ E
such that E ′ ⊇ E(X,V −X) for some cut X is called a cut set. For a cut set E ′ such that
E ′ = E(X,V −X), we say that cut {X,V −X} is generated by E ′. The cut size of a cut set

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 201

E ′ (resp., a cut X) is defined by
∑

e∈E′ cG(e) (resp., dG(X)). We say that cuts X and Y are
intersecting (resp., crossing) if the subsets X and Y are intersecting (resp., crossing). A cut
X separating two subsets A,B ⊂ V is called an (A,B)-cut.

For a subset F ⊆ E, G − F denotes the graph obtained from G by removing edges in
F . For a subset X ⊆ V , G − X denotes the graph obtained from G by removing vertices
in X together with edges incident to a vertex in X, and G/X denotes the graph obtained
from G by contracting vertices in X into a single vertex (deleting any resulting loops and
merging any resulting parallel edges into a single edge with the sum of their weights). For
a given graph G = (V,E), a star augmentation is a graph obtained by adding a new vertex
s to G together with new weighted edges between s and some vertices in V . The resulting
graph H is denoted by H = G + b, where b : V → �+ is a weight function such that, for
each v ∈ V , b(v) = cH(s, v), i.e., the weight of new edge (s, v), where we let b(v) = 0 if edge
(s, v) is not introduced in the star augmentation.

v1

v19

v14

v18

v16

v15

v12

v13

v11

v9

v7

v8

v10

v6

v2

v5

v4

v3

v17

Figure 1: An integer-weighted graph G

Edge-connectivity For two vertices u and v, a (u, v)-cut X with the minimum cut size
dG(X) over all (u, v)-cuts is called a minimum (u, v)-cut, and the cut size dG(X) is called
the local edge-connectivity λG(u, v) between u and v. The minimum cut size among all cuts
in G is called the edge-connectivity of G, and is denoted by λ(G); The edge connectivity of a
graph consists of a single vertex is set to be +∞. Note that λ(G) = minu,v∈V λG(u, v). A cut
X with dG(X) = λ(G) is called a minimum cut in G. For a real k ∈ �+, a graph G is called
k-edge-connected if λ(G) ≥ k. Given a subset S ⊆ V and a vertex v ∈ V − S, we define
the edge-connectivity between them as follows. Let λG(S, v) denote the minimum size of an
edge cut C ⊆ E that separates v from S (i.e., v and S belong to different components in
G−C). Notice that λG(S, v) is equal to λG/S(s, v) in the graph G/S obtained by contracting
S into a single vertex s.

Vertex-connectivity For a connected graph G = (V,E), a subset Z ⊂ V is called a
vertex-cut if G − Z has at least two connected components. The size of a vertex-cut Z is
defined by |Z|. The maximum number of internally vertex-disjoint paths from u to v is called
the local vertex-connectivity between u and v, and is denoted by κG(u, v). If u and v are not
adjacent, then κG(u, v) is equal to the minimum size of vertex-cut Z separating u and v (i.e.,
u and v belong to different components in G−Z). The minimum size of vertex-cuts in G is
called the vertex-connectivity, denoted by κ(G). Thus, κ(G) = min{κG(u, v) | u, v ∈ V }. A

c© Operations Research Society of Japan JORSJ (2004) 47-4

202 H. Nagamochi

graph G is called k-vertex-connected if |V | ≥ k+1 and κ(G) ≥ k (i.e., there is no vertex-cut
S with size at most k − 1). Given a subset S ⊆ V and a vertex v ∈ V − S, we define
the vertex-connectivity between them in the following two ways. Let κG(S, v) denote the
minimum size of a vertex cut Z ⊆ V −S−v that separates S and v, and κ̂G(S, v) denote the
maximum number of vertex-disjoint paths between S and v such that no two paths meet at
the same vertex in S. Hence κ̂G(S, v) ≥ k means that v remains connected to at least one
vertex in S after deleting any k− 1 vertices in V − v. Also observe that κ̂G(S, v) ≤ κG(S, v)
and κ̂G(S, v) ≤ |S|.

3. Maximum Flows and (s, t)-Minimum Cuts

To define flows, let G = (V,E) stand for a digraph with a set V of vertices and a set E
of edges, where each edge e ∈ E is weighted by a nonnegative real cG(e). For two disjoint
subsets X,Y ⊆ V , E(X,Y) in a digraph G denotes the set of edges e such that the tail
and head of e are contained in X and Y , respectively. Let s, t ∈ V be two designated
vertices, which we call the source and sink of G, respectively. A subset X ⊂ V such that
s ∈ X and t ∈ V −X is called an (s, t)-cut, and its weight, denoted by d+

G(X), is defined by∑
e∈E(X,V−X) cG(e).
A function f : E → �+ is called a flow (or (s, t)-flow) of G if it satisfies the following

two types of constraints:
Flow Conservation Law:

∑
e∈E(v,V −v)

f(e) −
∑

e∈E(V −v,v)

f(e)

= 0 if v ∈ V − {s, t},
≥ 0 if v = s,
≤ 0 if v = t.

(3.1)

Capacity Constraint:
f(e) ≤ cG(e) for all edges e ∈ E.

The flow value v(f) of f is defined by∑
e∈E(s,V −s)

f(e) −
∑

e∈E(V −s,s)

f(e)
(
= −

∑
e∈E(t,V −t)

f(e) +
∑

e∈E(V −t,t)

f(e)
)
.

A flow f that maximizes v(f) is called a maximum flow of G. It is a simple matter to see
that the flow value v(f) of an (s, t)-flow f cannot exceed the weight d+

G(X) of any (s, t)-cut
X. The next theorem provides many efficient algorithms for solving connectivity problems.

Theorem 3.1 [6, 7] For an edge-weighted graph G with a source s and a sink t,
max{v(f) | (s, t)-flows f} = min{d+

G(X) | (s, t)-cuts X}.
A maximum (s, t)-flow in a digraph with n vertices and m edges can be computed

efficiently. For example, A. Goldberg and R. E. Tarjan [15] have given an O(nm log(n2/m))
time algorithm. It is not difficult to see that a minimum (s, t)-cut X can be identified
from any maximum (s, t)-flow f . Moreover it is known that all minimum (s, t)-cuts can be
represented by a directed acyclic graph (DAG) with O(n+m) size [42].

A minimum (u, v)-cut for two specified vertices u and v in an edge-weighted undirected
graph G can be obtained O(nm log(n2/m)) time by applying the maximum flow algorithm
to the digraph G′ obtained from G by replacing each edge with two oppositely oriented
edges with the same edge weight.

In an unweighted undirected graph G, Theorem 3.1 implies the well-known theorem of
K. Menger, i.e., λG(u, v) is equal to the maximum number of edge disjoint paths between
u and v in G, and κG(u, v) is equal to the maximum number of internally vertex disjoint
paths between u and v in G.

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 203

4. Maximum Adjacency (MA) Ordering

For any pair of vertices s, t ∈ V in a graph G, we can compute the local edge-connectivity
λG(s, t) by using the conventional maximum flow algorithm (e.g., [1, 43]). However, the local
edge-connectivity λG(u, v) for some pair u, v ∈ V (which is specified by the algorithm) can
be computed by a significantly simpler method. An ordering σ = (v1, v2, . . . , vn) of vertices
in G is called a maximum adjacency ordering (MA ordering, for short) if it satisfies

dG({v1, v2, . . . , vi}, vi+1) ≥ dG({v1, v2, . . . , vi}, vj), 1 ≤ i < j ≤ n.

For example, the vertices v1, v2, . . . , v19 in the graph G in Figure 1 are numbered as an MA
ordering starting from v1.

4.1. MA ordering algorithm

An MA ordering can be found by starting with an arbitrary vertex v1 and by choosing the
(i+1)-th vertex vi+1 as a vertex u ∈ V −{v1, . . . , vi} that has the largest sum of the weights
of edges between u and the first i chosen vertices {v1, . . . , vi}. By using the data structure
of Fibonacci heap [11], an MA ordering starting from an arbitrarily chosen vertex v1 can
be obtained in O(n + e) or in O(m + n log n) time [30]. The following property of an MA
ordering is the starting point of the rest of development.

Theorem 4.1 For a graph G = (V,E), let vn−1 and vn be the last two vertices in an MA
ordering. Then:
(i) [9, 12, 30, 34, 44] λG(vn−1, vn) = dG(vn).
(ii) [10, 30] κG(vn−1, vn) = dG(vn) if G is simple and unweighted.

For example, λG(v18, v19) = dG(v18) = 6 for the last two vertices in an MA ordering σ =
(v1, v2, . . . , v19) of the graph G in Figure 1. Theorem 4.1(i) tells that we can identify the
local edge-connectivity between some two vertices u and v in nearly linear time. Unlike a
maximum flow algorithm in the previous section, we cannot specify the pair of vertices u
and v, which is part of the output. However, we can choose a vertex s so that it is not
output in a pair of vertices (by starting an MA ordering from s). Also, an output pair u
and v has a special type of a minimum (u, v)-cut that separates a single vertex v from the
rest of vertices. These properties have been used effectively to design faster algorithms for
several problems than those designed based on a maximum flow algorithm.

4.2. Constructing flows

We show a hierarchical structure of MA orderings, based on which a maximum flow with
flow value dG(vn) between the last two vertices vn−1 and vn can be computed efficiently.

For a given MA ordering σ = (v1, v2, . . . , vn) and a real δ ∈ [0, dG(vn)], we show a way of
splitting the graph G = (V,E) into two edge-weighted graphs A = (V,E) and B = (V,E)
such that cG(v, w) = cA(v, w) + cB(v, w) for all pairs v, w ∈ V . The edge weights of A and
B are determined as follows. For each i = 2, 3, . . . , n, let hi be the maximum index with

hi < i, (vhi
, vi) ∈ E and dG({v1, v2, . . . , vhi

}, vi) ≤ δ,

where we let hi = 0 if EG({v1, v2, . . . , vi−1}, vi) = ∅. The edge weight cA of A is defined by

cA(vh, vi) =

cG(vh, vi), if i < h ≤ hi

δ − dG({v1, v2, . . . , vhi
}, vi), if h = hi + 1

0, if h > hi + 1.

Then the edge weight cB of B is given by cB(e) = cG(e) − cA(e) for all edges e ∈ E. We
call the resulting graphs A and B the δ-skeleton and the δ-skin of G (with respect to σ),
respectively.

c© Operations Research Society of Japan JORSJ (2004) 47-4

204 H. Nagamochi

Lemma 4.1 [34] Let σ = (v1, v2, . . . , vn) be an MA ordering of a graph G. Then for any
real δ ∈ [0, dG(vn)], the δ-skin B of G satisfies λB(vn−1, vn) = dG(vn) − δ (= dB(vn)).

The lemma will be the basis of an O(nm+n2 log n) time algorithm for computing extreme
sets of a graph in section 6. Based on Lemma 4.1, one can also construct a maximum flow
between the last two vertices vn−1 and vn of an MA ordering σ by repeatedly eliminating
an acyclic δ-skin B for some δ > 0 from the graph (note that B contains a unique path
between vn−1 and vn, which will be part of a maximum (vn−1, vn)-flow). By using a dynamic
tree, this can be implemented to run in O(m log n) time [34]. Designing a slightly different
algorihtm from this, S. R. Arikati and K. Mehlhorn have shown the next result.

Lemma 4.2 [3] A maximum flow between the last two vertices of an MA ordering can be
computed in O(m) time and space.

The algorithm will be used to design an algorithm for constructing a cactus representaion
in section 7.

4.3. Sparsification

An MA ordering is also used to find a sparse spanning subgraph of a given graph G while
preserving the vertex- and edge-connectivities of G [10, 29].

Let σ = (v1, v2, . . . , vn) be an MA ordering of a multigraph G. For each i = 2, . . . , n,
we denote the edges between {v1, . . . , vi−1} and vi (i.e., those in EG({v1, . . . , vi−1}, vi)) by
ei,1 = (vj1 , vi), ei,2 = (vj2 , vi), . . . , ei,p = (vjp , vi) so that 1 ≤ j1 ≤ j2 ≤ · · · ≤ jp holds. By
defining

Fk = {e2,k, e3,k, . . . , en,k}, k = 1, 2, . . . , |E| (4.1)

(some of ei,k may be void), we have a partition (F1, . . . , F|E|) of E. Then it is not difficult
to see from the definition of an MA ordering that (V, Fi) is a maximal spanning forest in
G − (F1 ∪ F2 ∪ · · · ∪ Fi−1). For example, Figure 2 shows such spanning forests F1, . . . , F6

for the MA ordering σ = (v1, v2, . . . , v19) of the graph G in Figure 1, where we regard G as
a multigraph such that the number of lines between two vertices represents the number of
edge between them.

Theorem 4.2 For an unweighted multigraph G = (V,E), let F1, F2, . . . , F|E| be the partition
of E obtained from an MA ordering by (4.1), where Fi = Fi+1 = · · · = F|E| = ∅ possibly
holds for some i. Let Gk = (V, F1 ∪ F2 ∪ · · · ∪ Fk), for k = 1, 2, . . . , |E|. Then each Gk has
at most k(|V | − 1) edges and satisfies

(i) λGk
(u, v) ≥ min{λG(u, v), k} for all u, v ∈ V ,

(ii) κGk
(u, v) ≥ min{κG(u, v), k} for all u, v ∈ V if G is simple.

Since the above decomposition of G into forests F1, . . . , F|E| can be found in linear
time [10, 29], such a sparse spanning subgraph Gk is widely used as a fast preprocessing
for sparsifying a given graph G, in order to reduce the time complexity of many graph
connectivity algorithms (see [13, 14, 17, 24, 27] for its applications).

5. Network Structures

In this section, we review four types of data structures, Gomory-Hu trees, maximal com-
ponents, extreme sets and cactus representations, which all represent certain structural
information of a given graph. The first two structures can be constructed by applying a
maximum flow algorithm O(n) times, while we will see that the third and last ones can be
obtained by computing an MA ordering O(n) times.

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 205

v1

v19

v14

v18

v16

v15

v12

v13

v11
v9

v7

v8

v10

v6

v2

v5

v4

v3

v17

6

4

4

6
6

5

5

8
8

6

6

5

6
7

5

6

4

7

(b)(a)

: edges in F1

: edges in F2

: edges in F3

: edges in F4

: edges in F5

: edges in F6

v1

v19

v14

v18

v16

v15

v12

v13

v11 v9

v7

v8

v10

v6

v2

v5

v4

v3

v17

Figure 2: (a) A decomposition of the edge set of the multigraph G in Figure 1 into spanning
forests F1, . . . , F6, (b) A Gomory-Hu tree T for the graph G in Figure 1

5.1. Gomory-Hu trees

For an edge-weighted graph G = (V,E), an edge-weighted tree T = (V, F) on V (not
necessarily a subgraph of G) is called a flow equivalent tree of G if

λT (u, v) = λG(u, v) for every pair of u, v ∈ V .

The condition implies that the minimum edge weight in the unique path between u and v
in T is equal to λG(u, v). A flow equivalent tree T is called a Gomory-Hu tree of G if, for
each edge e = (u, v) in T ,

the cut {X,V −X} generated by e in T satisfies dG(X) = cT (u, v).

Figure 2(b) shows a Gomory-Hu tree for the graph G = (V,E) in Figure 1. R. E. Gomory
and T. C. Hu [16] have shown that a Gomory-Hu tree can be constructed by applying a
maximum flow algorithm O(n) times.

6

4

4

6
6

5

5

8

8

6

6
5

67

5

6

4

7

6

(b)

6

6

6
6

6

6

7

7

7

7
8

8

8
8

9
5

5 5

6

6

6

66

6

6

7

7

7

7
8

8

8 8

9

5

5 5

(a)

v1

v19

v14

v18

v16

v15

v12

v13

v11 v9

v7

v8

v10
v6

v2

v5

v4

v3

v17

v1

v19

v14

v18

v16

v15

v12

v13 v11 v9

v7

v8

v10

v6

v2

v5

v4

v3

v17

Figure 3: (a) The set Y(G) of maximal components for the graph G in Figure 1, (b) The
set X (G) of extreme sets for the graph G in Figure 1

c© Operations Research Society of Japan JORSJ (2004) 47-4

206 H. Nagamochi

5.2. Maximal components

Let G = (V,E) be an edge-weighted graph. For a given � ∈ �+, an �-edge-connected
component of G is defined to be a subset X of V such that (i) λG(u, u′) ≥ � for any u, u′ ∈ X
and (ii) for any u ∈ X and v ∈ V−X, λG(u, v) < � (i.e., X is inclusion-wise maximal subject
to (i)). Observe that all �-edge-connected components give rise to a partition of V .

An �-edge-connected component X ⊆ V is called maximal (with respect to �) if � =
minu,v∈X λG(u, v). A set X ⊆ V is simply called a maximal component if it is a maximal �-
edge-connected component for some � (note that the set of maximal �-edge-components may
not be a partition of V). Let Y(G) denote the set of all maximal components. We see that
Y(G) is a laminar family. For any two maximal components X,Y ∈ Y(G), X ⊂ Y can hold
only when X is an �-edge-connected component and Y is an h-edge-connected component
for some �, h with � > h. Figure 3(a) shows the set Y(G) of maximal components of the
graph G = (V,E) in Figure 1, where Y(G) is depicted on the Gomory-Hu tree of the graph
and the number inside the circle for each vertex vi indicates the cut size dG(vi).

We easily construct the family Y(G) of maximal components from any flow equivalent
tree T = (V, F) of G. Let λ1 < λ2 < · · · < λp be the distinct values in the edge weights in T ,
which are also the distinct values � such that there is a maximal �-edge-connected component
of G. By definition, for any λi, each connected component T ′ in T − {e ∈ F | cT (e) < λi}
corresponds to a λi-edge-connected component X of G (i.e., V (T ′) = X). Such an X
is a maximal λj-edge-connected component for the λj = minu,v∈X λG(u, v)(≥ λi). From
this observation, we can construct the set Yi of maximal λi-edge-components as follows.
By letting Fi = {e ∈ F | cT (e) = λi}, i ∈ {1, 2, . . . , p}, and C be the set of graphs
each of which consists of a single vertex v ∈ V , we repeat the next procedure in the
order of i = p, p − 1, . . . , 1. Join connected components in C via edges in Fi, let Yi :=
{V (T ′) | newly created components T ′ in the i-th iteration} and C be the set of all current
components. Sorting the weights of edges in T takes O(n log n) time, and the total time for
joining components is O(n log n) (since each join can be executed in O(log n) time with an
appropriate data structure for union-find operations).

Conversely, it is not difficult to see that a flow equivalent tree of a graph G can be
computed from the family Y(G) of maximal components. However, in general, a Gomory-
Hu tree cannot be constructed only from Y(G) without knowing G (for example, if G is a
tree with unit edge weights, then Y(G) consists of singlton sets {v}, v ∈ V).

5.3. Extreme sets

A nonempty proper subset X of V is called an extreme set of an edge-weighted graph G if
dG(X) < dG(Y) for all nonempty proper subsets Y of X. We denote by X (G) the family
of all extreme sets of G. Any singleton set {v} with a vertex v is an extreme set, which we
call trivial. By definition any subset X ⊆ V contains an extreme set X ′(⊆ X) such that
dG(X ′) ≤ dG(X). Also note that there are at least two extreme sets X and Y such that
dG(X) = dG(Y) = λ(G) and X ∩ Y = ∅, because, for any minimum cut {X,V−X}, each of
X and V −X contains an extreme set.

Lemma 5.1 For any graph G, no two extreme sets in X (G) intersect each other (hence
X (G) is laminar).

Proof: Let X and Y be two subsets of V that intersect each other. Then dG(X)+dG(Y) ≥
dG(X − Y) + dG(Y − X) holds. Thus if X is an extreme set, then dG(X) < dG(X − Y)
holds and thereby dG(Y) > dG(Y −X), implying that Y cannot be an extreme set.

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 207

Figure 3(b) shows the extreme sets for the graphG in Figure 1, where dG({v1, v2, v3, v4}) =
dG({v5, v6, v7, v8}) = dG({v14, v15}) = λ(G) holds (trivial extreme sets are not enclosed by
broken lines). D. Naor et al. observed the following characterization.

Lemma 5.2 [40] Every extreme set X ∈ X (G) is a maximal �-edge-connected component
for � = minu,v∈X λG(u, v).

Based on this, we can easily obtain the family X (G) of all extreme sets in G from
the family of Y(G) of all maximal components in G. Note that a maximal component
Y ∈ Y(G) is not an extreme set only if there is a nonempty and proper subset Y ′ ⊂ Y such
that dG(Y ′) ≤ dG(Y), i.e., such an extreme set Y ′ exists (recall that any subset contains at
least one extreme set). Therefore, a maximal component Y ∈ Y(G) is an extreme set if and
only if dG(Y) < fG(Y ′) for all maximal components with Y ′ ⊂ Y . Let T be a rooted tree
that represents the laminar family Y(G). We can discard non-extreme sets from Y(G) in
the time to traverse the tree T . Thus, we can identify X (G) ⊆ Y(G) in O(n) time if T and
{dG(Y) | Y ∈ Y(G)} are available.

Extreme sets have the following usefull property.

Lemma 5.3 For a graph G = (V,E), a weight function b : V → �+ and a real k ∈ �,
dG(Y) +

∑
v∈Y b(v) ≥ k for all Y ∈ 2V−{∅, V } if and only if dG(X) +

∑
v∈X b(v) ≥ k for all

X ∈ X (G).

Proof: It suffices to show that for each set Y ∈ 2V −{∅, V }, there is an extreme set X such
that dG(X) +

∑
v∈X b(v) ≤ dG(Y) +

∑
v∈Y b(v). A set Y ∈ 2V − {∅, V } contains an extreme

set X ⊆ Y with dG(X) ≤ dG(Y), for which dG(X) +
∑

v∈X b(v) ≤ dG(Y) +
∑

v∈Y b(v) holds
by

∑
v∈Y −X b(v) ≥ 0, as required.

5.4. Cactus representations

We denote by C(G) the set of all minimum cuts in an edge-weighted graph G. For example,
the graph G in Figure 4(a) has the minimum cut size 4, where the number of lines between
two vertices represents weight of the edge between them.

A connected graph is called a cactus if each edge belongs to exactly one cycle, where a
pair of multiple edges with the same end vertices is treated as a cycle of length 2. A graph
consisting of a single vertex is called a trivial cactus. Thus, every pair of cycles, if any, in a
cactus has at most one vertex in common.

For a given graph G, we introduce an unweighted cactus R and a mapping ϕ : V (G) →
V (R). Throughout this paper, we shall use the term “vertex” to denote an element in V (G),
and the term “node” to denote an element in V (R). A set V (R) may contain a node x such
that V (G) contains no vertex v with ϕ(v) = x, and such a node x is called an empty node.
Any non-trivial cactus R satisfies λ(R) = 2. Let C(R) denote the set of all minimum cuts
of R. Thus, {S, V (R) − S} ∈ C(R) holds if and only if ER(S, V (R) − S) is a set of two
edges belonging to the same cycle in R.

Definition 5.1 For a given subset C′ ⊆ C(G) of minimum cuts, a pair (R, ϕ) of a cactus
R and a mapping ϕ is called a cactus representation for C ′ if it satisfies the following (i)
and (ii).

(i) For an arbitrary minimum cut {S, V (R) − S} ∈ C(R), the cut {X,X} defined by X =
{u ∈ V (G) | ϕ(u) ∈ S} and X = {u ∈ V | ϕ(u) ∈ V (R) − S} belong to C ′

(ii) Conversely, for any minimum cut {X,X} ∈ C′, there exists a minimum cut {S, V (R)−
S} ∈ C(R) such that X = {u ∈ V | ϕ(u) ∈ S} and X = {u ∈ V | ϕ(u) ∈ V (R) − S}.

c© Operations Research Society of Japan JORSJ (2004) 47-4

208 H. Nagamochi

{v4}

{v10}

{v11}

{v8}
{v5, v6}

{v7}

{v3}

{v9}

(a) (b)

v8

v9

v7

v5

v6

v4v3

v2 v1 v11 v10
{v1, v2}

: non-empty nodes

: empty nodes

Figure 4: Illustration for (a) an edge-weighted graph G and (b) a cactus representation R
for C(G) of the graph G

E. A. Dinits et al. [5] have proven that every graph G admits a cactus representation
for C(G) such that the number of empty nodes is O(n). For example, Figure 4(b) shows
a cactus representation for all minimum cuts of the graph in Figure 4(a), where unshaded
circles stand for empty nodes.

6. Computing Extreme Sets

In this section, we show an O(mn+n2 log n) time algorithm [28] for finding all extreme sets
of a given graph G without using a Gomory-Hu tree.

For a graph G = (V,E) and a weight function b : V → �+, a star augmentation
G + b is called the k-regular star augmentation if dG+b(v) = max{k, dG(v)} (i.e., b(v) =
max{0, k − dG(v)}) for all v ∈ V .

Lemma 6.1 Let X ∈ X (G) be a non-trivial extreme set of a graph G, and v, w be two
vertices. Then X does not separate v and w if λG+b(v, w) ≥ k holds in the k-regular star
augmentation G+ b for some real k with dG(X) < k ≤ minv∈X dG(v).

Proof: By k ≤ minv∈X dG(v), dG+b(X) = dG(X). Hence |X ∩ {v, w}| = 1 would imply
λG+b(v, w) ≤ dG+b(X) = dG(X) < k, a contradiction to the assumption λG+b(v, w) ≥ k.

Lemma 6.2 [32] For a graph G = (V,E) and a real K ≥ 0, let G+ b be the K-regular star
augmentation, and σ = (v0 = s, v1, v2, . . . , vn−1, vn) be an MA ordering σ starting with s in
G + b. Then λG+b′(vn−1, vn) ≥ k holds in the k-regular star augmentation G + b′ for any k
with 0 ≤ k ≤ K.

Proof: Let k be a real with 0 ≤ k ≤ K, and G + b′ be the k-regular star augmentation
of G. Let δ = K − k, and B be the δ-skin of the K-regular star augmentation G + b. By
construction of G + b′ and B, we see that cG+b′(v, w) ≥ cB(v, w) for all v, w ∈ V ∪ {s}. In
particular, λG+b′(vn−1, vn) ≥ λB(vn−1, vn). By applying Lemma 4.1 to δ = K − k, we have
λB(vn−1, vn) = dG+b(vn) − δ ≥ K − δ = k. Therefore λG+b′(vn−1, vn) ≥ k, as required.

Lemma 6.3 For a graph G = (V,E) and a real K ≥ maxv∈V (G) dG(v), let G + b be the
K-regular star augmentation, and σ = (v0 = s, v1, v2, . . . , vn−1, vn) be an MA ordering σ
starting with s in G+ b. Then no non-trivial extreme set X in G separates vn and vn−1.

Proof: For each non-trivial extreme set X in G, there is a real kX with dG(X) < kX ≤
minv∈X dG(v). By K ≥ maxv∈V (G) dG(v), kX ≤ K holds. By Lemma 6.2, λG+b′(vn−1, vn) ≥

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 209

kX holds in the kX-regular star augmentation G+ b′ of G. Then by Lemma 6.1, X does not
separate vn and vn−1.

For K = maxv∈V (G) dG(v) and the last two vertices v and w in an MA ordering starting
with s in the K-regular star augmentation G + b, we see by Lemma 6.3 that the v and w
can be contracted into a single vertex, say z, without losing any non-trivial extreme sets
in G (since any non-trivial extreme set X does not separate {v, w}). Notice that for the
resulting vertex z, the set of all vertices contracted into z may be an extreme set in the
original graph G, and will be retained as a candidate of an extreme set of G before executing
the same procedure of contracting a vertex pair in the resulting graph. After repeating the
procedure until the graph has only two vertices, we can obtain the set of extreme sets of
G by discarding all non-extreme sets from the set of candidates. The algorithm can be
described as follows.

Algorithm EXTREME
Input: A graph G = (V,E).
Output: The family X (G) of extreme sets of G.
1 X := {{v} | v ∈ V }; G′ := G;
2 while |V (G′)| ≥ 3 do
3 K := maxv∈V (G′) dG′(v);
4 Starting from s, find an MA ordering σ in the K-regular star augmentation

G′ + b of G′;
5 Contract the last two vertices v, w ∈ V (G′) in σ into a single vertex z,

and let G′ denote the resulting graph;
6 Let Xz denote the set of vertices in V that have been contracted into z so far,

and set X := X ∪ {Xz};
7 end; /* while */
8 X := X − {X ∈ X | dG(Y) ≤ dG(X), Y ⊂ X for some Y ∈ X}.
9 Output X (G) := X .

Theorem 6.1 Algorithm EXTREME correctly finds the family of extreme sets of a given
edge-weighted graph in O(mn+ n2 log n) time and O(n+m) space.

Proof: Since X in line 8 is a laminar family, |X | ≤ 2n holds. The time and space bounds
are immediate from the complexity of computing MA orderings. We show the correctness.
As observed in the above, the set X after the while-loop contains all extreme sets of G.
By definition, all sets discarded in line 8 cannot be extreme sets. For the correctness, it
suffices to show that each set in the final set X is an extreme set of G. Assume that the
final set X contains a non-extreme set X, for which there is an extreme set X ′ such that
X ′ ⊂ X and dG(X ′) ≤ dG(X). Since the X contains all extreme sets, X ′ is in the final X .
However, X ′ ⊂ X and dG(X ′) ≤ dG(X) imply that X must have been discarded in line 8,
a contradiction. Thus, the final X is X (G).

7. Constructing Cactus Representations

In this section, we show that a cactus representation can be constructed in O(mn+n2 log n)
time by computing MA orderings O(n) times.

7.1. (s, t)-cactus representations

We say that an edge e = (s, t) in G is critical if cG(e) > 0 and λG(s, t) = λ(G).

c© Operations Research Society of Japan JORSJ (2004) 47-4

210 H. Nagamochi

Lemma 7.1 [25] Let e = (s, t) be a critical edge in a graph G. Then no two minimum
cuts separating s and t cross each other. Hence, there is an ordered partition (V1, . . . , Vr) of
V (G) such that the set of cuts of the form {V1 ∪ V2 ∪ · · · ∪ Vi, Vi+1 ∪ · · · ∪ Vr} is equal to the
set of all minimum cuts in C(G) that separate s and t.

Such an ordered partition in the lemma is called the (s, t) minimum cut ordered partition
((s, t)-MC-partition, for short).

Lemma 7.2 [25, 41] Let (s, t) be a critical edge in a graph G. Then given an (s, t)-maximum
flow, the (s, t)-MC-partition can be obtained in O(n+m) time and space.

For example, the (s, t)-MC-partition π(s,t) with (s, t) = (v1, v11) of the graph G in Fig-
ure 4(a) is given by (V1 = {v1, v2}, V2 = {v3}, V3 = {v4}, V4 = {v5, v6, v7}, V5 = {v8, v9}, V6 =
{v10, v11}), as shown in Figure 5(a).

Let π be a partition {V1, V2, . . . , Vr} (or an ordered partition (V1, V2, . . . , Vr)) of V (G).
We say that a cut {X,X} is compatible with π if

X = ∪i∈IVi for some I ⊂ {1, 2, . . . , r},

and that a cut {X,X} is indivisible with π if

X ⊂ Vi for some i ∈ {1, 2, . . . , r}.

Notice that any cut non-crossing with π is either compatible or indivisible with π. We denote
by Ccomp(π) (resp., Cindv(π)) the set of all minimum cuts in C(G) that are compatible with
π (resp., indivisible with π). H. Nagamochi and T. Kameda [36] have proven the following
properties.

Lemma 7.3 [36] Let (s, t) be a critical edge in a graph G, and π(s,t) be the (s, t)-MC-
partition over C(G). Then any minimum cut {X,X} ∈ C(G) is either compatible or indi-
visible with π(s,t) (i.e., C(G) = Ccomp(π(s,t)) ∪ Cindv(π(s,t))).

Note that Ccomp(π(s,t)) may contain a minimum cut that does not separate s and t.

Theorem 7.1 [36] Let (s, t) be a critical edge in a graph G, and π(s,t) be the (s, t)-MC-
partition. There exists a cactus representation (R(s,t), ϕ(s,t)) for all minimum cuts in
Ccomp(π(s,t)), which we call an (s, t)-cactus representation. Moreover, given π(s,t), an (s, t)-
cactus representation can be constructed in O(n+m) time and space.

Figure 5(b) shows an (s, t)-cactus-representation with (s, t) = (v1, v11) of the graph G in
Figure 4(a).

Lemma 7.4 [38] In a graph G, an edge e = (s, t) with cG(e) > 0 satisfying the following
(i) and (ii) can be found in O(m+ n log n) time and O(n+m) space.
(i) λG(s, t) can be computed in O(m+ n log n) time and O(n+m) space.
(ii) If λG(s, t) = λ(G), then an (s, t)-cactus representation can be constructed in O(m +

n log n) time and O(n+m) space.

Proof: We first compute an MA ordering σ = (v1, v2, . . . , vn) of G, and choose the vertex
vp with the largest index p such that vp and vn are joined by an edge with positive weight.
Let s = vn and t = vp. Note that σ′ = (v1, v2, . . . , vp, vn) is an MA ordering in the
graph G′ = G − {vp+1, vp+2, . . . , vn−1}. Hence, by Theorem 4.1, λG(s, t) ≥ λG′(s, t) =
dG′(s, V (G′)− s) = dG(s, V (G)− s) holds. Since λG(s, t) ≤ dG(s, V (G)− s), this shows (i).

Assume λG(s, t) = λ(G). By Lemma 4.2, a maximum (s, t)-flow f can be found in O(m)
time. By Lemma 7.2 and Theorem 7.1, we can compute an (s, t)-cactus representation in
linear time and space from the f . This proves (ii).

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 211

{v4} {v5,v6,v7}

{v3}

(a) (b)

{v1,v2}

{v4}

{v10}{v11}

{v8}

{v5,v6}

{v7}

{v3}

{v9}

{v1,v2}{v10,v11}

{v8,v9}

(R 1, ϕ1)

(R 4, ϕ4)(R 3, ϕ3)

(R 2, ϕ2) (R 5, ϕ5)

(R 6, ϕ6)

v8

v9

v7

v5

v6

v4

v3

v2 v1 v11 v10

V1

V5

V4

V3

V2

V6

(c)

Figure 5: Illustration for (a) (s, t)-MC-partition with (s, t) = (v1, v11), (b) (s, t)-cactus-
representation with (s, t) = (v1, v11), and (c) cactus representations (Ri, ϕi) for Gi =
G/(V (G) − Vi)

7.2. Cactus algorithm

We are ready to describe how to compute a cactus representation for all minimum cuts by a
divide-and-conquer method. In what follows, we denote by G∗ an input graph for which we
want to construct a cactus representation. Let λ = λ(G∗) for G∗. Based on Lemma 7.4, we
construct a cactus representation for C(G∗) of G∗ recursively as follows. We first choose an
edge (s, t) in Lemma 7.4. If λG(s, t) > λ (i.e., no minimum cut in G separates s and t), then
we contract vertices s and t, and set G := G/{s, t}. If λG(s, t) = λ, then by Theorem 7.1
we can obtain an (s, t)-MC-partition π(s,t) = (V1, . . . , Vr) and an (s, t)-cactus representation
(R(s,t), ϕ(s,t)) in G. By Lemma 7.3, all minimum cut compatible with π(s,t) are represented by
(R(s,t), ϕ(s,t)), and each minimum cut {X,V (G)−X} indivisible with π(s,t) satisfies X ⊂ Vi

for some Vi ∈ π(s,t). For each i = 1, 2, . . . , r, we contract V (G) − Vi into a single vertex
vi letting Gi := G/(V (G) − Vi) be the resulting graph (note that λ(Gi) ≥ λ(G)). Assume
that, for each Gi, a cactus representation (Ri, ϕi) of Gi has been obtained in a recursive
way, where we let (Ri, ϕi) be the trivial cactus if λ(Gi) > λ(G). Then any minimum cut in
G is represented in at least one of the representations (R(s,t), ϕ(s,t)), (R1, ϕ1), . . . , (Rr, ϕr).
Moreover, we can combine these representations into a single representation. For example,
Figure 5(c) shows cactus representations (Ri, ϕi) for Gi = G/(V (G) − Vi) obtained in the
(s, t)-MC-partition in Figure 5(a). Observe that the cactus representation in Figure 4(b)
can be obtained by attaching the cacti in Figure 5(c) to the (s, t)-cactus representation in
Figure 5(b).

Let CACTUS(G′, V old) denote a recursive procedure for computing a cactus represen-
tation for a given graph G′, where V old is specified as a subset of V (G′) so as to detect
minimum cuts that have already been found. The entire algorithm is given as follows.

Algorithm CONSTRUCT
Input: A graph G∗.
Output: A cactus representation (R, ϕ) for C(G∗).

Compute λ := λ(G∗);
V old := ∅;
(R, ϕ) :=CACTUS(G∗, V old).

We now describe a procedure for CACTUS(G′, V old). If CACTUS(G′, V old) for a graph
G′ is invoked during execution of CACTUS(G′′, V old) for a graph G′′, then we call graph G′

a child of G′′, and G′′ the parent of G′. The parent-child relation between graphs G′ and G′′

c© Operations Research Society of Japan JORSJ (2004) 47-4

212 H. Nagamochi

induces a tree T rooted at the input graph G∗. The T represents the recursive computation
during CONSTRUCT.

We remark that if dG(Vi, V (G)−Vi) = λ for a Vi ∈ π(s,t), then cut {Vi, vi} remains to be
a minimum cut in a child Gi even though the cut has already been detected in its parent
G. The same minimum cut may appear in a descendent of Gi. A minimum cut is old in a
graph G′ (i.e., it has been detected in some ancestor of G′) only if it separates a single vertex
v from V (G′) − {v}. Thus, we can check whether the current (s, t)-cactus representation
(R(s,t), ϕ(s,t)) contains a new minimum cut (i.e., a minimum cut that has not been detected
in the ancestor) or not by marking the vertices v ∈ V (G′) “old” if v is some contracted
vertex vi in the ancestor. Note that any (s, t)-MC-partition π(s,t) with |π(s,t)| ≥ 4 represents
a new minimum cut, since {V1∪V2, V3∪· · ·∪Vr} is a minimum cut which does not separate a
single vertex from the rest of vertices. If |π(s,t)| ∈ {2, 3}, then the (s, t)-cactus representation
is shown to have at most three nodes [39]. Thus, with the set V old of vertices marked “old”,
we can test whether the (s, t)-cactus representation (R(s,t), ϕ(s,t)) contains a new minimum
cut or not in O(|V (R(s,t))|) time. Procedure CACTUS is then given as follows.

Procedure CACTUS (G, V old)
Input: A graph G and a subset V old ⊂ V (G).
Output: A cactus representation (R, ϕ) for a set C′ of minimum cuts such that
C(G) − {{v, V (G) − v} | v ∈ V old} ⊆ C′ ⊆ C(G).

1 if |V (G)| = 1 then return the trivial cactus (R, ϕ)
2 else
3 Choose an edge e = (s, t) ∈ E(G) with cG(e) > 0;
4 if λG(s, t) > λ or the (s, t)-cactus representation (R(s,t), ϕ(s,t)) represents

no minimum cut other than those {v, V (G) − v}, v ∈ V old

5 then
6 G := G/{s, t};
7 V old := V old − {s, t};
8 return CACTUS(G, V old)
9 else
10 for each Vi in the (s, t)-MC-partition π(s,t) = (V1, V2, . . . , Vr) do
11 Contract all vertices V (G)−Vi into a single vertex vi;
12 Gi := G/(V (G)−Vi);
13 V old

i := (V old ∩ Vi) ∪ {vi};
14 (Ri, ϕi) := CACTUS(Gi, V

old
i)

15 end; /* for */
16 Combine cactus representations (R(s,t), ϕ(s,t)), (R1, ϕ1), . . ., (Rr, ϕr)

into a single cactus representation (R, ϕ);
17 return (R, ϕ)
18 end /* if */
19 end. /* if */

We can show that this algorithm invoks a computation of an MA ordering O(n) times.

Theorem 7.2 [38] A cactus representation for all minimum cuts in an edge-weighted graph
G can be constructed in O(mn+ n2 log n) time and O(n+m) space.

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 213

7.3. Increasing edge-connectivity by one

As an application of cactus structures, we in this subsection consider the problem of aug-
menting a given unweighted multigraph G = (V,E) to a multigraph G + F = (V,E ∪ F)
such that λ(G+ F) = λ(G) + 1 by adding a smallest set F of new edges.

A cut X ⊂ V in a graph G = (V,E) is called a minimum cut if dG(X) = λ(G).
Furthermore, a minimum cut Z ⊂ V is called a minimal minimum cut if no proper subset
X of Z is a minimum cut. Let M(G) denote the set of all minimal minimum cuts in a
graph G. We can identify the M(G) by computing a cactus representation (R, ϕ) of G.
Each non-empty node x ∈ V (R) with degree 2 corresponds to a minimal minimum cut
{ϕ−1(x), V − ϕ−1(x)} ∈ C(G) and vice versa.

Lemma 7.5 Let G = (V,E) be a multigraph. Then:
(i) For any minimum cut X ⊂ V in G, there is a minimal minimum cut Z in G such that

Z ⊆ X.
(ii) For any minimal minimum cut Z in G, λG(u, v) > λ(G) holds for all u, v ∈ Z.

Note that any two minimal minimum cuts are disjoint. From this, we have the following
observation on the number of edges to be added to increase the edge-connectivity.

Lemma 7.6 For a multigraph G = (V,E) and a set F of new edges, if λ(G+F) ≥ λ(G)+1
then |F | ≥ �|M(G)|/2�.
Proof: Consider any F such that λ(G+ F) ≥ λ(G) + 1. For each cut X ∈ M(G), F must
contain an edge which is incident to a vertex in X, since otherwise λ(G+F) ≤ dG+F (X) =
dG(X) = λ(G) would hold. Therefore, by the disjointness of cuts in M(G), the number of
endvertices of edges in F is at least |M(G)|, implying |F | ≥ �|M(G)|/2�.
Lemma 7.7 [40] Let M′ = M(G) if |M(G)| is even, and M′ = M(G)∪{{z∗}} if |M(G)|
is odd, where z∗ is a vertex arbitrarily chosen from V . Then:
(i) The subsets in M′ have a cyclic ordering (Z1, . . . , Z�) (where the last Z� is followed by

the first Z1) such that, for any minimum cut X in G, all cuts Zi ⊆ X have consecutive
indices i.

(ii) For a cyclic ordering (Z1, . . . , Z�) in (i), let zi be a vertex arbitrarily chosen from each
Zi ∈ M′. Then adding to G new �/2 edges of unit weights, (zi, zi+�/2), i = 1, . . . , �/2
increases the edge-connectivity up to λ(G) + 1.

Proof: Let (R, ϕ) be a cactus representation for all minimum cuts in G. Since the degree
of each node in cactus R is even, R has an Eulerian walk τ . Starting with a node x0 in
R, we traverse τ during which we compute a desired cyclic ordering for subsets in M′ as
follows. Let (Z1, Z2, . . . , Z�) be a cyclic ordering of subsets in M′ that are labeled in such
a way that the node ϕ(z) with z ∈ Zi appears earlier than the node ϕ(z′) with z ∈ Zj

for any j > i during the traversal. For any minimum cut {X,V −X} in G, there is a
pair of arcs in R that generates a cut {U, V (R) − U} such that {ϕ(x) | x ∈ X} ⊆ U and
{ϕ(v) | x ∈ V −X} ⊆ V (R) − U . All subsets Z ∈ M′ with Z ⊆ X map to nodes in U , and
they must have consecutive numbers by the traversal of τ .

(ii) follows from (i) and Lemma 7.5.

For example, consider a multigraph G in Figure 4(a), whose edge-connectivity is 4. The
graph G has the set M(G) of minimal minimum cuts Z1 = {v1, v2}, Z2 = {v3}, Z3 = {v4},
Z4 = {v7}, Z5 = {v8}, Z6 = {v9} and Z7 = {v10}. Such a cyclic ordering of Lemma 7.7(i)
in this example is given by (Z1, Z2, . . . , Z7, Z8 = {v11}), where v11 is chosen as z∗. By
Lemma 7.7(ii), F = {(v1, v8), (v3, v9), (v4, v10), (v7, v11)} is an optimal solution to the graph
G.

c© Operations Research Society of Japan JORSJ (2004) 47-4

214 H. Nagamochi

8. Edge-Connectivity Augmentation

The problem of increasing the edge- or vertex-connectivity of a given graph up to a speci-
fied target value by adding the smallest number of new edges is called a connectivity aug-
mentation problem. The problem has been extensively studied recently (see [8, 33] for a
survey). In this section, we consider the edge-connectivity augmentation problem with a
degree constraint, which asks to augment a given unweighted multigraph G = (V,E) to a
k-edge-connected multigraph G + F with dG+F (u) ≤ β(u), u ∈ V by adding a smallest set
F of new edges, where k ≥ 2 is a specified integer and β : V → Z+ is a given function. We
represent G and G + F = (V,E ∪ F) as simple graphs with edges weighted by integers by
storing each set of multiple edges with the same endvertices as an integer-weighted edge.
Let n and m be the number of vertices and edges in the edge-weighted graph G. In the
following, we show that an algorithm due to A. A. Benczúr and D. R. Karger [4] to this
problem can be implemented to run in O(mn + n2 log n) time by using the algorithms for
computing a family of extreme sets and a cactus representation in the previous sections.

For a given target k ∈ Z+, we define the deficit dft(X) of a subset X ⊆ V by

dft(X) = max{k − dG(X), 0}.

For a weight function a : V → �, we denote
∑

v∈X a(v) by a(X) for allX ⊆ V . A. A. Benczúr
and D. R. Karger’s algorithm [4] consists of three phases, each of which we show in the
following subsections.

8.1. Phase-1: optimal star augmentation

We consider a star augmentation G+ b of a given multigraph G = (V,E) such that

dG+b(X)(= dG(X) + b(X)) ≥ k for all X ⊂ V, (8.1)

and
dG+b(v)(= dG(v) + b(v)) ≤ β(v) for all v ∈ V. (8.2)

In phase-1, we find a star augmentation G + b that minimizes b(V)(= dG+b(s)) subject to
(8.1) and (8.2). For this, we compute the family X (G) of extreme sets of G, and define
Xk(G) = {X ∈ X (G) | dG(X) < k}. Then by Lemma 5.3, (8.1) is equivalent to the next.

dG+b(X) ≥ k for all X ∈ Xk(G). (8.3)

Let T be the tree representation for Xk(G). Starting with all nodes in T unscanned and
b(v) := 0 for all v ∈ V , we repeatedly choose a lowest unscanned node X from T such that
dft(X)(= dG(X)+b(X)) < k holds for the current b, and increase b(v), v ∈ X (arbitrarily) so
that dG(X)+b(X) = k holds. Note that if we failed to attain dG(X)+b(X) = k by increasing
b(v), v ∈ X as much as possible under the degree constraint, then dG(X) + β(X) < k holds
for the X, indicating that the problem is infeasible.

Let b be the final weight function obtained by the procedure. Consider a subset X ∈
Xk(G) such that dG(X) + b(X) = k. Let M be the set of inclusion-wise maximal subsets
among such subsets. Since all sets in M are pairwise disjoint, we see that

b(V)(= dG+b(s)) =
∑

X∈M
dft(X)

holds and that at least �b(V)/2� new edges are need to be added to G to obtain a k-edge-
connected graph. If dG+b(s) is odd, then we add an edge between s and V so that (8.2)

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 215

remains valid, making dG+b(s) even; if such an edge cannot be chosen, then the problem is
infeasible.

For example, we consider a target k = 8 and a degree function β(u) = 9, u ∈ V , in the
graph G in Figure 1. Then X8(G) is given as shown in Figure 6(a), where an extreme set X
with dft(X) ≥ 2 (resp., dft(X) = 1) is enclosed by a black broken line (resp., by a gray line),
and the number on the line indicates the dft(X) of the extreme set X. A final weight func-
tion b is given by b(v1) = 3, b(v2) = b(v5) = 1, b(v6) = 2, b(v7) = 1, b(v8) = b(v9) = b(v10) =
2, b(v11) = 1, b(v14) = b(v15) = 3, b(v16) = 2, b(v17) = 1 and b(v18) = b(v19) = 2 (where
b(V) = 28), and M = {{v1, v2, v3, v4}, {v5, v6}, {v7}, {v8}, {v9}, {v10}, {v11}, {v14}, {v15},
{v16}, {v17}, {v18}, {v19}}.

(b)(a)

v1

v19

v14

v18

v16

v15

v12

v13
v11

v9

v7

v8

v10
v6

v2

v5

v4

v3

v17

1

2

1

1

1
1

2

2
3

2
2

2

2

3

33

v1

v19

v14

v18

v16

v15

v12

v13 v11 v9

v7

v8

v10

v6

v2

v5

v4

v3

v17

2

2

4

X1

X4

X3

X2

X6=Xp

X5

4

4

3

4

4

3

4

Figure 6: (a) The extreme sets in X8(G) for the graph G in Figure 1 and target k = 8;
(b) Maximal extreme sets X1, X2, . . . , Xp with dft(Xi) ≥ 2 in (a), and a path augmentation
G+ E ′

8.2. Phase-2: augmentation up to k − 1

Our goal is to find a set F of new edges such that the augmented graph G+F and the graph
(V, F) respectively satisfy λ(G + F) ≥ k and d(V,F)(v) = b(v) for all v ∈ V . However, in
phase-2, we only find a set F ′ of new edges such that λ(G+F ′) = k− 1 before we compute
a set F ′′ = F − F ′ of remaining new edges with λ(G+ F ′ ∪ F ′′) in phase-3. In phase-2, we
construct such an edge set F ′ by repeatedly choosing a new edge set E ′ with the following
property, where we denote d(V,E′)(X), X ⊆ V , by dE′(X) for convenience.
(i) dE′(v) ≤ b(v) for all v ∈ V .
(ii) No edge in E ′ has both endvertices in any extreme set X ∈ X (G).
(iii) X (G+ E ′) ⊆ X (G).

Claim 8.1 [4] For any new edge set E ′ satisfying the above conditions (i)-(iii), the aug-
mented graph G′ = G + E ′ and the reduced weight b′ with b′(v) = b(v) − dE′(v), v ∈ V ,
remain to satisfy (8.1) and (8.2).

To find a new edge set E ′ satisfying (i)-(iii), we consider the extreme sets X with
dft(X) ≥ 2, i.e., the extreme sets in Xk−1(G). Now we denote all inclusion-wise maximal
extreme sets in Xk−1(G) by X1, X2, . . . , Xp−1, Xp so that dG(X1) and dG(Xp) satisfy

dG(Xp) = dG(X1) ≤ min{dG(Xi) | i = 1, 2, . . . , p},

where dG(Xp) = dG(X1) = λ(G) holds as observed before Lemma 5.3. Choose a vertex
u1 ∈ X1, a vertex up ∈ Xp, vertices ui, ui ∈ Xi (possibly ui = ui), i = 2, 3, . . . , p − 1 such

c© Operations Research Society of Japan JORSJ (2004) 47-4

216 H. Nagamochi

that b(ui), b(ui) ≥ 1 if ui �= ui (2 ≤ i ≤ p− 1) and b(ui) ≥ 2 (or b(ui) ≥ 2) otherwise. Let

E ′ = {(ui, ui+1) | ui ∈ Xi, ui+1 ∈ Xi+1, 1 ≤ i ≤ p− 1}

Hence dE′(X1) = dE′(Xp) = 1 and dE′(Xi) = 2 for all i = 2, 3, . . . , p − 1. By dft(Xi) ≥ 2,
we can choose such an E ′, which forms a collection of vertex-disjoint paths. We call the
graph G + E ′ augmented by such an E ′ a chain augmentation. For the above example of
the graph G in Figure 1 with k = 8 and β(u) = 9, u ∈ V , Figure 6(b) shows the maximal
extreme sets X1, X2 . . . , Xp with dft(Xi) ≥ 2 and a chain augmentation G + E ′, where the
edges in E ′ are depicted by thick gray lines.

Claim 8.2 [4] A chain augmentation G+ E ′ satisfies the above conditions (i)-(iii).

Therefore, we can augment a given graph G to a (k− 1)-edge-connected graph by repeating
the procedure: find a chain augmentation G + E ′ in G, and update G := G + E ′ and
b(v) := b(v) − dE′(v) for all v ∈ V . A naive implementation of this algorithm would take
O(m+ k) iterations of the procedure. To obtain a faster implementation, we try to use the
same E ′ as many times as possible. An edge set E ′ can be reused in G+E ′ if the following
three conditions hold:
(t1) the updated weight b′ satisfies b′(v) ≥ dE′(v) for all v ∈ V ,
(t2) all Xi still satisfy dft(Xi) ≥ 2 in G+ E ′,
(t3) all Xi remain extreme in G+ E ′.

Therefore, we can augment t copies of an edge set E ′ in G if t is the minimum of the following
t1, t2 and t3:
• To meet (t1) for the current weight b, t should be at most

t1 = min{�b(v)/dE′(v)� | an edge in E ′ is incident to v}.

• Since (t2) must hold after adding (t− 1) copies of E ′, t should satisfy that dft(Xi)− (t−
1) ≥ 2 (i ∈ {1, p}) and dft(Xi) − 2(t− 1) ≥ 2 (i = 2, 3, . . . , p− 1). Let

t2 = min
{

min
i=1,p

dft(Xi) − 1, min
i=2,...,p−1

�dft(Xi)/2�
}
.

• From (t3), each Xi should satisfy dG(Xi) + (t − 1) · dE′(Xi) < dG(Y) + (t − 1) · dE′(Y)
for all subsets Y ⊂ X (recall that dG(Xi) < dG(Y)). Let t3 = min{r1, r2, . . . , rp}, where

ri = min

{⌈
dG(Y) − dG(Xi)

dE′(Xi) − dE′(Y)

⌉ ∣∣∣ Y ∈ X (G), Y ⊂ Xi, dE′(Xi) − dE′(Y) ≥ 1

}
.

Let us analyze the run time of phase-2. For a graph G and a weight b before phase-2, let

Vb = {v ∈ V | b(v) > 0}, nb = |Vb|, and nk = |Xk(G)|.

By (8.1), each extreme set X ∈ Xk(G) contains a vertex in Vb. Hence nk ≤ 2nb − 2. We
see that, during the algorithm, t1 becomes tight (i.e., t1 = min{t1, t2, t3} holds) at most nb

times, t2 at most nk times, and t3 at most nk times. Therefore, we repeat the procedure of
finding a chain augmentation O(nb) times. Since each iteration can be implemented to run
in O(m+ n log n) time, phase-2 takes O(mn+ n2 log n) time.

Now consider the number of pairs of vertices that are joined by new edges in F ′. After
each iteration, we try to construct the next chain augmentation using as many edges in the
previous E ′ as possible. We can reuse an edge (u, v) ∈ E such that b(u), b(v) ≥ 1 and the

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 217

two maximal extreme sets Xi and Xj containing u and v respectively remain to be maximal
extreme sets with dft(Xi), dft(Xj) ≥ 2. With this observation, we see that an edge joining
a new pair of vertices is introduced to E ′ only when it joins two maximal extreme set X ′

and X ′′ such that

(a) at least one of X ′ and X ′′ is new,
(b) both X ′ and X ′′ are old, but not joined in the previous iteration, or
(c) both X ′ and X ′′ are old and joined in the previous iteration.

Note that (b) occurs when a maximal extreme X with dft(X) ≥ 2 disappeared in the
previous iteration, and that (c) occurs when b(u) or b(v) for the edge (u, v) that joined X ′

and X ′′ became 0 in the previous iteration. Therefore the number of pairs of vertices joined
by edges in F ′ is at most

2nk + nk + (nb − n′) ≤ 7nb − n′ − 6,

where n′ denotes the number of vertices u with b(u) ≥ 1 (in fact b(u) = 1) after the final
iteration.

8.3. Phase-3: augmentation on a cactus

After phase-2, the remaining task is to increase the edge connectivity of the current graph
G+F ′ by one by adding a set F ′′ of new edges such that dF ′′(v) ≤ b(v), v ∈ V for the current
weight b. Recall that condition (8.1) remains valid. Hence, for each minimal minimum cut
Z ∈ M(G + F ′) (see section 7.3), we can choose a vertex vZ with b(vZ) ≥ 1. Note that
b(V) is even. If |M(G + F ′)| is odd, then we can find a vertex z∗ with b(z∗) ≥ 1 from
V − {vZ | Z ∈ M(G + F ′)} (or z∗ = vZ if b(vZ) ≥ 2 for some Z). By Lemma 7.7, we can
find a set F ′′ of �|M(G+F ′)|/2� new edges such that λ(G+F ′ ∪F ′′) ≥ λ(G+F ′) + 1 = k
and dF ′′(v) ≤ b(v), v ∈ V . Therefore, we obtain a set F = F ′ ∪ F ′′ of new edges such that
λ(G+F) ≥ k and |F | ≤ �b(V)/2�. Note that phase-3 introduces at most �n′/2� new edges.
Hence F consists of at most 7nb − n′ − 6 + �n′/2� ≤ 7nb − 6 weighted edges. Thus, by
Theorems 6.1 and 7.2, the entire run time is O(n(m+ nb) + n2 log n).

Theorem 8.1 For a multigraph G = (V,E) stored as an integer-weighted graph, a weight
function β : V → Z+, and an integer k ≥ 2, the edge-connectivity augmentation problem
with degree constraint can be solved in O(mn+n2 log n) time and O(n+m) space. Moreover
the number of new weighted edges added to G can be bounded from above by 7n− 6.

8.4. Splitting algorithm

Let G = (V,E) be a multigraph which has a designated vertex s∗ ∈ V with an even degree.
For two edges e1 = (s∗, u1) and e2 = (s∗, u2), we say that a multigraph G′ is obtained from
G by splitting e1 and e2 at s∗ if two edges e1 and e2 are replaced with a single edge (u1, u2),
where possibly u1 = u2 and in this case the split edge (u1, u2) is a self-loop, which will
be simply removed. It is known as Lovász’s theorem [26] that all edges incident at s∗ can
be split while preserving the edge-connectivity of G in V − s (i.e., the resulting graph G′,
where the isolated s∗ is neglected, satisfies λ(G′) = minu,v∈V −s∗ λG(u, v)). Such a complete
splitting plays an important role in solving many graph connectivity problems such as the
orientation problem (see [31]). The previously fastest deterministic algorithm for finding a
complete splitting runs in O((mn + n2 log n) log n) time [31, 37]. By Theorem 8.1, this can
be improved by factor of O(log n).

Theorem 8.2 For a multigraph G stored as an integer-weighted graph, and a designated
vertex s∗, there is a complete splitting at s∗ such that the number of pairs of vertices joined

c© Operations Research Society of Japan JORSJ (2004) 47-4

218 H. Nagamochi

by the split edges is at most 7|ΓG(s∗)| − 6 edges. Moreover such a splitting can be found in
O(mn+ n2 log n) time and O(n+m) space.

Proof: Let k = minu,v∈V (G)−s∗ λG(u, v), G∗ = G − s∗, nb = |ΓG(s∗)|, and β(v) = cG(s∗, v),
v ∈ V (G)−s∗. By applying Theorem 8.1 to the graph G∗ and weight function β, we can find
a set F of new edges such that λ(G∗ + F) ≥ k and dF (v) ≤ β(v) for all v ∈ V (G∗). (Note
that the augmentation problem with G∗ and β is feasible since the weight function b = β
satisfies (8.1) and (8.2).) We can regard that F is obtained by splitting dF (v) multiple edges
(s∗, v), v ∈ V (G∗). For each vertex v ∈ V (G∗), we split the rest of β(v) − dF (v) multiple
edges (s∗, v) into self-loops (v, v), which will be removed. Therefore, the number of pairs
of vertices joined by split edges is at most 7nb − 6 by Theorem 8.1. The time and space
complexities follow from Theorem 8.1.

9. Source Location Problem

Problems of selecting the best location of facilities in a given network so as to satisfy
a certain requirment are called location problems. Recently, the location problems with
requirements measured by edge-connectivity, vertex-connectivity, or flow-amount have been
studied extensively. The source location problem which asks to find an optimal set of sources
in a graph under connectivity and/or flow-amount requirements is defined as follows. Given
an edge-weighted graph G = (V,E), a cost function w : V → �+, and a demand function
r : V → �+, we want to choose a subset S ⊆ V so as to

Minimize
∑{w(v) | v ∈ S}

subject to ψ(S, v) ≥ r(v) for all v ∈ V − S,

where ψ(S, v) is a measurement based on the edge-connectivity or the edge-connectivity
between S and a vertex v.

9.1. Edge-connectivity requirement

The source location problem with the edge-connectivity requirement ψ(S, v) = λG(S, v) in
undirected graphs was first treated by H. Tamura et al. [45, 46]. They gave polynomial time
algorithms for a uniform cost w : V → {1}. K. Arata et al. [2] have proven that the problem
is weakly NP-hard for a general cost w : V → �+. The problem with ψ(S, v) = λG(S, v)
in digraphs is not completely settled; the complexity status for the case of a uniform cost
w and a uniform demand r : V → {k} is unknown so far. S. Honami et al. [18] have given
an O(n2m) time algorithm for an unweighted digraph with ψ(S, v) = λG(S, v), a uniform
cost w and a uniform demand r : V → {k} (k ≤ 3). H. Ito et al. [21] have shown that
the problem with a uniform cost w and a uniform demand r : V → {k} in an unweighted
digraph can be solved in polynomial time if k is fixed.

In the sequel, we consider the source location problem with ψ(S, v) = λG(S, v) for a
general cost function w : V → �+, and a uniform demand r : V → {k} in an edge-weighted
graph G = (V,E). We call a subset S ⊆ V k-feasible if λG(S, v) ≥ k for all v ∈ V − S.

Theorem 9.1 Given a family X (G) of extreme sets of an edge-weighted graph G = (V,E),
the source location problem with the edge-connectivity requirement for a cost function w :
V → �+, and a uniform demand r : V → {k} can be solved in O(n) time.

Proof: Let Xk(G) = {X ∈ X (G) | dG(X) < k}. In the tree representation Tk of Xk(G),
consider the set of leaf nodes, and let X1, X2, . . . , Xp be the sets in Xk(G) that correspond
to these leaf nodes. Since any two Xi and Xj are disjoint, we see that, for any k-feasible

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 219

S ⊆ V , S∩Xi �= ∅, i = 1, 2, . . . , p. Let S∗ = {v1, v2, . . . , vp} by choosing a vertex vi with the
minimum weight w(vi) from each Xi. Note that S∗ is k-feasible since, for any cut Y ⊂ V
with dG(Y) < k, there is an extreme set Xi ⊆ Y with dG(Xi) ≤ dG(Y) that corresponds to a
leaf node in Tk. Also we easily see that S∗ attains the minimum cost because any k-feasible
set must contain at least one vertex from each Xi.

9.2. Vertex-connectivity requirement

For the vertex-connectivity requirement ψ(S, v) = κG(S, v), H. Ito et al. [20] have proven
that the source location problem with a uniform cost w : V → {1} in an undirected graph is
NP-hard. Contrary to this, H. Nagamochi et al. [35] considered the source location problem
with a measurement ψ(S, v) = κ̂+

G(S, v) in a digraph with a general cost w : V → �+, and
a uniform demand r : V → {k} (k ∈ Z+), and gave an O(min{k,√n}nm) time algorithm,
where in a digraph κ̂+

G(S, v) (resp., κ̂−G(S, v)) is defined to be the maximum number of vertex-
disjoint directed paths from S to v (resp., from v to S) such that no two paths meet at
the same vertex in S. From this, they also gave an O(min{k,√n}kn2) time algorithm for
solving the source location problem with a measurement ψ(S, v) = κ̂G(S, v) in an undirected
graph with a general cost w : V → �+ and a uniform demand r : V → {k}. They further
prove that the next source location problem can be solved in O(n4m) time: given a digraph
G = (V,E), a general cost w : V → �+, two integers k and �, find a minimum cost subset
S ⊆ V such that κ̂+

G(S, v) ≥ k and κ̂−G(S, v) ≥ � for all v ∈ V −S. For a non-uniform demand
case in the problem with ψ(S, v) = κ̂G(S, v), T. Ishii et al. [19] gave a linear time algorithm
to a demand function r : V → {0, 1, 2, 3} and showed that the problem is NP-hard if there
exists a vertex v ∈ V with r(v) ≥ 4.

H. Ito et al. [20] considered the source location problem with a measurement “κG(S, v) ≥
k and λG(S, v) ≥ � for all v ∈ V − S” and a uniform cost w : V → {1} in an unweighted
graph G = (V,E), and presented an O(min{�mn, �2n2,mn3}) time algorithm for k ≤ 2.

In what follows, we show the next result due to H. Nagamochi et al. [35].

Theorem 9.2 Let G = (V,E) be a simple unweighted graph with a cost function w : V →
�+. A minimum cost subset S such that κ̂G(S, v) ≥ k for all v ∈ V −S can be computed in
O(min{k,√n}kn2) time.

We call a subset S ⊆ V k-feasible if κ̂G(S, v) ≥ k for all v ∈ V −S. Recall that κ̂G(S, v) ≤
|S| holds. Hence any k-feasible set S satisfies |S| ≥ k and {v ∈ V | |ΓG(v)| < k} ⊆ S. We
call a subset X ⊆ V dominating in G if V−X−ΓG(X) = ∅, and non-dominating otherwise.
A star augmentation H obtained from G is called s-basally k-connected if, for the designated
vertex s ∈ V (H), it holds

|ΓG(X)| + dH(s,X) ≥ k for all nonempty, non-dominating sets X ⊂ V (G) (9.1)

in G = H − s.

Lemma 9.1 For an s-basally k-connected graph H, let S be a subset of V (G) such that
ΓH(s) ⊆ S and |S| ≥ k. Then S is k-feasible in G.

Proof: Assume indirectly that κ̂G(S, v) < k for some v ∈ V (G) − S in G = H − s. That
is, there is a set C ⊆ V (G) of at most k − 1 vertices such that G − C has no path from
any vertex u ∈ S − C to v, where S − C �= ∅ by |S| ≥ k. Let X be the set of vertices
in V (G) − C that have paths to v in G − C. Note that X is not dominating in G since
V (G) −X − ΓG(X) ⊇ S − C �= ∅. By ΓH(s) ⊆ S, X ∩ ΓH(s) ⊆ X ∩ S = ∅. This implies
that dH(s,X) = 0 and |ΓG(X)| ≤ k − 1 hold for such X, contradicting (9.1).

c© Operations Research Society of Japan JORSJ (2004) 47-4

220 H. Nagamochi

We now show how to construct an s-basally k-connected graph H. It has been shown [35]
that condition (9.1) of the s-basal connectivity is equivalent to a pair of the next conditions:

|ΓG(x)| + cH(s, x) ≥ k for all singleton sets X = {x} ⊂ V (G), (9.2)

|ΓG(X)| + |ΓH(s) ∩X| ≥ k for all non-dominating sets X ⊂ V (G) in G (9.3)

with |ΓG(X)| + |X| ≥ k.

Lemma 9.2 Given a graph G and a k-feasible set S in G, let H be the graph obtained from
G by adding a new vertex s together with max{1, k − |ΓG(v)|} edges from s to each vertex
v ∈ S. Then H is s-basally k-connected.

Proof: Assume indirectly that H is not s-basally k-connected. Thus, G = H − s has
a nonempty, non-dominating set X ⊆ V (G) such that k − 1 ≥ |ΓG(X)| + dH(s,X) ≥
|ΓG(X)| + |X ∩ S|. If X ⊆ S, then it is easy to see that X satisfies (9.2) or (9.3) by the
construction of H. Assume that there is a vertex u ∈ X−S. Then G has a set P of k disjoint
paths from S to u such that no two paths share a vertex in S. Since each of such paths must
contain at least one vertex from ΓG(X)∪ (X ∩S), we have |P | ≤ |ΓG(X)|+ |X ∩S| ≤ k−1,
a contradiction.

We observe that the problem enjoys a matroidal property. Given a graph G, we define
V0 = {v ∈ V (G) | |ΓG(v)| < k}, and construct the graph H0 obtained from G by adding a
new vertex s and max{1, k−|ΓG(v)|} edges from s to each vertex v ∈ V (G). By Lemma 9.2
with S = V (G), H0 is s-basally k-connected.

By setting U = V (G)−V0 as a ground set, we define a set system M = (U, I) by putting

I =
{
X ⊆ U

∣∣∣∣ |X| ≤ |V (G)| − k and H0 − EH0(s,X) remains s-basally k-connected
}

(note that |EH0(s,X)| = |X| since |ΓG(v)| ≥ k for v ∈ X ⊆ U). For any X ∈ I, S :=
ΓH0−EH0

(s,X)(s)(= V (G) −X) is k-feasible in G by Lemma 9.1, since |ΓH0−EH0
(s,X)(s)| ≥ k

holds and H0 − EH0(s,X) is s-basally k-connected. Conversely, for a given k-feasible set S
in G, let X := V (G) − S. Then X = V (G) − S ⊆ U (by V0 ⊆ S) and |X| ≤ |V (G)| − k
(by |S| ≥ k). By Lemma 9.2, H0 − EH0(s,X) is s-basally k-connected, and hence X ∈ I.
It has been shown that the next holds.

Lemma 9.3 [35] M = (U, I) is a matroid.

Since M = (U, I) is a matroid, we can obtain a subset X ∈ I with the maximum cost
w(X) by a greedy algorithm. Starting from H = H0, we scan edges (s, v), v ∈ V (G)−V0 in
the nonincreasing order of cost w(v), where if H− (s, v) remains s-basally k-connected then
we remove edge (s, v) from the current graph H and set H := H−(s, v). We repeat scanning
edges until we obtain an s-basally k-connected graph H ′ such that EH′(s, V (G)) becomes
minimal subject to the s-basal k-connectivity or |ΓH′(s)| = k holds. Clearly, a maximum
cost subset X ∈ I corresponds to a k-feasible set S with |S| ≥ k with the minimum cost
w(S) = w(V (G)) − w(X). Therefore, S = ΓH′(s) in the resulting graph H ′ is a minimum
cost k-feasible set.

By using a fast algorithm for computing the vertex-connectivity [17], the above algorithm
can be implemented to run in O(min{k,√n}nm) time. This complexity can be reduced to
O(m+min{k,√n}kn2) by using Theorem 4.2(ii). For this, we execute the flow computation
on a sparse spanning subgraph of H with O(kn) edges that preserves the local vertex-
connectivity up to k. This establishes Theorem 9.2.

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 221

Acknowledgement

This research was partially supported by the Scientific Grant-in-Aid from Ministry of
Education, Culture, Sports, Science and Technology of Japan. The author would like to
thank anonymous referees for their helpful comments.

References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin: Network Flows: Theory, Algorithms,
and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1993).

[2] K. Arata, S. Iwata, K. Makino and S. Fujishige: Locating sources to meet flow demands
in undirected networks. Journal of Algorithms, 42 (2002), 54–68.

[3] S. R. Arikati and K. Mehlhorn: A correctness certificate for the Stoer-Wagner min-cut
algorithm. Information Processing Letters, 70 (1999), 251–254.

[4] A. A. Benczúr and D. R. Karger: Augmenting undirected edge connectivity in Õ(n2)
time. Journal of Algorithms, 37 (2000), 2–36.

[5] E. A. Dinits, A. V. Karzanov and M. V. Lomonosov: On the structure of a family of
minimal weighted cuts in a graph. A. A. Fridman (eds.): Studies in Discrete Optimiza-
tion (in Russian) (Nauka, Moscow, 1976), 290–306.

[6] P. Elias, A. Feinstein and C. F. Shannon: A note on the maximum flow through a
network. IRE Transaction on Information Theory, IT-2 (1956), 117–119.

[7] L. R. Ford and D. R. Fulkerson: Maximal flow through a network. Canadian Journal
of Mathematics, 8 (1956), 399–404.

[8] A. Frank: Connectivity augmentation problems in network design. J. R. Birge and
K. G. Murty (eds): Mathematical Programming: State of the Art (The University of
Michigan, Ann Arbor, MI, 1994), 34–63.

[9] A. Frank: On the edge-connectivity algorithm of Nagamochi and Ibaraki. Laboratoire
Artemis, IMAG, Université J. Fourier, Grenoble, March (1994).

[10] A. Frank, T. Ibaraki and H. Nagamochi: On sparse subgraphs preserving connectivity
properties. Journal of Graph Theory, 17 (1993), 275–281.

[11] M. L. Fredman and R. E. Tarjan: Fibonacci heaps and their uses in improved network
optimization algorithms, Journal of the ACM, 34 (1987), 596-615.

[12] S. Fujishige: Another simple proof of the validity of Nagamochi and Ibaraki’s min-cut
algorithm and Queyranne’s extension to symmetric submodular function minimization.
Journal of the Operations Research Society of Japan, 41 (1998), 626–628.

[13] H. N. Gabow: A matroid approach to finding edge connectivity and packing arbores-
cences. Proceedings of the 23rd ACM Symposium on Theory of Computing, New Or-
leans, Louisiana (1991), 112–122.

[14] A. V. Goldberg and S. Rao: Flows in undirected unit capacity network. Proceedings of
the 38th Annual IEEE Symposium on Foundations of Computer Science (1997), 32–35.

[15] A. V. Goldberg and R. E. Tarjan: A new approach to the maximum flow problem.
Journal of the ACM, 35 (1988), 921–940.

[16] R. E. Gomory and T. C. Hu: Multi-terminal network flows. SIAM Journal of Applied
Mathematics, 9 (1961), 551-570.

[17] M. R. Henzinger, S. Rao and H. N. Gabow: Computing vertex connectivity: New
bounds from old techniques. Journal of Algorithms, 34 (2000), 222–250.

c© Operations Research Society of Japan JORSJ (2004) 47-4

222 H. Nagamochi

[18] S. Honami, H. Ito, H. Uehara and M. Yokoyama: An algorithm for finding a node-
subset having high connectivity from other nodes (in Japanese). Information Processing
Society of Japan Special Interest Group Notes, AL-66-99-8 (1999), 9–16.

[19] T. Ishii, H. Fujita and H. Nagamochi: Source location problem with local 3-vertex-
connectivity requirements. Proceedings of the 3rd Hungarian-Japanese Symposium on
Discrete Mathematics and Its Applications, Tokyo (2003), 368–377.

[20] H. Ito, M. Ito, Y. Itatsu, K. Nakai, H. Uehara, and M. Yokoyama: Source location prob-
lems considering vertex-connectivity and edge-connectivity simultaneously. Networks,
40 (2002), 63–70.

[21] H. Ito, K. Makino, K. Arata, K. Itatsu, and S. Fujishige: Source location problem with
edge-connectivity requirements in digraphs. Proceedings of the 2nd Japanese-Hungarian
Symposium on Discrete Mathematics and Its Applications, Hungary (2001), 92–97.

[22] H. Ito, H. Uehara and M. Yokoyama: A faster and flexible algorithm for a location
problem on undirected flow networks. The Institute of Electronics, Information and
Communication Engineers Transactions on Fundamentals of Electronics, Communica-
tions and Computer Sciences, E83-A (2000), 704–712.

[23] H. Ito and M. Yokoyama: Edge connectivity between nodes and node-subsets. Networks,
31 (1998), 157–163.

[24] D. R. Karger and M. S. Levine: Finding maximum flows in undirected graphs seems
easier than bipartite matching. Proceedings of the 30th ACM Symposium on Theory of
Computing (1998), 69–78.

[25] A. V. Karzanov and E. A. Timofeev: Efficient algorithm for finding all minimal edge
cuts of a nonoriented graph. Kibernetika, 2 (1984), 8–12; translated in Cybernetics
(1986), 156–162.

[26] L. Lovász: Combinatorial Problems and Exercises (North-Holland, 1979).

[27] D. W. Matula: A linear time 2 + ε approximation algorithm for edge connectivity.
Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (1993),
500–504.

[28] H. Nagamochi: Computing extreme sets in graphs and its applications. Proceedings of
the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications,
Tokyo (2003), 349–357.

[29] H. Nagamochi and T. Ibaraki: A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7 (1992), 583–596.

[30] H. Nagamochi and T. Ibaraki: Computing edge-connectivity of multigraphs and capac-
itated graphs. SIAM Journal of Discrete Mathematics, 5 (1992), 54–66.

[31] H. Nagamochi and T. Ibaraki: Deterministic Õ(nm) time edge-splitting in undirected
graphs. Journal of Combinatorial Optimization, 1 (1997), 5–46.

[32] H. Nagamochi and T. Ibaraki: Augmenting edge-connectivity over the entire range in
Õ(nm) time. Journal of Algorithms, 30 (1999), 253–301.

[33] H. Nagamochi and T. Ibaraki: Graph connectivity and its augmentation: applications
of MA orderings. Discrete Applied Mathematics, 123 (2002), 447–472.

[34] H. Nagamochi, T. Ishii and T. Ibaraki: A simple and constructive proof of a minimum
cut algorithm. The Institute of Electronics, Information and Communication Engi-
neers Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E82-A (1999), 2231–2236.

c© Operations Research Society of Japan JORSJ (2004) 47-4

Graph Algorithms for Network Connectivity 223

[35] H. Nagamochi, T. Ishii and H. Ito: Minimum cost source location problem with vertex-
connectivity requirements in digraphs. Information Processing Letters, 80 (2001), 287–
294.

[36] H. Nagamochi and T. Kameda: Constructing cactus representation for all minimum
cuts in an undirected network. Journal of the Operations Research Society of Japan,
39 (1996), 135–158.

[37] H. Nagamochi, S. Nakamura and T. Ibaraki: A simplified Õ(nm) time edge-splitting
algorithm in undirected graphs. Algorithmica, 26 (2000), 56–67.

[38] H. Nagamochi, S. Nakamura and T. Ishii: Constructing a cactus for minimum cuts
of a graph in O(mn + n2 log n) time and O(m) space. The Institute of Electronics,
Information and Communication Engineers Transactions on Information and Systems,
E86-D, (2003), 179–185.

[39] H. Nagamochi, Y. Nakao and T. Ibaraki: A fast algorithm for cactus representations of
minimum cuts. Journal of Japan Society for Industrial and Applied Mathematics, 17
(2000), 245–264.

[40] D. Naor, D. Gusfield and C. Martel: A fast algorithm for optimally increasing the edge
connectivity. SIAM Journal of Computing, 26 (1997), 1139–1165.

[41] D. Naor and V. V. Vazirani: Representing and enumerating edge connectivity cuts in
RNC. F. Dehne, J.-R. Sack and N. Santoro (eds.): Proceedings of the 2nd Workshop,
WADS’91, Lecture Notes in Computer Science, 519, Springer Verlag (1991), 273–285.

[42] J. C. Picard and M. Queyranne: On the structure of all minimum cuts in a network
and applications, Mathematical Programming Study. 13 (1980), 8–16.

[43] S. Raghavan and T. L. Magnanti: Network Connectivity. M. Dell’Amico, F. Maffioli
and S. Martello (eds.): Annotated Bibliographies in Combinatorial Optimization (John
Wiley & Sons, 1997), 335-354.

[44] M. Stoer and F. Wagner: A simple min cut algorithm. Journal of the ACM, 44 (1997),
585–591.

[45] H. Tamura, M. Sengoku, S. Shinoda, and T. Abe: Location problems on undirected
flow networks. The Institute of Electronics, Information and Communication Engineers
Transactions, E73 (1990), 1989–1993.

[46] H. Tamura, H. Sugawara, M. Sengoku and S. Shinoda: Plural cover problem on undi-
rected flow networks (in Japanese). The Institute of Electronics, Information and Com-
munication Engineers Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, J81-A (1998), 863–869.

[47] T. Watanabe and A. Nakamura: Edge-connectivity augmentation problems. Journal of
Computer and System Sciences, 35 (1987), 96–144.

Hiroshi Nagamochi
Department of Applied Mathematics and Physics,
Kyoto University,
Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501,
Japan.
E-mail: nag@amp.i.kyoto-u.ac.jp

c© Operations Research Society of Japan JORSJ (2004) 47-4

