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Abstract We propose a new, robust boosting method by using a sigmoidal function as a loss function. In
deriving the method, the stagewise additive modelling methodology is blended with the gradient descent
algorithms. Based on intensive numerical experiments, we show that the proposed method is actually better
than AdaBoost and other regularized method in test error rates in the case of noisy, mislabeled situation.
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1. Introduction

Suppose a situation in which a management must solve a decision problem depending on a
number of people whose opinions differ slightly, and their experiences and personal abilities
to solve the problem seem to be almost equal and, as a result, cannot draw a decisive
conclusion. To resolve this situation in order to make a reasonably better decision, is it
more efficient to ignore opinions of these people and relying solely on manager’s decision,
or to restart the discussion by changing the team and forming a new ensemble through
addition of capable people?

Obviously, the first behaviour is faster but it may not lead to a better decision. On the
other hand, the second one may lead to a better decision since it will provide an iterative
improvement to the solution but it certainly is a slow process and takes much longer time.
This is what we often encounter during decision analysis dealing with data mining. However,
we can make a better decision even in the original situation by resorting to the iterative
improvement method considering that a possible better solution is still the outcome of a
combination of a set of slightly different opinions converging toward the genuine better one.

The situation described above is essentially a problem associated with a committee-based
decision making. The aim of this paper is to develop a new robust algorithm for pattern
classification problem by using an analogy to the committee-based decision making, where
each individual member of the committee corresponds to a classifier. The decision here is
to correctly classify data to its true class label, and we would like to develop a new robust
classification method through iterative improvement of classifiers or committee members.

In view of the above objective in mind, the starting point for the present study would
be an iterative improvement procedure called“boosting,”which is a way of combining the
performance of many“weak”classifiers to produce a powerful“committee.”The procedure
allows the designer to continue adding weak classifiers until some desired low training error
has been achieved. Boosting techniques have mostly been studied in the computational
learning theory literature (e.g., see Freund [3] , Freund and Schapire [4], Schapire [14]) and
received increasing attention in many areas including data mining and knowledge discovery.
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A Robust Boosting Method 183

While boosting has evolved over the recent years, we focus on the most commonly used
version of the adaptive boosting procedure, i.e.,“AdaBoost.M1.”[4]. A concise description
of AdaBoost is given here for the two-category classification setting. We have a set of
N training data pairs, (x1, y1), . . . , (xi, yi), . . . , (xN , yN), where xi denotes a vector valued
feature with yi = −1 or 1, as its class label or teacher signal. The total number of component
classifiers is assumed to be M . Then, the output of classification model (i.e., committee) is
given by a scalar function, F (x) =

∑M
m=1 αmfm(x), in which each fm(x) denotes a classifier

producing values ±1, and αm are prescribed constants; the corresponding prediction (i.e.,
decision) is sign(F (x)).

The AdaBoost procedure trains the classifiers fm(x) on weighted versions of the training
sample, by giving higher weight to cases that are currently misclassified. This is done
for a sequence of weighted samples, and then the final classifier is defined to be a linear
superposition of the classifiers from each stage. A detailed description of AdaBoost.M1. is
summarized and given in the next box, where I(yi �= fm(xi)) denotes the indicator function
with respect to the event such that yi �= fm(xi), i.e., misclassification event, and zi denotes
an input-output pair (xi, yi).

AdaBoost.M1. (Freund and Schapire [4])

1. Initialize the observation weights w1(zi) = 1/N, i = 1, 2, . . . , N .
2. For m = 1, 2, . . . , M do:

(a) Fit a classifier fm(x) to the training data using weights wm(z).

(b) Compute errm =
PN

i=1 wm(zi)I(yi �=fm(xi))
PN

i=1 wm(zi)
.

(c) Compute αm = log((1 − errm)/(errm)).
(d) Update weights

wm+1(zi) = wm(zi) · exp[αm · I(yi �= fm(xi))], i = 1, 2, . . . , N.

end For
3. Output F (x) = sign[

∑M
m=1 αmfm(x)].

Much has been written about the success of AdaBoost in producing accurate classifiers.
Many authors have explored the use of a tree-based classifier for fm(x) and demonstrated
that it consistently produces significantly lower error rates than a single decision tree. In
fact, Breiman [1] called AdaBoost with trees as“ the best off-the-shelf classifier in the
world.”

Interestingly, in many examples, the test error seems to consistently decrease and then
level off as more classifiers are added, instead of turning into ultimate increase. It hence
seems that AdaBoost is resistant to overfitting for low noise cases. However, recent studies
with highly noisy patterns (e.g., Grove and Schuurmans [7], Quinlan [12], Rätsch et al. [13])
depict that it is clearly a myth that AdaBoost does not overfit since AdaBoost asymptotically
concentrates on the patterns which are hardest to learn. To cope with this problem, some
regularized boosting algorithms are proposed (Mason et al. [10], Rätsch et al. [13]). In this
paper, we will take an iterative improvement approach to optimize classifiers to derive a
new robust boosting method that is resistant against mislabeled noisy patterns.

In the next section, we present the principles of AdaBoost. We also review a technique
of forward stagewise additive modelling in Section 2. Then, in Section 3, we present the
sigmoidal loss function and propose the new robust boosting method. In Section 4, results
of intensive numerical experiments are presented, and we detail cases with noisy, mislabeled
patterns. Section 5 contains some concluding remarks.
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2. AdaBoost as Forward Stagewise Additive Modelling

2.1. Forward stagewise additive modelling

Friedman et al. [6], and Hastie et al. [8] have given an interpretation of AdaBoost as a
forward stagewise additive modelling. Forward stagewise additive modelling is a greedy
forward stepwise approach for fitting an additive expansion as follows:

FM(x) =
M∑

m=1

βmb(x; γm), (1)

where βm, m = 1, 2, . . . , M , are expansion coefficients, and basis functions {b(x; γm)}M
m=1 are

taken to be simple functions characterized by a set of parameter vectors γ. For example, in
single hidden layer neural networks, b(x; γ) = σ(γtx), where σ(·) denotes the familiar logistic
function, γ parameterizes a linear combination of the input features, and γtx denotes the
vector inner product. Such a learning network is trained with a given set of input features
and output values to compute the optimal synaptic weights employing gradient descent
methods (e.g., see Koda and Okano [9]).

Typically these models are fit by minimizing an appropriate loss function averaged over
the training data, such as squared-error or likelihood-based loss function,

min
{βm,γm}M

m=1

N∑
i=1

L(yi,

M∑
m=1

βmb(xi; γm)), (2)

where L(y, FM(x)) denotes the loss function. To solve Equation (2) for a general class of
loss functions L(y, F (x)) and/or basis functions b(x; γ), computationally intensive numerical
optimization techniques are required in general. The forward stegewise additive modelling
is summarized and given in the following box.

Forward Stagewise Additive Modelling

1. Initialize F0(x) = 0.
2. For m = 1, 2, . . . , M do:

(a) Compute

(βm, γm) = arg min
β,γ

N∑
i=1

L(yi, Fm−1(xi) + βb(xi; γ)).

(b) Set Fm(x) = Fm−1(x) + βmb(x; γm).
end For

3. Output sign(FM(x)).

Forward stagewise additive modelling approximates the solution to Equation (2) by
sequentially adding new basis functions to the expansion without adjusting the parameters
and coefficients of those that have already been added. At each iteration m, one solves for
the optimal basis function b(x; γm) and corresponding coefficient βm to add to the current
expansion Fm−1(x). This produces Fm(x), and the process is repeated until some desired
low training error has been achieved at the M -th stage. In the boosting terminology, b(x; γ)
would be referred to as the“ base learner,”and FM(x) the“ committee.”
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2.2. Derivation of AdaBoost

Friedman et al. [6] have demonstrated that AdaBoost.M1. is equivalent to forward stagewise
additive modelling using the following exponential loss function:

L(y, F (x)) = exp(−yF (x)), (3)

where F (x) denotes the classification model.
In AdaBoost, the basis function is the individual classifier f(x) ∈ {−1, 1}. Using the

exponential loss function (3), one must solve

(βm, fm) = arg min
β,f

N∑
i=1

exp[−yi(Fm−1(xi) + βf(xi))]

for the optimal classifier fm(x) and corresponding coefficient βm to be added at the m-th
step. This can be expressed as

(βm, fm) = arg min
β,f

N∑
i=1

wm(zi) exp(−βyif(xi)) (4)

with wm(zi) = exp(−yiFm−1(xi)), where zi symbolically denotes the input-output pair
(xi, yi). Since each wm(zi) depends neither on β nor f(x), it can be regarded as a weight
that is applied to each observation. This weight depends on Fm−1(xi), and so the individual
weight value changes at each iteration m.

The solution to Equation (4) can be obtained in two steps. First, for any value of β > 0,
the solution to Equation (4) for fm(x) is given by

fm(x) = arg min
f

N∑
i=1

wm(zi)I(yi �= f(xi)), (5)

which is the classifier that minimizes the weighted error rate in predicting y. This can be
easily seen by expressing the criterion in Equation (4) as

e−β ·
∑

yi=f(xi)

wm(zi) + eβ ·
∑

yi �=f(xi)

wm(zi),

which in turn can be written as

(eβ − e−β) ·
N∑

i=1

wm(zi)I(yi �= f(xi)) + e−β ·
N∑

i=1

wm(zi). (6)

Plugging f = fm, i.e., Equation (5), into Equation (4) and solving for the optimal value
of β, one obtains

βm =
1

2
log

1 − errm

errm

, (7)

where errm is the optimal error rate defined as

errm =

∑N
i=1 wm(zi)I(yi �= fm(xi))∑N

i=1 wm(zi)
. (8)
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Note that Equation (8) is equivalent to line 2(b) of AdaBoost.M1. algorithm. The repre-
sentation of Fm(x) is then updated as

Fm(x) = Fm−1(x) + βmfm(x),

which renews the weights for the next iteration as follows:

wm+1(zi) = wm(zi) · e−βmyifm(xi). (9)

Using the fact that −yifm(xi) = 2 · I(yi �= fm(xi)) − 1, Equation (9) becomes

wm+1(zi) = wm(zi) · eαmI(yi �=fm(xi)) · e−βm , (10)

where αm = 2βm is the quantity defined at line 2(c) of AdaBoost.M1. The factor e−βm in
Equation (10) multiplies all weights by the same value, so it has no effect. Thus Equation
(10) is equivalent to line 2(d) of AdaBoost.M1. algorithm. One can view line 2(a) of the
algorithm as a method for solving the minimization involved in Equation (5). Hence we
conclude that AdaBoost.M1. minimizes the exponential loss criterion (3) through a forward
stagewise additive modeling approach.

3. Derivation of Boosting Method Using Sigmoidal Loss Function

3.1. Sigmoidal loss function

Friedman et al. [6] have demonstrated that the AdaBoost algorithm decreases an exponential
loss function through the forward stagewise additive modelling along the lines that are
presented in Section 2. Figure 1 illustrates various loss functions as a function of the margin
value, y · F (x), including the exponential loss function. When all the class labels are not
mislabeled and hence data is error-free, the result of correct classification always yields
a positive margin since y and F (x) both share the same sign while incorrect one yields
negative margin. The loss function for Support Vector Machine is also shown in Figure 1,
which is a statistical learning method to train kernel-based machines with optimal margins
by mapping training data in a higher dimensional space.

Shown also in Figure 1 is the misclassification loss, L(y, F (x)) = I(y · F (x) < 0),
where I(y · F (x) < 0) denotes the indicator function with respect to the occurrence of the
incorrect events, i.e., y · F (x) < 0, which gives unit penalty for negative margin values,
with no penalty for positive ones (i.e., correct decisions). Note that the misclassification
loss is a discontinuous step function. In this way, the decision rule becomes a judgment on
a zero-one loss function.

The exponential loss function exponentially penalizes negative margin observations or
incorrect decisions. At any point in the training process, the exponential criterion concen-
trates much more influence on observations with large negative margins. This is considered
as one of the reasons why AdaBoost is not robust for noisy situation where there is misspec-
ification of the class labels in the training data. Since the misclassification loss concentrates
and uniquely influences on negative margin, it is far more robust in noisy setting where the
Bayes error rate is not close to zero, which is especially the case in mislabeled situation.
Here we would like to propose a loss function which takes account of limited influences from
larger negative margins in a proper manner and, accordingly, robust against mislabeled
noisy training data.

Mean-squared approximation errors are well-understood and used as a loss function
in statistics area. Unlike the misclassification loss which considers only the misclassified
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Figure 1: Loss functions for two-category classification (Following [8]).

observations, the minimum squared error (MSE) criterion takes into account the entire
training samples with wide range of margin values. Hence, if MSE is adopted, the correct
classification but with y · F (x) > 1 incurs increasing loss for larger values of |F (x)|. This
makes the squared-error a poor approximation compared to the misclassification loss and
not desirable since the classification results that are“excessively”correct are also penalized
as much as worst (extremely incorrect) cases. Other functions in Figure 1 can be viewed
as monotone continuous approximations to the misclassification loss. Friedman et al. [6]
derived“ LogitBoost”based on a binomial deviance loss.

Actual misclassification loss is not continuous and therefore we propose the following
continuous function to approximate the misclassification loss,

L(y, F (x)) =
1

1 + eκyF (x)
. (11)

This is a sigmoidal function where κ denotes the appropriate positive gain. Note that the
proposed loss function (11) is mirror symmetric to the familiar logistic function with respect
to the vertical axis located at y · F (x) = 0, i.e., zero margin axis. Then, an optimization of
Equation (11) by using the stegewise additive modelling can be formulated as follows:

(βm, γm) = arg min
β,γ

N∑
i=1

L(yi, Fm−1(xi) + βb(xi; γ)),

= arg min
β,γ

N∑
i=1

1

1 + exp(κyi(Fm−1(xi) + βb(xi; γ)))
, (12)

where b(x; γ) denotes an appropriate base learner such as neural network. It should be
noted that the solution to Equation (12) is very difficult to obtain in general, since it
involves simultaneous optimization with respect to the two model parameters, β and γ.
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3.2. Proposed boosting algorithm

In this study, the optimization involved in Equation (12) is approximately executed by using
an analogy to the one that is typically employed in numerical optimization. In general, the
approximation of functions using input-output relations may be converted to a parameter
optimization problem by selecting an appropriately parameterized model. However, we take
a“ nonparametric”approach without assuming any parameterized models and hence we
apply numerical optimization procedures in function space. The readers are referred to
Friedman [5] for details of the approximation techniques.

The empirical loss in using F (x) to predict y on the training data is given by

LN =
N∑

i=1

L(yi, F (xi)). (13)

Ordinarily this empirical loss is a function of the modelling parameters, i.e., β and γ.
However, without assuming such a parameterized model, we optimize Equation (13) using
a novel approach. Let F = {F (x1), · · · , F (xi), · · · , F (xN)} be considered as“ parameters”
to approximate the continuous function F (x) at each of the N data points xi. Then,
minimization of Equation (11) can be viewed as a numerical optimization problem and
hence gradient descent methods can be effectively applied. In the present stagewise additive
modelling formulation, at the m-th iteration stage, the components of the gradient gm

evaluated at F = Fm−1 are given by

gim =

[
∂L(yi, F (xi))

∂F (xi)

]
F (xi)=Fm−1(xi)

. (14)

The gradient, gm ∈ RN , is defined only at the training data point xi, whereas our
ultimate goal is to generalize the output of classification model, F (x), to new unknown data
x not represented in the training samples. In order to fit negative gradients, −gm, method
of least squares minimization is employed here. The final classification may be achieved by
using relevant function approximation techniques through linear or nonlinear superpositions
of functions defined at data points. By superpositions, however, even though the class label y
is binary-valued, F (x) outputs a continuous value, not ±1. This resembles the noisy version
of the Bayes discriminant analysis where the conditional mean of y takes continuous values
for binary-valued y and offers a fair amount of flexibility needed for generalization capability.
Hence, the proposed approach may be robust when it is applied to noisy situations with
mislabeled events.

From Equation (14), we compute the components of negative gradient, −gim, utilizing
the proposed loss function (11) as follows:

−gim = −
[

∂

∂F (xi)

1

1 + eκyiF (xi)

]
F (xi)=Fm−1(xi)

=
κyie

κyiF (xi)

(1 + eκyiF (xi))2

∣∣∣∣
F (xi)=Fm−1(xi)

. (15)

Using Equation (15), method of least squares minimization can be formulated as

γm = arg min
γ

N∑
i=1

[gim + b(xi; γ)]2, (16)

for an appropriate base learner b(x; γ) to fit to the negative gradient −gim.
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At data point xi, the gradient descent algorithm yields the following adaptation rule:

Fm(xi) = Fm−1(xi) + δĝim = Fm−1(xi) − βmgim, (17)

where ĝim denotes the estimated negative gradient, and the“ correction” term δĝim =
−βmgim is generally a function of the input feature xi, its class label, and the current estimate
Fm−1(xi), and βm (> 0) denotes the learning parameter that is used for a generalization of
gradient features at the m-th stage. Note that βm is adjusted after the entire training set
is classified. Then, for unknown x, Equation (17) can be generalized as

Fm(x) = Fm−1(x) + βmb(x; γm), (18)

where b(x; γm) denotes the optimal base learner obtained from Equation (16).
In view of our ultimate target F (x) = y, F0(x) is initialized to ȳ = 1

N

∑N
i=1 yi, the mean

value of yi. This concludes the derivation of the algorithm and the proposed method can
be summarized as follows.

Proposed Method

1. Initialize F0(x) = ȳ = 1
N

∑N
i=1 yi, and specify K.

2. For m = 1, 2, . . . , M do:

(a) gim = −κyie
κyiF (xi)

(1+eκyiF (xi))2

∣∣∣
F (xi)=Fm−1(xi)

(b) γm = arg min
γ

∑N
i=1[gim + b(xi; γ)]2

(c) βm = K
K+m

(d) Fm(x) = Fm−1(x) + βmb(x; γm)
end For

3. Output sign(FM(x)).

For the appropriate choice of βm, we propose βm = K/(K + m), where K is a suitable
integer. In our numerical experiments in Section 4, K is set to M . This setting of βm is
based on the stochastic approximation technique [2] which satisfies the conditions

lim
M→∞

M∑
m=1

βm = ∞, and lim
M→∞

M∑
m=1

β2
m < ∞. (19)

The proposed method of βm guarantees a convergence of Fm if an infinite sequence is applied
to the gradient-type search method, such as Equation (17) in this study. It is noted that
the present boosting method involves a gradient numerical search in order to generalize
gradient features, and the solution provided by the method may be a local minimum and
not necessarily be a global optimal solution.

4. Numerical Experiments

In this section, numerical results are presented and, especially, the robustness of the proposed
method is analyzed and compared with that of AdaBoost and AdaBoostReg. We focus our
attention to classification results for the mislabeled (i.e., noisy) case near decision boundary,
the mislabeled case far from decision boundary, and correctly labeled (i.e., noiseless) case.
The back-propagation neural network with single hidden layer is used as a base learner for
all the three cases. We may note that a multilayer neural network has been shown to be able
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to define an arbitrary decision function, with a flexible architecture in terms of the number
of hidden units. For the present numerical experiments, the number of hidden units is fixed
to 3.

4.1. Generation of mislabeled data

For numerical experiments, data (with 2% mislabeled case) is generated as follows:
1. Decide N , the size of training and test examples;
2. generate 2N training and test examples from five dimensional standard normal distri-

bution x ∼ N5(0, I);
3. decide r2, the squared-radius from the origin, for all examples;

r(xi)
2 =

5∑
j=1

x2
ij (i = 1, . . . , 2N)

4. decide threshold th by the median of r(x)2;
5. assign y = sign(F (x)), where F (x) = r(x)2 − th;
6. sort |r(xi)

2−th| (i = 1, . . . , N) corresponding to training examples by descending order;
7. sample randomly 2% from top (or below) 50% from the outcome of Step 6;
8. flip the label of sampled examples in Step 7.

In Step 5, note that F (x) = r(x)2 − th is used as a nonlinear decision function. In the
mislabeled case at far from decision boundary, samples from top 50% training examples are
selected in Step 7. In the mislabeled case at near decision boundary, samples from below
50% training examples are chosen as training examples. It is noted that the mislabeled
data is only contained in training examples xi (i = 1, . . . , N), and the test examples xi (i =
N +1, . . . , 2N) are noise free. Above procedure is repeated 5 times, each time different data
set is generated and the performance of boosting methods for each data set is evaluated. In
Figures 2, 3, and 4, the average performance of training and test error rates is shown.

4.2. Other boosting method −AdaBoostReg

In order to verify the proposed method, the performance of the method is compared with
AdaBoost and AdaBoostReg. AdaBoostReg is the regularized boosting method proposed by
Rätsch et al. [13]. They defined regularization term µm(zi) to express the influences of a
pattern on the combined classifiers fm by

µm(zi) =
m∑

s=1

csws(zi).

where cs denotes the normalized weights of classifiers such that
∑m

s=1 cs = 1, and zi denotes
the input-output pair (xi, yi). If there is mislabeled data in training data, µm(zi) becomes a
quantity to express mistrust of the corresponding pattern zi. Since AdaBoost asymptotically
concentrate on the patterns which are hardest to learn, they introduced the loss function of
AdaBoostReg as follows:

GReg(β
m) =

N∑
i=1

exp

{
−1

2
[ρ(zi, β

m) + C|βm|µm(zi)
2]

}
, (20)

where βm = (β1, β2, · · · , βm), and ρ(zi, β
m) denotes the margin for an input-output pair

zi = (xi, yi) as follows:

ρ(zi, β
m) = yiF (xi) = yi

m∑
s=1

βsfs(xi). (21)
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Note that the optimal value of βm is obtained efficiently through a line search procedure
(e.g., Press et al. [11]) by minimizing Equation (20), which has a unique solution because

∂
∂βm

GReg(β
m) > 0 is satisfied for βm > 0. AdaBoostReg is summarized and given in the

following box, in which C is a priori chosen constant, and |βm| is l1 norm of βm such that
|βm| =

∑m
s=1 |βs|. If C = 0 the original AdaBoost algorithm is retrieved. The readers are

reffered to Rätsch et al. [13] for details of AdaBoostReg.

AdaBoostReg (Rätsch et al. [13])

1. Initialize the observation weights w1(zi) = 1/N, i = 1, 2, . . . , N .
2. For m = 1, 2, . . . , M do:

(a) Fit a classifier fm(x) to the training data using weights wm(z).
(b) Find βm by line search

βm = arg min
βm≥0

N∑
i=1

exp

{
−1

2
[ρ(zi, β

m) + C|βm|µm(zi)
2]

}
.

(c) Update weights
wm+1(zi) = 1

Zm+1
exp

{−1
2
[ρ(zi, β

m) + C|βm|µm(zi)
2]

}
,

i = 1, 2, . . . , N, where Zm+1 denotes the normalization constant,
such that

∑N
i=1 wm+1(zi) = 1.

end For
3. Output F (x) = sign(

∑M
m=1 βmfm(x)).

4.3. Results of experiment

The number of training and test data are 1000 each, i.e., N = 1000. The independent
experiments on the noiseless situation in which no mislabeled data is contained on the same
data set are also conducted. Iteration number of the weak learner, which is referred to as
round (number), is 1000. The gain parameter of the proposed loss function, κ in Equation
(11), is set to 1, and the regularized parameter of AdaBoostReg, C, is set to 10000, where
the value of C is determined based on preliminary experiments.

We plot in Figure 2 the learning (error minimization) curves for 2% mislabeled cases far
from decision boundary. In Figure 3, the learning curves of mislabeled cases near decision
boundary are shown. In Figure 4, we plot learning curves of noiseless data. In each figure,
(a) shows AdaBoost training and test error rates, (b) training and test error rates of the
proposed method, (c) training and test error rates of AdaBoostReg, and (d) comparison of
test error rates of all the three boosting methods. On test error rates, we may note that the
performance of the proposed method is superior to that of other two methods.

In Figure 2 (d), the test error rate of the proposed method falls into 0.054% at 1000
round, which is lower than that of other two boosting methods. In Figure 3 (d), the test
error rate of the proposed method falls into 0.051% at 1000 round, which is lower than the
other two boosting methods. In Figure 4 (d), the test error rate of the proposed method falls
into 0.045% at 1000 round, which exhibits similar performance to the other two methods. In
mislabeled cases in Figures 2 and 3, the superiority of the proposed method is remarkable.
Even in noiseless case, the performance of the proposed method is equivalent to that of other
two boosting methods. In summary, the present method achieved superior performance in
general.
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Figure 2: Comparison of three boosting methods on 2% mislabeled cases far from decision
boundary. (a) Learning and test error rates of AdaBoost. (b) Learning and test error rates
of proposed method. (c) Learning and test error rates of AdaBoostReg. (d) Test error rates
of three boosting methods.
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Figure 3: Comparison of three boosting methods on 2% mislabeled cases near decision
boundary. (a) Learning and test error rates of AdaBoost. (b) Learning and test error rates
of proposed method. (c) Learning and test error rates of AdaBoostReg. (d) Test error rates
of three boosting methods.
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Figure 4: Comparison of three boosting methods on noiseless cases. (a) Learning and test
error rates of AdaBoost. (b) Learning and test error rates of proposed method. (c) Learning
and test error rates of AdaBoostReg. (d) Test error rates of three boosting methods.
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5. Conclusion

We developed and derived a new, robust boosting method against mislabeled, noisy data.
The stagewise additive modelling methodology is blended with the gradient numerical search
algorithms and is used as a design principle. The new formulation uses the smoothed zero-
one sigmoidal loss function suitable for gradient descent algorithms. Performance of the
proposed method was compared with that of AdaBoost and AdaBoostReg through intensive
numerical experiments. The proposed method is robust compared to other two boosting
methods especially in mislabeled, noisy cases. Even for noiseless (0% mislabeled) cases,
the proposed method exhibits the similar performance with that of other two methods.
The proposed method is applicable to a wide range of problems in real-world data mining
applications such as response enhancement of direct mails and improved default prediction
of credit card users, etc. These are subjects for our future study.
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