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Abstract A type of optimal investment problem can be regarded as an optimal stopping problem in the
field of applied stochastic analysis. This study derives the existence conditions of the optimal stopping
time when the stochastic process is a geometric Brownian motion or an arithmetic Brownian motion. The
conditions concern the intrinsic value function and are natural extensions of the certainty case. Additionally,
they are essential for a well-known result in recent investment theory. They are also applied to an optimal
land development problem. The analyses give existing studies rigorous foundations and generalize them.
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1. Introduction

Recently, many researchers have studied optimal investment problems under uncertainty
using the continuous-time option theory.1 They first derive a partial differential equation
that the option value function should satisfy, and then use the value-matching condition
and the smooth-pasting condition to derive the optimal solution. Almost all of the studies,
however, ignore sufficiency of the solution.

A type of optimal investment problem can be regarded as a version of an optimal stopping
problem in the field of applied stochastic analysis. The conditions required for optimal
stopping time when the stochastic process is Ito diffusion were derived by Dynkin [8]. His
theorem gives a general solution of optimal stopping problems, but it is not necessarily
useful for specific economic problems. Recently, Brekke and Øksendal [3] derived a relation
between optimal stopping time and the smooth-pasting condition, that is often used in
economic analysis. The smooth-pasting condition is essentially considered as a first-order
condition in the optimization of the stopping time (e.g. Merton [10], p.171, Øksendal [12]).
Brekke and Øksendal [3] derived the second-order conditions that guarantee the optimality
of the solutions that satisfy the smooth-pasting condition. However, their conditions are
very complex.

An aim of this study is to derive more simple existence conditions of the optimal stop-
ping time by limiting the stochastic process to a geometric Brownian motion (GBM) or
an arithmetic Brownian motion (ABM), which are tractable and are often used in invest-
ment problems. The results show that the existence conditions are natural extensions of

1The continuous-time model for financial-option pricing was developed by Merton [10], and its application
to a real-option problem was studied by McDonald and Siegel [9]. Dixit [6] and Dixit and Pindyck [7] are
basic textbooks for this area.
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146 H. Takatsuka

the certainty case and are essentially related to a well-known result in recent investment
theory, i.e., optimal investment time is delayed when uncertainty increases. This is the first
contribution of this article.

The second contribution is related to an optimal land development problem. Clarke and
Reed [5] analyzed an optimal land development problem as an optimal stopping problem, in
which they set development time and capital stock (i.e., building size) as controlled variables,
and have shown that uncertainty delays development and increases capital stock.2 However,
their assumptions are not necessarily verified. First, they assume a second-order condition
for a deterministic version of their model, which was analyzed by Arnott and Lewis [1] (so
we call the condition ‘AL condition’). Second, they assume that the process of net land rent
after investment is a GBM and the one before investment is constant (zero). Some studies
insist that an ABM is better for the land rent process (Capozza and Li [4]) and that rent
from undeveloped land (e.g. parking lot, old and low buildings) is also stochastic (Williams
[16]). We generalize the Clarke=Reed model from this point of view and apply the existence
conditions of the optimal stopping time. The results show that the AL condition guarantees
the existence of the optimal development time and the main result in Clarke and Reed [5]
in more general setting. This fact is very important in an empirical sense, since the AL
condition is testable and indeed Arnott and Lewis [1] showed an empirical result supporting
this condition.

This article is organized as follows. We first derive the existence conditions of the optimal
stopping time when the stochastic process is a geometric Brownian motion or an arithmetic
Brownian motion using the Brekke=Øksendal theorem (Section 2). Second, we apply the
result to an optimal land development problem (Section 3). From the analyses, we can give
the Clarke=Reed model rigorous foundations in more general settings.

2. Existence Conditions for an Optimal Stopping Problem

We specify an optimal investment problem as follows:

sup
τ,X

E0[

∫ τ

0

CFA(Yt)e
−rtdt +

∫ ∞

τ

CF (Yt, X)e−rtdt − cτ (X)e−rτ ], (1)

where E0 is the expectation conditional on the present (time 0) information, CFA is the
cash-flow function before investment, CF is the cash-flow function after investment, Yt

is a one-dimensional stochastic process influencing cash flow, X is a vector of investment
characteristics (including capital stock), ct is the investment cost function at t, and r is
the real interest rate. Problem (1) implies that a risk-neutral agent can choose the timing
and characteristics of the investment, his decisions are one-time, and the investment lasts
forever. We should notice that τ is a Ft-stopping time, where Ft is the σ-algebra generated
by Ys, s ≤ t.

The objective function of (1) can be restated as

E0[

∫ τ

0

CFA(Yt)e
−rtdt +

∫ ∞

τ

CF (Yt, X)e−rtdt − cτ (X)e−rτ ]

2Titman [15] first studied such a problem using the financial option theory in a two-period setting. Like
Clarke and Reed [5], Williams [16] and Capozza and Li [4] analyzed continuous-time models for the problem
but they limited building production function to the Cobb-Douglas type. While all of the above studies as-
sumed that investment decisions are one-time, Pindyck [14] and Bertola [2] analyzed incremental-investment
models, in which the agent could add capital stock anytime.
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= E0[

∫ ∞

τ

{CF (Yt, X) − CFA(Yt)}e−rtdt − cτ (X)e−rτ +

∫ ∞

0

CFA(Yt)e
−rtdt]

= E0[{P (Yτ , X) − PA(Yτ ) − cτ (X)}e−rτ ] + PA(Y0), (2)

where Es

∫ ∞
s

CF (Yt, X)e−r(t−s)dt and Es

∫ ∞
s

CFA(Yt)e
−r(t−s)dt are assumed to have the form

P (Ys, X) and PA(Ys), respectively.

2.1. Constant cost case

When the investment cost only depends on X, problem (1) can be rewritten as

sup
τ,X

E0[{P (Yτ , X) − PA(Yτ ) − c(X)}e−rτ ]

= sup
τ

E0[V (Yτ )e
−rτ ], (3)

where V (Y ) ≡ max
X

{P (Y,X) − PA(Y ) − c(X)} and we call it the intrinsic value of the

warrant to invest the land when Yt = Y . Furthermore, the reward function v and the
optimal reward function v∗ are defined by v(s, y) ≡ V (y)e−rs, v∗(s, y) ≡ sup

τ
Es[V (Yτ )e

−rτ ],

respectively, where Ys = y.
Problem (3) is well-known as a type of optimal stopping problem in the field of applied

stochastic analysis. Brekke and Øksendal [3] assumed Yt is a multi-dimensional Ito diffusion
and proved a theorem giving a relation among the optimal stopping time, the optimal
reward function, and the smooth-pasting condition that is often used in economic analysis
(see Appendix 1). In this section, we assume Yt is a geometric Brownian motion (GBM) or
an arithmetic Brownian motion (ABM) and derive the conditions for the existence of optimal
stopping time using their theorem. The conditions concern the intrinsic value function and
are simple and meaningful.

2.1.1. GBM case

We set the following basic assumptions:

(A1) (t, Yt) ∈ U ≡ �+ ×�++ and dYt = gYtdt + σYtdBt, where both g and σ are positive
constants, 1

2
σ2 < g < r, and Bt is a one-dimensional standard Brownian motion.

(A2) We can find nonnegative yo such that the intrinsic value function V : �+ → � is
positive and belongs to C2 in (yo,∞) and V is nonpositive and continuous in [0, yo].

(A1) says that Yt is a geometric Brownian motion and that the inequality 1
2
σ2 < g

guarantees that any first exit time inf{t > 0 : Yt ≥ u, 0 < u < ∞} is finite a.s. (almost
surely) (e.g. Øksendal [13], p.63.). (A2) says that we have at most one break-even point
(yo) except for zero. This is a natural assumption in the real world. Differentiability of V
is a technical assumption.

In this case, the Brekke=Øksendal theorem could be restated as follows (see Appendix
1). If the following conditions are also satisfied, then τD is an optimal stopping time and w∗

is the optimal reward function, where w∗(s, y) ≡ w(s, y) if (s, y) ∈ D, and w∗(s, y) ≡ v(s, y)
otherwise:

(C1) An open set D ⊂ U with a C1 boundary exists, τD ≡ inf{t > 0 : (t, Yt) /∈ D} < ∞
a.s., and, for each s ∈ �+, the set {y : (s, y) ∈ ∂D} has a zero one-dimensional Lebesgue
measure, where ∂D is the boundary of D.

(C2) A function w : D → � exists, and w ∈ C1(D) ∩ C(D), where D is the closure of D.

c© Operations Research Society of Japan JORSJ (2004) 47-3



148 H. Takatsuka

(C3) v ∈ C1(∂D ∩ U) and Lv ≤ 0 outside D, where L is the characteristic operator of
(t, Yt) and

L =
∂

∂s
+ gy

∂

∂y
+

1

2
σ2y2 ∂2

∂y2
. (4)

(C4) w ≥ v in D.
(C5) D and w satisfy (a), (b), and (c):

(a) Lw = 0 in D.
(b) (value-matching condition)

w(s, y) = v(s, y)for(s, y) ∈ ∂D ∩ U. (5)

(c) (smooth-pasting condition)

∂

∂y
w(s, y) =

∂

∂y
v(s, y) for (s, y) ∈ ∂D ∩ U . (6)

These conditions seem to be complex, but they can be roughly interpreted as follows:
When D is given, (C5)(a) and (C5)(b) determine w. (C5)(c) is a first-order condition for
determining optimal D. (C2) and the first part of (C3) guarantee Lv, Lw, ∂w

∂y
, and ∂v

∂y

to exist in each specified region. The second part of (C3) and (C4) are the second-order
conditions for the optimality of D and w.

(C1) is a technical condition. By (C5)(a), (C5)(b), and the theorem of the stochastic
Dirichlet problem (e.g. Øksendal [13], p.172), we have w∗(s, y) = Es[V (YτD

)e−rτD ] for a
given D, which means w∗ ≤ v∗. By the Dynkin theorem of optimal stopping, v∗ must be
the least superharmonic majorant of v. On the other hand, w∗ is a majorant of v by (C3)
and (C4), so w∗ = v∗ only if w∗ is superharmonic. We can easily show this if w∗ ∈ C2, but
(C5)(c) only guarantees w∗ ∈ C1 on ∂D∩U . (C1) is a condition that guarantees the double
differentiability. For details, see Brekke and Øksendal [3].

The next proposition tells us that some conditions for the intrinsic value function V
verify (C1) - (C5):

Proposition 1 (Existence of an optimal stopping time: GBM case). Define

h(y) ≡ yV ′(y)
V (y)

in (yo,∞) and let β be a positive root of the equation 1
2
σ2β2+(g− 1

2
σ2)β−r = 0.

If h′(y) < 0, lim
y→∞

h(y) < β, and lim
y↓yo

h(y) > β, then a unique optimal stopping time τD exists,

where D = {(s, y) : s ∈ �+, 0 < y < y∗} and y∗ = h−1(β). Furthermore, if we let

w∗(s, y) ≡ V (y∗)
(

y
y∗

)β

e−rs for y ∈ [0, y∗) and w∗ ≡ v for y ≥ y∗, then w∗ is the optimal

reward function.

Proof. See Appendix 2(1). �
Remarks. (i) The set of conditions, h′(y) < 0, lim

y→∞
h(y) < β, and lim

y↓yo
h(y) > β , is a

natural extension of the certainty case. In the certainty case, problem (3) can be rewritten
as sup

t
V (Yt)e

−rt, and the first-order condition and the second-order condition are as follows:

(f.o.c.) V (yc) =
g

r
ycV ′(yc), (7)

(s.o.c.) g2yc2V ′′(yc) + (g2 − 2rg)ycV ′(yc) + r2V (yc) < 0, (8)

where yc is the optimal stopping time in this case. From (7) and (8), we have

c© Operations Research Society of Japan JORSJ (2004) 47-3
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yc2V ′′(yc) +

(
1 − 2r

g

)
ycV ′(yc) +

(
r

g

)2

V (yc) < 0 ⇐⇒

yc2V ′′(yc) +

(
1 − 2ycV ′(yc)

V (yc)

)
ycV ′(yc) +

(
ycV ′(yc)

V (yc)

)2

V (yc) < 0 ⇐⇒
{V ′(yc) + ycV ′′(yc)}V (yc) − ycV ′(yc)2 < 0. (9)

From Equation (22) of Appendix 2(1), (7) and (9) mean h(yc) = r
g

and h′(yc) < 0. Therefore,

the set of conditions, h′(y) < 0, lim
y→∞

h(y) < r
g
, and lim

y↓yo
h(y) > r

g
, is sufficient for the existence

of yc.
(ii) The condition h′(y) < 0 is meaningful. Since we have h(y∗) = β, ∂β

∂σ2 < 0, lim
σ2→0

β =

r
g

> 1, and lim
σ2→2g

β =
√

r
g
, this condition shows that the optimal stopping time is delayed

when uncertainty ( σ2) increases (Figure 1). In addition, this condition guarantees

h(y) > 0 in (yo,∞). (10)

If y such as h(y) ≤ 0 exists in (yo,∞), then we have lim
y→∞

h(y) < 0, which means lim
y→∞

V ′(y) <

0 by the definition of h(y). This contradicts V (y) > 0 in (yo,∞); thus, (10) is satisfied, and
(10) implies that V (y) is strictly increasing in (yo,∞) by the definition of h(y).

Figure 1: The graph of h(y)

(iii) The conditions lim
y→∞

h(y) < β and lim
y↓yo

h(y) > β do not guarantee that the opti-

mal stopping time exists for any level of uncertainty. If we assume lim
y→∞

h(y) <
√

r
g

and

lim
y↓yo

h(y) > r
g

instead of them, then the optimal stopping time exists for any level of uncer-

tainty, where we should notice that 0 < σ2 < 2g from (A1).
(iv) Dixit and Pindyck [7] (pp.103-104, 128-130) also discuss a sufficient condition for

the uniqueness of the optimal stopping time, in other words, a sufficient condition of clean
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division in the range of the continuation region and the stopping region. In our case, their
condition is that 1

2
σ2y2V ′′(y) + gyV ′(y) − rV (y) is monotonically decreasing (i.e., Lv(s, y)

is monotonically decreasing with respect to y). In contrast to our condition, this condition
require more information about the intrinsic value function V , that is, V ′′′. We only require
V ∈ C2 in (yo,∞).

2.1.2. ABM case

We set the following basic assumptions instead of (A1) and (A2) for the GBM case:

(A3) (t, Yt) ∈ U ≡ �+ × � and dYt = gdt + σdBt, where both g and σ are positive
constants and Bt is a one-dimensional standard Brownian motion.

(A4) We can find yo ∈ [−∞,∞) such that the intrinsic value function V : � → � is
positive and belongs to C2 in (yo,∞) and V is nonpositive and continuous in [−∞, yo].

In addition, the required conditions are the same as (C1) - (C5) for the GBM case except
for Equation (4). Instead of (4), we use

L =
∂

∂s
+ g

∂

∂y
+

1

2
σ2 ∂2

∂y2
. (11)

In this case, we have the following proposition, which resembles Proposition 1:

Proposition 2 (Existence of an optimal stopping time: ABM case). Define

hA(y) ≡ V ′(y)
V (y)

in (yo,∞) and let α be a positive root of the equation 1
2
σ2α2 + gα − r = 0.

If h′
A(y) < 0, lim

y→∞
hA(y) < α, and lim

y↓yo
h(y) > α, then a unique optimal stopping time

τD exists, where D = {(s, y) : s ∈ �+,−∞ < y < y∗} and y∗ = h−1
A (α). Furthermore, if

we let w∗(s, y) ≡ V (y∗)eα(y−y∗)−rs for y ∈ (−∞, y∗) and w∗ ≡ v for y ≥ y∗, then w∗ is the
optimal reward function.

Proof. See Appendix 2(2). �
Remarks. Almost all the remarks for the conditions of Proposition 1 are effective. If we
assume lim

y→∞
hA(y) = 0 and lim

y↓yo
hA(y) > r

g
instead of the condition lim

y→∞
hA(y) < α and

lim
y↓yo

hA(y) > α, then the optimal stopping time exists for any level of uncertainty.

2.2. Stochastic cost case

Next, we turn to a stochastic investment-cost case. We assume that the investment cost
at t is CtX, where Ct is a one-dimensional stochastic process and X is an investment
characteristic (e.g. capital stock). Then, problem (1) can be rewritten as

sup
τ,X

E0[{P (Yτ , X) − PA(Yτ ) − CτX}e−rτ ]

= sup
τ

E0[V (Yτ , Cτ )e
−rτ ], (12)

where V (Y,C) ≡ max
X

{P (Y,X)−PA(Y )−CX} (the intrinsic value of the warrant to invest

when Yt = Y and Ct = C). Furthermore, the reward function v and the optimal reward
function v∗ are defined by v(s, y, c) ≡ V (y, c)e−rs, v∗(s, y, c) ≡ sup

τ
Es[V (Yτ , Cτ )e

−rτ ], where

Ys = y and Cs = c, respectively. We also set the following assumptions in this case:

(A5) (t, Yt, Ct) ∈ U ≡ �+ × �++ × �++, dYt = gyYtdt + σyYtdBy
t and dCt = gcCtdt +

σcYtdBc
t , where gy, gc, σy, and σc are all positive constants, 1

2
(σ2

y − σ2
c ) < gy − gc and

c© Operations Research Society of Japan JORSJ (2004) 47-3
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gc < gy < r. By
t and Bc

t are correlated one-dimensional standard Brownian motions and
the correlation coefficient ρ is less than min(σy

σc
, σc

σy
).

(A6) V is a homogeneous function of degree one and Ṽ (z) ≡ 1
c
V (y, c) = V (y

c
, 1), where

z ≡ y
c
. We can find nonnegative zo such that Ṽ : �+ → � is positive and belongs to C2

in (zo,∞) and Ṽ is nonpositive and continuous in [0, zo].

(A5) says that Yt and Ct are (weakly) correlated geometric Brownian motions and the
inequality 1

2
(σ2

y − σ2
c ) < gy − gc guarantees that any first exit time inf{t > 0 : Yt

Ct
≥ u, 0 <

u < ∞} is finite a.s.3 We can easily show this using Ito’s formula for a ratio of Ito processes
(e.g. Nielsen [11], p.69). In addition, the required conditions are the same as (C1) - (C5)
except for Equations (4), (5), and (6). Instead of them, we use

L =
∂

∂s
+ gyy

∂

∂y
+ gcc

∂

∂c
+

1

2
σ2

yy
2 ∂2

∂y2
+

1

2
σ2

cc
2 ∂2

∂c2
+ ρσyσcyc

∂2

∂y∂c
, (13)

w(s, y, c) = v(s, y, c) for (s, y, c) ∈ ∂D ∩ U , (14)

∂

∂y
w(s, y, c) =

∂

∂y
v(s, y, c) and

∂

∂c
w(s, y, c) =

∂

∂c
v(s, y, c) for (s, y, c) ∈ ∂D ∩ U . (15)

L is the characteristic operator of (t, Yt, Ct). In this case, we have the following proposition:

Proposition 3 (Existence of an optimal stopping time: stochastic cost case).

Define h̃(z) ≡ z eV ′(z)
eV (z)

in (zo,∞) and let δ be a positive root of the equation 1
2
(σ2

y − 2ρσyσc +

σ2
c )δ(δ − 1) + (gy − gc)δ − (r − gc) = 0. If h̃′(z) < 0, lim

z→∞
h̃(z) < δ, and lim

z↓zo
h̃(z) > δ,

then a unique optimal stopping time τD exists, where D = {(s, y, c) : s ∈ �+, 0 < y
c

< z∗}
and z∗ = h̃−1(δ). Furthermore, if we let w∗(s, y, c) ≡ c

(
y/c
z∗

)δ

Ṽ (z∗)e−rs for y
c
∈ [0, z∗) and

w∗ ≡ v for y
c
≥ z∗, then w∗ is the optimal reward function.

Proof. See Appendix 2(3). �
Remarks. Almost all the remarks for the conditions of proposition 1 are effective again.
Since we have h̃(z∗) = δ, ∂δ

∂σ2
y

< 0, ∂δ
∂σ2

c
< 0, lim

σ2
y ,σ2

c→0
δ = r−gc

gy−gc
> 1, lim

σ2
y→∞

δ = 1, and

lim
σ2

c→∞
δ = 1 by using (A5), this condition shows that the optimal stopping time is delayed

when uncertainty (σ2
y or σ2

c ) increases. Also, if we assume lim
z→∞

h̃(z) ≤ 1 and lim
z↓zo

h̃(z) > r−gc

gy−gc

instead of the condition lim
z→∞

h̃(z) < δ and lim
z↓zo

h̃(z) > δ, then the optimal stopping time

exists for any level of uncertainty.

3. Application to an Optimal Land Development Problem

In this section, we consider an optimal land development problem, that is, a special case of
the problem in Section 2. We set Y and X in problem (1) to be the net rent R yielded by the
unit floor and the capital stock K allocated per unit land when it is developed, respectively,
and assume that the investment cost at t is CtK. If we let Q(K) be the output of the

3Ct must be positive, so we could not assume that Ct is an ABM. Yt can be negative, but we suppose that
both Yt and Ct are GBMs, since the ratio of the two processes is also a GBM in the case and it is convenient
for analysis.

c© Operations Research Society of Japan JORSJ (2004) 47-3
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floor on land developed with capital K, then we have CF (R,K) = Q(K)R. We suppose
Q ∈ C2(�+), Q(0) = 0, Q′ > 0, and Q′′ < 0.

Clarke and Reed [5] have derived the optimal development time and shown that uncer-
tainty delays development and increases capital stock. However, their assumptions are not
necessarily verified.

First, they assume a second-order condition for a deterministic version (σ2 = 0) of their

model, i.e., ε′(K) < 0, where the output elasticity of capital ε is defined by ε(K) ≡ Q′(K)K
Q(K)

.

Arnott and Lewis [1] analyzed the deterministic model and have derived the condition
(so we call the condition ‘AL condition’). Furthermore, they gave an empirical support
to this condition. They suppose a CES and constant-returns-to-scale production function

Q(K) = [λ + (1− λ)Kρ]
1
ρ , where 0 < λ < 1, ρ = σ−1

σ
, and σ is elasticity of the substitution

between land and capital, and estimated σ = 0.372, 0.342, employing data on Canadian

cities (1975, 1976). This result implies ε′(K) < 0, since ε′(K) = λ(1−λ)ρKρ−1

[λ+(1−λ)Kρ]2
has a negative

value if ρ < 0, that is, σ < 1. Nevertheless, Clarke and Reed [5] are not verified since their
model is stochastic.

Second, they assume that CFA(R) = 0, Rt, and Ct are geometric Brownian motions.
However, Capozza and Li [4] (p.893, footnote14) insist an ABM (normal diffusion) is better
than a GBM (lognormal diffusion) for land rent processes in several points of view. At first,
the empirical evidence on the behavior of real estate is more consistent with the ABM since
the variance of the growth rate tends to decline as urban areas increase in size. The ABM
also permits negative cash flows, which are common in real estate. In addition, we often
encounter situations that cash flows from undeveloped land (e.g. parking lot, old and low
buildings) is also stochastic (Williams [16]).

Considering these problems in Clarke and Reed [5], we generalize their model and apply
the existence conditions of the optimal stopping time obtained in Section 2. Especially, we
set CFA(R) = aR + b, where a ≥ 0 and b ≥ 0, and Rt can be both of a GBM and an ABM.
The results show that the AL condition guarantees the existence of the optimal development
time and the main result in Clarke and Reed [5] in our general setting. This fact is very
important in an empirical sense, since the AL condition is given with an empirical support.

3.1. Constant cost case

3.1.1. GBM case

In this case, Ct = C and the value of a unit floor at s, Es

∫ ∞
s

Rte
−r(t−s)dt, is Rs

r−g
, since

Es[Rt] = Rse
g(t−s). Therefore we have P (R,K) = Q(K)R

r−g
, PA(R) = aR

r−g
+ b

r
, and the intrinsic

value function

V (R) = max
K

[
Q(K)R

r − g
− (

aR

r − g
+

b

r
) − CK

]
. (16)

We can show that V (R) satisfies (A2) (see Appendix 3(1)); therefore, we can apply Propo-
sition 1. The conditions in Proposition 1 can be restated as conditions for the building-
production technology:

Proposition 4 (Existence of an optimal development time: GBM case). Suppose

(A1). Define ε̃(K) ≡ Q′(K)( b
rC

+K)

Q(K)−a
in (Ka,∞) and Ko ≡ Q′−1

(
(r−g)C

Ro

)
, where Ka ≡ Q−1(a)

and Ro is defined as yo in (A2). If ε̃′(K) < 0, lim
K→∞

ε̃(K) < β−1
β

, and lim
K↓Ko

ε̃(K) > β−1
β

,

where β is defined in Proposition 1, then a unique optimal development time τD exists, where

D = {(s,R) : s ∈ �+, 0 < R < R∗}, R∗ = (r−g)C
Q′(K∗)

, and K∗ = ε̃−1
(

β−1
β

)
. Furthermore, if we
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let w∗(s,R) ≡ V (R∗)
(

R
R∗

)β
e−rs for R ∈ [0, R∗) and w∗(s,R) ≡ V (R)e−rs for R ≥ R∗, then

w∗ is the optimal reward function.

Proof. See Appendix 3(1). �
Remarks. (i) If a > 0 or b > 0, then the condition lim

K↓Ko
ε̃(K) > β−1

β
is not necessary

since lim
K↓Ko

ε̃(K) = 1 > β−1
β

. Also, if a = b = 0 and Q′′ > −∞, the condition is not

necessary either. Otherwise, when a = b = 0 and Q′′(0) = −∞, the condition is sufficient
(see Appendix 3(1)).

(ii) The AL condition (ε′(K) < 0) is also effective, since ε′(K) < 0 ⇒ ε̃′(K) < 0 (see

Appendix 3). If we assume lim
K→∞

ε̃(K) <
√

r−√
g√

r
instead of the condition lim

K→∞
ε̃(K) < β−1

β
,

then the optimal stopping time exists for any levels of uncertainty, where we should notice
that 0 < σ2 < 2g from (A1).

(iii) When we assume a Cobb-Douglas production function Q(K) = Kγ (0 < γ < 1), we
have ε′(K) = 0. If we, furthermore, suppose a = b = 0, we also have ε̃′(K) = 0, that is,
h′(R) = 0 (see Appendix 3(1)). This implies that R∗, which is the value satisfying the value-
matching and smooth-pasting conditions that are necessary for optimal stopping, does not
exist; therefore, we could not find the optimal development time. This fact is also referred
to by Williams [16] (p.204, note 12).4 In a case with a > 0 or b > 0, we have ε̃′(K) < 0 and
lim

K→∞
ε̃(K) = γ. Therefore, if γ < β−1

β
, then the optimal development time exists.

3.1.2. ABM case

In this case, the value of a unit floor at s is Rs

r
+ g

r2 , since Es[Rt] = Rs + (t− s)g. Thus, we
have P (R,K) = Q(K)

(
R
r

+ g
r2

)
, PA(R) = a

(
R
r

+ g
r2

)
+ b

r
, and the intrinsic value function

V (R) = max
K

[
Q(K)

(
R

r
+

g

r2

)
− a

(
R

r
+

g

r2

)
− b

r
− CK

]
(17)

It should be noted that the value of a unit floor must be negative if the net rent R is less
than −g

r
. To rule out this possibility, we must restrict R > −g

r
or introduce an abandonment

option (Capozza and Li, 1994, p.893, footnote 14). Since we are interested in development,
we assume the former restriction. In other words, we assume that Rt ∈ (−g

r
,∞) for all t

and its process can be approximated by ABM in the range. In this case, it is sufficient that
we show that the following condition is satisfied instead of (A4) to apply Proposition 2:

(A7) We can find yo ∈ [−g
r
,∞) such that the intrinsic value function V : � → � is positive

and belongs to C2 in (yo,∞) and V is nonpositive and continuous in [−g
r
, yo].

We can show that V (R) satisfies (A7) (see Appendix 3(2)); therefore, we can apply
Proposition 2.

Proposition 5 (Existence of an optimal development time: ABM case). Suppose
that Rt ∈ (−g

r
,∞) for all t and its process can be approximated by ABM. Define Ko ≡

Q′−1
(

rC
Ro+ g

r

)
, where Ro is defined as yo in (A7). If ε̃′(K) ≤ 0, lim

K→∞
Q′(K)
1−eε(K)

< αrC, and

lim
K↓Ko

Q′(K)
1−eε(K)

> αrC, where ε̃(K) and α are defined in proposition 4 and 2, respectively, then

a unique optimal development time τD exists, where D = {(s,R) : s ∈ �+,−g
r

< R < R∗},
R∗ = rC

Q′(K∗)
− g

r
, and K∗ is the solution of Q′(K)

1−eε(K)
= αrC. Furthermore, if we let w∗(s,R) ≡

4To be exact, he analyzed the stochastic cost model discussed below, but we obtained the same result in
the model.
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V (R∗)eα(R−R∗)−rs for R ∈ (−g
r
, R∗) and w∗(s,R) ≡ V (R)e−rs for R ≥ R∗, then w∗ is the

optimal reward function.

Proof. See Appendix 3(2). �
Remarks. Here, the remarks are similar to those made in proposition 4 except for the
remark (iii). If we assume lim

K→∞
Q′(K)
1−eε(K)

= 0 instead of the condition lim
K→∞

Q′(K)
1−eε(K)

< αrC,

then the optimal stopping time exists for any level of uncertainty. Again, if we consider the
case that Q(K) = Kγ (0 < γ < 1), then we have ε̃′(K) ≤ 0 since ε′(K) = 0. We also gain

lim
K→∞

Q′(K)
1−eε(K)

= 0 and lim
K↓Ko

Q′(K)
1−eε(K)

> ∞; therefore, the optimal stopping time exists for any

level of uncertainty. This fact is also referred to by Capozza and Li [4] (p.894, footnote 16).

3.2. Stochastic cost case

If we assume (A5) and b = 0, then we have the intrinsic value function

V (R,C) = max
K

[
Q(K)R

r − g
− aR

r − g
− CK

]
. (18)

It is a homogenous function of degree one, so we obtain

Ṽ (Z) = max
K

[
Q(K)Z

r − g
− aZ

r − g
− K

]
, (19)

where Z ≡ R
C

. We can show that Ṽ (Z) satisfies (A6) (see Appendix 3(3)); therefore, we can
apply Proposition 3.

Proposition 6 (Existence of an optimal development time: stochastic cost case).
Suppose (A5) and b = 0. Define Ko ≡ Q′−1

(
r−g
Zo

)
, where Ka ≡ Q−1(a) and Zo is de-

fined as zo in (A6). If ε̃′(K) < 0, lim
K→∞

ε̃(K) < δ−1
δ

, and lim
K↓Ko

ε̃(K) > δ−1
δ

, where ε̃(K)

and δ are defined in proposition 4 and 3, respectively, then a unique optimal develop-
ment time τD exists, where D = {(s,R,C) : s ∈ �+, 0 < R

C
< Z∗}, Z∗ = r−g

Q′(K∗)
, and

K∗ = ε̃−1
(

δ−1
δ

)
. Furthermore, if we let w∗(s,R,C) ≡ C

(
R/C
Z∗

)δ

Ṽ (Z∗)e−rs for R
C
∈ [0, Z∗)

and w∗(s,R,C) ≡ V (R,C)e−rs for R
C
≥ Z∗, then w∗ is the optimal reward function.

Proof. See Appendix 3(3). �
Remarks. Here, the remarks are similar to those made in Proposition 4. If we assume
lim

K→∞
ε̃(K) = 0 instead of the condition lim

K→∞
ε̃(K) < δ−1

δ
, then the optimal stopping time

exists for any level of uncertainty.
Proposition 4 to 6 show that the AL condition (ε′(K) < 0) guarantees the existence

of the optimal development time in a more general setting if the uncertainty level is in an
appropriate range. This fact is important in an empirical sense, since the AL condition
is testable. Indeed, Arnott and Lewis [1] showed some empirical results supporting this
condition. In addition, the AL condition is essential for a main result of Clarke and Reed [5],
i.e., the optimal development time is delayed when uncertainty increases, because ε′(K) <
0 ⇒ ε̃′(K) < 0 ⇔ h′(R) < 0 (see Appendix 3 and Remark (ii) of Proposition 1). Therefore,
our analyses give the Clarke=Reed model rigorous foundations and generalize it.

4. Concluding Remarks

Many researchers have recently studied optimal investment problems under uncertainty
using the optimal stopping theory. They often use a partial differential equation, the value-
matching condition, and the smooth-pasting condition to derive the optimal solution; how-
ever, these are just necessary conditions. In this article, first, we derive sufficient conditions
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for the existence of the optimal solution for a type of optimal stopping problem. The con-
ditions concern the intrinsic value function and are natural extensions of the certainty case.
Additionally, they are essential for a well-known result in recent investment theory. Second,
we apply the conditions to an optimal land development problem. By the analyses, we can
give the Clarke=Reed model rigorous foundations and generalize it. Also, we can systemat-
ically understand some results of other existing studies assuming a Cobb-Douglas building
production function (Williams [16], Capozza and Li [4]).
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Appendix 1. Sufficiency theorem of the smooth pasting condition
An optimal stopping problem is the problem of finding sup

τ
E0[v(Xτ )], where E0 is the

expectation conditional on the present (time 0) information, Xt is a stochastic process, v is
a function, and τ is a Ft-stopping time. Ft is the σ-algebra generated by Xs, s ≤ t. Brekke
and Øksendal [3] proved the following theorem about this problem:

1 (Assumptions for the process Xt and a region D)

(a) Xt = (Kt, Yt) ∈ U ≡ M × N , where M ⊂ �m and N ⊂ �n, is an (m + n)-
dimensional Ito diffusion dXt = g(Xt)dt + σ(Xt)dBt, where g and σ are Lipschitz con-
tinuous functions and Bt is a k-dimensional standard Brownian motion.

(b) An open set D ⊂ U with a C1 boundary exists and τD ≡ inf{t > 0 : Xt /∈ D} < ∞
a.s.

(c) Yt is uniformly elliptic in N and, for each k ∈ M , the set {y ∈ N : (k, y) ∈ ∂D}
has a zero n-dimensional Lebesgue measure, where ∂D is the boundary of D.5

2 (Assumptions for the reward function v and a region D)

(a) v : U → � is continuous and belongs to C1(∂D ∩ U) ∩ C2(U\D), where D is the
closure of D.6

(b) Lv in U\D, where L =
∑
i

gi(x) ∂
∂xi

+ 1
2

∑
i,j

ai,j(x) ∂2

∂xi∂xj
and a = σσT .

3 (Assumptions for a function w and a region D)

(a) A function w : D → � exists and w ∈ C1(D) ∩ C2(D).

(b) w ≥ v in D.

4 (Assumptions for a function w, the reward function v, and a region D)

(a) Lw = 0 for x ∈ D.

(b) w(x) = v(x) for x ∈ ∂D ∩ U (the value matching condition).

(c) ∇yw(x) = ∇yv(x) for x ∈ ∂D ∩ U (the smooth pasting condition).

If all of the above assumptions are satisfied, then τD is an optimal stopping time and w∗

is the optimal reward function, where w∗(x) ≡ w(x) if x ∈ D, otherwise w∗(x) ≡ v(x).
Our assumptions (A1), (A3), and (A5) are special cases of their assumption 1(a) and

guarantee an assumption in 1(c), i.e., Yt is uniformly elliptic in the range. Additionally, a

5We say Yt is uniformly elliptic in N , if and only if there exists λ > 0 such that zT σy(y)σy(y)T z ≥ λ |z|2
for all y ∈ N , z ∈ �n, where dYt = gy(Yt)dt + σy(Yt)dBt. If Yt is uniformly elliptic in N , then the expected
length of time Yt stays in any area with a zero n-dimensional Lebesgue measure is zero.
6Brekke and Øksendal [3] suppose v ∈ C1(U) ∩ C2(U\D). Clearly, it is not necessary.
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candidate of the continuation region D must contain the set {(s, y) : s ∈ �+, y < yo} in the
constant cost case (Section 2.1), and the set {(s, y) : s ∈ �+, y

c
< zo} in the stochastic cost

case (Section 2.2). This implies that our assumptions (A2), (A4), and (A6) guarantee an
assumption in 2(a), i.e., v ∈ C2(U\D). Thus, the remaining assumptions are additionally
required. We restate their assumptions 1(b)(c), 3(a), 2, 3(b), and 4 as (C1), (C2), (C3),
(C4), and (C5), respectively in Section 2.

Appendix 2. Proofs of propositions in Section 2
(1) Proposition 1
A candidate of continuation region D must be invariant w.r.t. time t (Øksendal, 1998,
p.210), so we estimate that D has the form {(s, y) : s ∈ �+, 0 < y < y∗}, where y∗ is a
positive number.

It is reasonable to assume that w(s, y) = W (y)e−rs, where W is a function of y. By
(C5)(a) and the characteristic operator (4), we get the following differential equation of W :

1

2
σ2y2W ′′(y) + gyW ′(y) − rW (y) = 0. (20)

The general solution of (20) is W (y) = B1y
β1 + B2y

β2 , where B1 and B2 are arbitrary
constants and β1 and β2 are roots of the equation

1

2
σ2β2 + (g − 1

2
σ2)β − r = 0. (21)

When we assume β1 > β2, we get β1 > 1 and β2 < 0. W (y) must be bounded as y → 0,
so we must have B2 = 0. If we restate B1 and β1 as B and β, respectively, the solution is
W (y) = Byβ.

From (5) and (6), we have By∗β = V (y∗) and βBy∗β−1 = V ′(y∗), respectively. When

we use the two equations and notice V (y∗) > 0, we obtain h(y∗) ≡ y∗V ′(y∗)
V (y∗)

= β. From the

assumptions h′(y) < 0, lim
y→∞

h(y) < β, and lim
y↓yo

h(y) > β, y∗ ∈ (yo,∞) and B must exist

uniquely. Therefore, we can find D and w satisfying (C5).
We show these D and w satisfy (C4). If we define Z(y) ≡ W (y) − V (y), then we get

Z ′′(y∗) = β(β − 1)By∗β−2 − V ′′(y∗)

= (β − 1)y∗−1V ′(y∗) − V ′′(y∗) (from (6))

=
y∗V ′(y∗)2 − {V ′(y∗) + y∗V ′′(y∗)}V (y∗)

y∗V (y∗)
. (from h(y∗) = β)

We also obtain

h′(y) =
{V ′(y) + yV ′′(y)}V (y) − yV ′(y)2

V (y)2
. (22)

Therefore, we have Z ′′(y∗) = −h′(y∗)V (y∗)
y∗ > 0 by h′(y) < 0 and V (y∗) > 0. Equations (5)

and (6) and this inequality show that W (y) is tangent to V (y) at y∗ and W (y) ≥ V (y) in
the neighborhood of y∗. Next, we show that W (y) and V (y) do not intersect in (yo, y∗).
Since h(y) > β in (yo, y∗), we have

V (y)

yβ
− V ′(y)

βyβ−1
=

V (y)

yβ

[
1 − h(y)

β

]
< 0 in (yo, y∗). (23)

c© Operations Research Society of Japan JORSJ (2004) 47-3



Existence of the Optimal Stopping Time 157

Suppose y is an intersection of W (y) and V (y) and yo < y < y∗. From (23), we get

V (y)

Byβ
− V ′(y)

Bβyβ−1
< 0.

Since V (y) = Byβ, we have V ′(y) > Bβyβ−1 = W ′(y). However, we must have another
intersection ỹ such as V ′(ỹ) ≤ W ′(ỹ) and y < ỹ < y∗ because W (y) ≥ V (y) in the neigh-
borhood of y∗ (Figure 2). This contradicts (23), so intersections never exist in (yo, y∗). In
addition, W (y) and V (y) do not intersect in (0, yo), since V (y) ≤ 0 in the area. We conclude
that W (y) ≥ V (y) in (0, y∗) and (C4) is satisfied.

Figure 2: Contradiction in existence of intersections

Next, we show that (C3) is also satisfied. First, from (A2), we have that V ∈ C2 at y∗,
since y∗ ∈ (yo,∞); in other words, it is sufficient for the condition v ∈ C1(∂D∩U). Second,
the condition Lv ≤ 0 outside D is expressed as

1

2
σ2y2V ′′(y) + gyV ′(y) − rV (y) ≤ 0 in (y∗,∞). (24)

Since 0 < h(y) ≤ β in [y∗,∞), where the first inequality is Equation (10), we have h(y)2 −
h(y) ≤ β2 − β in [y∗,∞). Since (22) can be restated as

h′(y) =
1

y

[
y2V ′′(y)

V (y)
+ h(y) − h(y)2

]
,

and we have y2V ′′(y)
V (y)

< h(y)2 − h(y), we obtain y2V ′′(y)
V (y)

< β2 − β = r−gβ
1
2
σ2 in [y∗,∞), where

the last equality follows from (21). This inequality can be restated as

β <
r

g
− σ2

2g

y2V ′′(y)

V (y)
in [y∗,∞).

Using h(y) ≤ β in [y∗,∞), we obtain (24). (C5) guarantees that D must have the form
{(s, y) : s ∈ �+, 0 < y < y∗} and could not have any other components (Øksendal [13],
p.210).
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Clearly, (C2) is satisfied. Since D = {(s, y) : s ∈ �+, 0 < y < y∗} and τD < ∞ a.s. from
(A1), (C1) is also satisfied. Therefore, we find a unique optimal stopping time τD and the

optimal reward function w∗, where w∗(s, y) ≡ V (y∗)
(

y
y∗

)β

e−rs for y ∈ [0, y∗) and w∗ ≡ v

for y ≥ y∗. The proof is complete. �
(2) Proposition 2

A candidate of continuation region D must be invariant w.r.t. time t, so we guess that D
has the form {(s, y) : s ∈ �+,−∞ < y < y∗}, where y∗ is a positive number.

It is reasonable to assume that w(s, y) = W (y)e−rs, where W is a function of y. By
(C5)(a) and the characteristic operator (11), we get the following differential equation of W

1

2
σ2W ′′(y) + gW ′(y) − rW (y) = 0. (25)

The general solution of (25) is W (y) = A1e
α1y + A2e

α2y, where A1 and A2 are arbitrary
constants and α1 and α2 are roots of the equation

1

2
σ2α2 + gα − r = 0. (26)

When we assume α1 > α2, we get α1 > 0 and α2 < 0. W (y) must be bounded as y → −∞,
so we must have A2 = 0. If we restate A1 and α1 as A and α respectively, the solution is
W (y) = Aeαy. It is easy to show that ∂α

∂σ2 < 0, lim
σ2→0

α = r
g

> 1, and lim
σ2→∞

α = 0.

If we use α, A, eαy, and hA(y), (11) instead of β, B, eβy, and h(y), (4), respectively, we
can show that (C2) - (C5) are all satisfied in the same manner as in Proposition 1, except
that, for (C3), we use hA(y)2 ≤ α2 in [y∗,∞) instead of h(y)2 − h(y) ≤ β2 − β in [y∗,∞).
Since D = {(s, y) : s ∈ �+,−∞ < y < y∗} and τD < ∞ a.s. from a characteristic of the
standard Brownian motion (e.g. Øksendal, 1998, p.119), (C1) is also satisfied. Therefore,
we find a unique optimal stopping time τD and the optimal reward function w∗, where
w∗(s, y) ≡ V (y∗)eα(y−y∗)−rs for y ∈ (−∞, y∗) and w∗ ≡ v for y ≥ y∗. The proof is complete.
�
(3) Proposition 3

A candidate of continuation region D must be invariant w.r.t. time t, and the agent takes
notice of the ratio Y

C
since the intrinsic value function V is a homogenous function of degree

one. Thus, we estimate that D has the form {(s, y, c) : s ∈ �+, 0 < y
c

< z∗}, where z∗ is a
positive number.

It is reasonable to assume that w(s, y, c) = W (y, c)e−rs, where W is also a homogenous

function of degree one. If we define W̃ (z) ≡ 1
c
W (y, c) = W (y

c
, 1), where z ≡ y

c
, we get the

following differential equation of W̃

1

2
(σ2

y − 2ρσyσc + σ2
c )z

2W̃ ′′(z) + (gy − gc)zW̃
′(z) − (r − gc)W̃ (z) = 0, (27)

by (C5)(a) and the characteristic operator (13). The general solution of (27) is W̃ (z) =

∆1e
δ1z +∆2e

δ2z, where ∆1 and ∆2 are arbitrary constants and δ1 and δ2 are the roots of the
equation

1

2
(σ2

y − 2ρσyσc + σ2
c )δ(δ − 1) + (gy − gc)δ − (r − gc) = 0. (28)
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When we assume δ1 > δ2, we get δ1 > 1 and δ2 < 0. W̃ (z) must be bounded as z → 0,
so we must have ∆2 = 0. If we restate ∆1 and δ1 as ∆ and δ, respectively, the solution is
W̃ (z) = ∆eδz.

If we use z, δ, ∆, h̃, W̃ , and Ṽ , (13), (14), (15) instead of y, β, B, h, W , and V , (4),
(5), (6), respectively, we can show that (C2) - (C5) are all satisfied in the same manner as
in Proposition 1. Since D = {(s, y, c) : s ∈ �+, 0 < y

c
< z∗} and τD < ∞ a.s. from (A5),

(C1) is also satisfied. Therefore, we find a unique optimal stopping time τD and the optimal

reward function w∗, where w∗(s, y, c) ≡ c
(

y/c
z∗

)δ

Ṽ (z∗)e−rs for y
c
∈ [0, z∗) and w∗ ≡ v for

y
c
≥ z∗. The proof is complete. �

Appendix 3. Proofs of propositions in Section 3
Before proofs, we confirm some facts concerning output elasticity capital ε(K) and ε̃(K),
which is defined in Proposition 4. First, we clearly have ε̃(K) ≥ ε(K), where the equality
is supported if and only if a = b = 0. Next, differentiating them, we obtain

ε′(K) =
Q′(K)

Q(k)

[
1 +

Q′′(K)K

Q′(K)
− ε(K)

]
, (29)

ε̃′(K) =
Q′(K)

Q(k) − a

[
1 +

Q′′(K)( b
rC

+ K)

Q′(K)
− ε̃(K)

]
. (30)

(29) implies that ε′(K) ≤ 0 ⇔ ε(K) ≥ 1 + Q′′(K)K
Q′(K)

, and (30) implies that ε̃′(K) < 0 ⇔
ε̃(K) > 1+

Q′′(K)( b
rC

+K)

Q′(K)
, where we should note that ε̃(K) is defined only in (Ka,∞). Hence,

if a > 0 or b > 0, we have that ε′(K) ≤ 0 ⇒ ε̃′(K) < 0, since ε̃(K) > ε(K) ≥ 1 + Q′′(K)K
Q′(K)

>

1 +
Q′′(K)( b

rC
+K)

Q′(K)
. Therefore, we conclude that ε′(K) ≤ 0 ⇒ ε̃′(K) ≤ 0, considering the case

that a = b = 0.
(1) Proposition 4
To prove this proposition from Proposition 1, we show that (i) (A2) is satisfied, (ii) h′(R) <
0 ⇔ ε̃′(K) < 0 for R ∈ (Ro,∞), and (iii) h(R) � β ⇔ ε̃(K) � β−1

β
for R ∈ (Ro,∞).

The first-order condition for RHS of (16) is R = (r−g)C
Q′(K)

, which is defined by R(K). We

have R′ > 0 since Q′′ < 0. If R ≤ R(0) = (r−g)C
Q′(0) , then the optimal capital stock K∗ is 0 and

the intrinsic value V (R) = − aR
r−g

− b
r
≤ 0. Otherwise, K∗ is a solution of R(K) = R and by

substituting R(K) into (16) and using the envelope theorem, we get

V (R(K)) = [Q(K) − a]
C

Q′(K)
−

(
b

r
+ CK

)
, (31)

V ′(R(K)) =
C

R(K)

Q(K) − a

Q′(K)
. (32)

From these equations, we have V (R(Ka)) ≤ 0 and V ′(R(Ka)) = 0, where we should note
that R(Ka) ≥ R(0) and the equality is gained if and only if a = 0.

Thus, if a �= 0 (i.e., Ka > 0), we have V ′(R) < 0 for R < R(Ka) and V ′(R) > 0 for
R > R(Ka). Otherwise, when a = 0 (i.e., Ka = 0), we have V ′(R) = 0 for R < R(Ka)
and V ′(R) > 0 for R > R(Ka) (Figure 3). Thus, we can find nonnegative Ro such as V is
positive and belongs to C2 in (Ro,∞) and V ≤ 0 in [0, Ro], so (i) is verified.
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Figure 3: The graph of V (R)

Using the definition of h, (31), and (32), we obtain

h(R(K)) = [1 − ε̃(K)]−1. (33)

If we define Ko ≡ R−1(Ro), then we have Ko ≥ Ka. Since V (R(K)) > 0 for K > Ko, we
have

[Q(K) − a]
C

Q′(K)
>

b

r
+ CK ⇔ ε̃(K) ≡ Q′(K)( b

rC
+ K)

Q(K) − a
< 1 for K > Ko,

from (31). Therefore, from (33), we conclude that h(R(K)) � β ⇔ ε̃(K) � β−1
β

for K > Ko,

which implies (iii). Differentiating (33), we gain h′(R(K))R′(K) = [1− ε̃(K)]−2ε̃′(K). Since
R′ > 0 and ε̃(K) < 1 for K > Ko, h′ and ε̃′ have the same sign. Hence, (ii) is verified. It is
easy to obtain R∗, K∗, and w∗ in the proposition from the above description. The proof is
complete.

For remark (i), we consider lim
R↓Ro

h(R). If a > 0 or b > 0, then we clearly have lim
R↓Ro

h(R) =

∞, since V (Ro) = 0 and V ′(Ro) > 0. If a = b = 0, from (31) and (32), we have h(R(K)) =
Q(K)

Q(K)−KQ′(K)
and

lim
R↓Ro

h(R) = lim
K↓0

h(R(K)) = lim
K↓0

Q(K)

Q(K) − KQ′(K)
= lim

K↓0
Q′(K)

−KQ′′(K)
.

Therefore, if a = b = 0 and Q′′ > −∞, then lim
R↓Ro

h(R) = ∞. Otherwise, when a = b = 0 and

Q′′(0) = −∞, the condition lim
R↓Ro

h(R) > β is necessary. It can be restated as lim
K↓Ko

ε̃(K) >

β−1
β

, so remark (i) is verified. �
(2) Proposition 5
To prove this proposition from Proposition 2, we show that (i) (A7) is satisfied, (ii) ε̃′(K) ≤
0 ⇒ h′

A(R) < 0 for R ∈ (Ro,∞), and (iii) hA(R) � α ⇔ Q′(K)
1−eε(K)

� αrC for R ∈ (Ro,∞).
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The first-order condition for RHS of (17) is R = rC
Q′(K)

− g
r
, which is defined by R(K).

We have R′ > 0 since Q′′ < 0. If R ≤ R(0) = rC
Q′(0) − g

r
(> −g

r
) , then the optimal capital

stock K∗ is 0 and the intrinsic value V (R) = −aR
r
− ag

r2 − b
r
≤ 0. Otherwise, K∗ is a solution

of R(K) = R, and, by substituting R(K) into (17) and using the envelope theorem, we get
the same equation (31) and

V ′(R(K)) =
1

r
[Q(K) − a], (34)

hA(R(K)) =
1

rC

Q′(K)

1 − ε̃(K)
. (35)

From these equations, we can show (i) and (iii) in the same manner as in Proposition 4. If
we define Ko ≡ R−1(Ro), then we have Ko ≥ Ka and ε̃(K) < 1 for K > Ko from (31).

Differentiating (35), we gain h′
A(R(K))R′(K) = 1

rC
Q′′(K)[1−eε(K)]+Q′(K)eε′(K)

[1−eε(K)]2
. Since R′ > 0,

Q′ > 0, Q
′′

< 0, and ε̃(K) < 1 for K > Ko, h′
A(R) < 0 if ε̃′(K) ≤ 0. Hence, (ii) is verified.

It is easy to obtain R∗, K∗, and w∗ in the proposition from the above description. The
proof is complete. �
(3) Proposition 6

To prove this proposition from Proposition 3, we show that (i) (A6) is satisfied, (ii) h̃′(Z) <

0 ⇔ ε̃′(K) < 0 for Z ∈ (Zo,∞), and (iii) h̃(Z) � δ ⇔ ε̃(K) � δ−1
δ

for Z ∈ (Zo,∞).

The first-order condition for RHS of (19) is Z = r−g
Q′(K)

, which is defined by Z(K). We

have Z ′ > 0 since Q′′ < 0. If Z ≤ Z(0) = r−g
Q′(0) , then the optimal capital stock K∗ is 0 and

Ṽ (Z) = − aZ
r−g

≤ 0. Otherwise, K∗ is a solution of Z(K) = Z, and, by substituting Z(K)

into (19) and using the envelope theorem, we get

Ṽ (Z(K)) =
Q(K) − a

Q′(K)
− K, (36)

Ṽ ′(Z(K)) =
Q(K) − a

Z(K)Q′(K)
, (37)

h̃(Z(K)) = [1 − ε̃(K)]−1. (38)

From these equations, we can show (i) - (iii) in the same manner as in Proposition 4.
It is easy to obtain Z∗, K∗, and w∗ in the proposition from the above description. The

proof is complete. �
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