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Abstract  In this paper, a modeling approach for burst traffic using a M AP whose underlying process has a
tree structure (I'SM AP) is proposed. Characteristics of a M AP/G/1 queue are analytically obtained. For
large batch size, however, there are elaborate calculations. The spectral method is applied to overcome this
problem. The rate matrix of a T'SM AP is estimated by the EM algorithm. For a trace-driven simulation
and our analytical model, probability density functions of the number of data units in the queueing system
are quite similar. Using short-term dynamics of queueing system, the long-term dynamics is estimated.
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1. Introduction

In communication networks, both arrival rates and sizes of actual traffic data fluctuate
widely. Recent studies have suggested that measured traffic exhibits a complex behavior like
self-similarity or bursty, e.g. [13] and [26]. A Markovian arrival process (M AP) introduced
by Neuts [19] is a versatile point process and its queueing model is highly tractable (see [19]
and [14]). There are many literatures on network traffic modeling using a M AP, e.g. [1],
6], [12] and [27].

Let M be the number of phases of an underlying process for a M AP. For k=0,1,2,...,
let Dy, and A; be an M x M transition rate matrix with & batch arrivals and an M x M
phase transition matrix with & arrivals during a service time, respectively. A(z) and D(z)
are corresponding z—transforms. For a M AP/G/1 queue, the calculation of a stationary
probability distribution of a queue length needs two steps: The computation for a boundary
vector of phase probabilities of the idle state at a service completion epoch and the compu-
tation for a stationary probability. For both steps, the Bini and Meini methods ([4], [5] and
[15]) are effective among currently available methods applicable to a general M AP. How-
ever, the Bini and Meini methods or other analytical methods which need Ay are available
only in limited batch size because large computation time is required. To overcome this
difficulty, this paper proposes a spectral method based on eigenvalues and eigenvectors (see
18], [9], [10], [11], [16], [20], [21], [24], [22], [23], [25] and [28]). For the first step, a boundary
vector is obtained by calculating M zeros of det(z] — A(z)) in the unit disk (see [9], [10] and
[11]). In order to find all zeros, high computational complexity is required, and there are
few implementations for it using the spectral method. For the second step, the stationary
probability is calculated using the fast Fourier inversion transform. In these two spectral
methods, the stationary probability is calculated without A;. For a birth-death modulated
Markovian arrival process (BDM M AP) introduced by Nishimura [23], it is demonstrated
that eigenvalues of D(z) are real and distinct. All M zeros in unit disk are precisely obtained
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130 S Nishimura & M. Shinno

by the bisection method and the stationary probability is calculated precisely. As a natural
extension of a BDMMAP, a tree structure M AP (T'SMAP) is introduced in [22]. The
effectiveness of the spectral methods for a T'SM AP is also shown.

Bellcore Ethernet LAN trace (Available http://ita.ee.lbl.gov/) has bursty and shows
a self-similar nature, e.g. [13]. For this trace, [27] discusses a fitting problem using their
Markovian model that has an ON-OFF source whose sojourn time of OFF states are geomet-
rically distributed. This model is also described as a TSM AP. And [1] proposes the fitting
algorithm by considering the covariance structure of the input process and a superposition
of heterogeneous two-state Markov modulated Poisson processes.

The main objective of this paper is to model Bellcore Ethernet trace by a TSMAP.
From the frequency of the trace, data lengths are classified into four levels. Each level
shows different characteristics. Using this classification, rate matrices Dy are estimated by
the EM algorithm. For Markovian model, Asmussen et al. ([3] and [2]) proposed an estima-
tion method for phase type distribution using the EM algorithm. Setting an assumption,
we applied the EM algorithm to the estimation of D, with a tree structure. For the es-
timated matrices, the stationary probability of the queue length of a TSMAP/D/1 at an
arbitrary time is calculated by the spectral methods. We focus on the probability density
distribution of the queue length. For the trace-driven simulation and our analytical model,
the probability density functions of the data units in the queueing system with a constant
service time are derived. With this procedure, the short-term dynamics of queueing systems
with different arrival rates are shown. From two discriminative short-term dynamics, the
long-term dynamics is estimated using the concept of a “nearly completely decomposable”
system. This system is originally introduced by Simon and Ando [29] for the area of eco-
nomics and physics. And it is applied to queueing networks by Courtois [7]. Under this
concept, systems of great size and complexity can be estimated using small subsystems.
A nearly completely decomposable TSM AP over a long interval is constructed from two
completely decomposable T'SM APs over the short-term intervals. From the second-order
self-similarity, parameters for the long-term dynamics are determined.

In Section 2, our model is specified from data analysis. In Section 3, the rate matrix of
a TSMAP is estimated by the EM algorithm. In Section 4, for a queueing analysis and
a simulation, the distributions of the data units in the system are obtained. In Section
5, a nearly completely decomposable T'SM AP is constructed by connecting two estimated
TSMAPs. Numerical results are also given. The summary and concluding remarks are
given in Section 6. In Appendix, the spectral methods for the computation of the queue
length of a TSMAP/G/1 and for the EM algorithm to estimate Dy are summarized. Note
that terms “data length” and “packet” is used as “batch size” and “customer”, respectively
throughout this paper.

2. The Model Specification

In this section, our model is specified from the data analysis of Bellcore Ethernet LAN trace.
The trace consists of the arrival time in seconds and the data length in bytes. Note that one
byte (not one packet) is regarded as one arrival of the input process and consider various
data length. The total number of packet arrivals is one million. The first 7 data are in Table
1: the length of first arrival packet is 87.

The whole one million packets is divided into ten parts, and the arrival rate of data units
per second for each 100,000 packets is calculated as shown in Table 2. In later discussions,
we call the arrival rate of data units as the arrival rate A simply.
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It is found that the arrival rate is unsteady, and traffic seems to be a non-stationary process.
The lowest arrival rate 254919.0 is about half of the highest one 543780.4. Denote these time
subintervals (0, 210.761734) and (1222.526978, 1354.025757) as Interval I and II, respectively.
Next, the distribution of the Ethernet data length is illustrated in Figure 1 whose horizontal
and vertical axes are the data length and the cumulative distribution function, respectively.
The Ethernet LAN trace includes some large data lengths, e.g. lengths of 1518, 1330, and
the arrival rate varies widely from high to low. The frequency of particular data lengths is
high: the frequency of 1082 is about 40 % for this trace. From this result, the data length

is classified into 4 levels as
level 2 0<xz<160

level 3 160 < =z < 600
level 4 600 < z <1300

level 5 1300 < =.
Table 2 shows the number of arriving packets among 1,000,000 whose starting and termi-
nating levels are ¢ and j (i,7 = 2,...,5), respectively. For example, the first transition is

from level 2 (z = 87) to level 2 (z = 142), and the two successive visits to level 4 accounts
for about 30 % of whole 999,999 transitions.

Let ¢;(n) be the probability of the n times of successive visits to level i without visiting
other levels. The distribution is illustrated in Figure 2 where horizontal and vertical axes
are the number of successive times k and Q(k) = logyo(1 — Zi:o gi(n)), respectively. Ap-
proximately, (1 — ZZ:O ¢i(n)) are decreasing geometrically because (k) is almost linearly
decreasing except for level 5.

Let F; ;(t) be the probability that the inter-arrival time is less than or equal to ¢, given
that the starting and the terminating levels are i and j, respectively. When F; ;(t) is ex-

Table 1: The first 7 data
A.T.(sec.) 0.017716 0.036760 0.036844 0.047196 0.051132 0.051292 0.052872

D.L.(byte) 87 142 64 1518 1518 162 1330
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ponential with the parameter A, log(1 — F; ;(¢)) is a straight line which goes through the
origin with the slope —A\. Similarly, when F; ;(¢) is a mixture of two exponential distribu-
tions, the curve log(1 — F; ;(t)) is piecewise linear approximately. In Figure 3, we illustrate
log(1 — F;;(t)) with the horizontal axis ¢ where the starting and the terminating levels
are same. From shapes of these curves, Fo(t) seems to be the mixture of exponential
distributions with positive weights and Fj35(t), Fy4(t) and F5 5(t) with negative weights.
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Figure 3: log(1 — Fj;(t)) fori =2,...,5

Define a terminating phase of the inter-arrival time as the phase of the underlying pro-
cess just after an arrival occurs. For the construction of the EM algorithm, the following
assumption is set.

Assumption 1
For each data length k, there exists the unique terminating phase i = i(k).

The intermediate phase of the underlying process is unobservable. However, setting the
above assumption may enable us to observe starting and terminating phases of each inter-

Table 2: Data partitioning

Packets Observed time(sec.) Arrival rate(byte/sec.)
1 ~ 100,000 0~ 210.761734 254919.0 I
100,001 ~ 200,000 210.761734 ~ 397.429688 302264.0
200,001 ~ 300,000 397.429688 ~ 586.055186 301981.8
300,001 ~ 400,000 586.055186 ~ 801.676697 299403.5
400,001 ~ 500,000 801.676697 ~ 1025.821045 267992.3
500,001 ~ 600,000 1025.821045 ~ 1222.526978 338251.3
600,001 ~ 700,000 1222.526978 ~ 1354.025757 543780.4 il
700,001 ~ 800,000 1354.025757 ~ 1485.907593 533277.2
800,001 ~ 900,000 1485.907593 ~ 1623.599487 501980.2
900,001 ~ 1,000,000 1623.599487 ~ 1759.620972 507785.7
1 ~ 1,000,000 0 ~ 1759.620972 362742.8
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arrival time from the data length. As discussed in Appendix C, the EM algorithm for a
M AP can be constructed and by using the spectral method the infinitesimal generator of a
TSMAP can be estimated effectively.

For specifying a T'SM AP, three points are considered

as follows:
(a) Assumption 1 is satisfied. e

(b) ¢i(1) is approximated as a geometrical distribu-

S OXONORO
(¢) Fi;(t)i=2,...,5 are approximated as a general-

ized hyper-exponential distribution. That is, the

coefficients for mixing weight are allowed to be @ 9 @ @
negative. In case ¢ = 2 and in case 1 = 3,4, 5,
F; i(t) have positive and negative mixing weights,

respectively. Figure 4: Tree structure of

the underlying process

From (a), the terminating phase of arrivals in level i

is phase 7. From (b), we assume that all terminating phases (i = 2,...,5) are connected
with the phase 1 which is the root node of the graph with a tree structure. From (c), for
each terminating phase i, the phase ¢ is added in order to represent a hyper-exponential
distribution. Assume that 1,2,2’,...,5,5" are arranged as a tree graph illustrated in Figure
4, where a double circle with phase ¢ represents a terminating phase 7. For ¢ = 2,...,5, let
fi(2) be the generating function of the data length when an arrival occurs at (1,i), (,1),
(', 4)-transitions. From the distribution of the data length in Figure 1, we set

fo(2) = 0.525 +0.172% + 0.082'1% 4- 0.25214°

fg(Z) _ 2173,f4(2) — 21082,f5(2) — 21518.

(1)

3. The EM Algorithm

In statistics, the EM algorithm has been widely used as parameter estimation from incom-
plete data. This algorithm consists of two steps: Expectation Step (E-Step) and Maximiza-
tion Step (M-Step). In the E-step, given the observed data and the previously estimated
parameters, the conditional expectations of the sufficient statistics are computed. And in
the M-step, using the conditional expectations calculated in the E-step, the likelihood is
maximized. These two steps are repeated alternately.

For Markovian models, Asmussen et al.([3] and [2]) apply the EM algorithm to the
estimation of an initial vector and a rate matrix for a phase-type distribution from the
sequence of the inter-arrival time. From the trace, we can not observe intermediate phase
transition epochs, so the initial vector and the infinitesimal generator are estimated from
incomplete data.

Now, return to our model. The term “level” in the previous section is regarded as
“phase” of a MAP. For the first 7 packets of 1,000,000, the starting phase (S.P.) 4, the
terminating phase (T.P.) j and the inter-arrival time (I-A.T.) y of the underlying process
are given in Table 4.

From the data set (i, j",4") (v = 1,..., N), the infinitesimal generator of the underlying
process with the specified structure is estimated by the EM algorithm. For details, see
Appendix C.
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Table 4: S.P., T.P. and I-A.T.
S.P. - 2 2 2 5 ) 3
T.P. 2 2 2 5 5 3 )
I-A.T. .017716 .019044 .000084 .010352 .003936 .00016 .00158

4. Numerical Results of 100,000 Packets

In this section, we analyze the data over the intervals with the lowest and the highest arrival
rates in Table 2, i.e. Interval I and II.

4.1. Interval I

For Interval I, let SU) = {sz(lj)} and TH) = {tglj)} be transition rate matrices with and
without arrival, respectively. From data set (¢, j",y"), v = 1,...,100,000, using the EM
algorithm in Appendix C, S® and T are estimated as

i\j 1 2 2/ 3 3/ 4 4/ 5 5/
1 0 2.80E3 0 1.38E3 0 9.59E-9 0 2.936E-14 0
2 0 4.02E1
2/ 0 2.26E2
3 0 7.86E-2

s = g 0 2.56E2
4 0 4.596E-12
4/ 0 1.47E3
5 0 3.856E-20 0
5/ 0 6.66E2 0
i\j 1 2 2/ 3 3/ 4 4/ 5 5/
1 /-241E4 4.29E3 3.28E3 1.12E4 1.16E3
2 2.48E3 —3.32E3 7.97E2
2/ 1.67E1 —2.43E2
3 4.39E3 —7.24E3  2.85E3

T = 3 9.76E1 —3.54E2
4 4.88E3 —6.88E3  2.00E3
vy 1.21E-3 —1.47E3
5 5.50E3 —1.06E4 5.09E3
5/ 7.45E-6 —6.66E2

For i = 2,3 s§1} > max(sglz), 111) and for i = 4,5 5( ) > max(s&-),sg}i)). For i = 4,5, tflj
are large, whereas t( 2 is almost zero. This shows that additional phases 4’ and 5’ play an

important role and the path of phase transition

occurs when large data length (i = 4,5) appears within a short time. From Assumption 1
and equation (1), DM (z) = {dglj)(z)} is given as

d)(z) =) + 50 £i(2).

Next, the fitting of z-transform D(l)(z) is evaluated. Real packet stream is transmitted
through a queueing system. As a criterion of fitting evaluation, we consider the probability
density function of the number of data units waiting in the system. Note that for an ordinal
analysis of the queue length of a MAP/G/1, a service completion epoch is treated as an
observing point, while an arbitrary time is considered here. For Bellcore LAN trace, we
run a simulation for the single server queue with a constant service rate. And an analytical
result for a TSMAP/D/1 queue is derived by spectral methods in Appendix B.
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For A = 254919.0 and p = 0.254919, the probability density functions p,, (n =0,1,2,...)
for both the simulation and the analytical model are calculated. From Little’s formula, idle
probabilities at an arbitrary time for them are same py = 0.7451 in our numerical results.
Compared with this value, p, (n = 1,2,...) is relatively small. So the probability density
functions without the idle probability are illustrated in Figures 5 and 6. From the same
reason, the idle probability is omitted from the figures of this type in the following section.
The mean, the standard deviation, the coefficient of variation, and the idle probability are
given in Table 4.1.

§ 0. 0005 § 0. 0005
g’ 0. 0004 g 0. 0004
" 0.0003 " 0.0003
= 0.0002 = 0.0002
< 0. 0001 < 0. 0001
; 1000 2000 3000 4000 5000 ; 1000 2000 3000 4000 5000
Nunmber of customers in the system Nunmber of custoners in the system
Figure 5: Bellcore trace for Interval I Figure 6: TSMAP for Interval I
Table 5: Characteristics for Interval I Table 6: Characteristics for Interval II
(p=0.25) (p=0.54)
Bellcore TSMAP Bellcore TSMAP
mean 226.5 244.3 mean 733.0 821.1
s.d. 515.7 600.1 s.d. 1143 1225
C.V. 2.277 2.456 C.V. 1.560 1.492
Pr(idle) 0.7451 0.7451 Pr(idle) 0.4562 0.4562
§ 0. 0005 § 0. 0005
g 0. 0004 g 0. 0004
“; 0. 0003 “; 0. 0003
= 0.0002 = 0.0002
£ 0. 0001 < 0. 0001
,;’ 1000 2000 3000 4000 5000 ; 1000 2000 3000 4000 5000
Nunmber of customers in the system Nunmber of customers in the system
Figure 7: Bellcore trace for Interval II Figure 8: TSMAP for Interval Il
(p=0.54) (p=0.54)

4.2. Interval I

For Interval II, the same tree structure previously specified is used and the infinitesimal
generator is estimated by the same procedure for Interval I.

Let S@ = {352])} and T®? = {tg)} be rate matrices with arrival and without arrival, re-
spectively. Using the EM algorithm, from the data set (i, j¥,y"), v = 600,001, ..., 700,000,
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S@ and T® are estimated as

0 3.20E3 0 1.13E3 0 3.44E-5 0 2.83E-9 0
0 1.99E2
0 2.16E2
0 1.17E1
s@ = 0 2.63E2
0 1.63E-8
0 1.47E3
0 1.13E-13 0
0 7.82E2 0
_92.57E4  3.49E3 2.75E3 1.33E4 1.86E3

3.62E3 —4.3TE3  5.50E2
1.32E1  —2.30E2

7.27E3 —8.82E3  1.54E3
7@ = 7.36E1  —3.36E2
4.74E3 —7.56E3  2.82E3
1.71E-3 —1.47E3
7.04E3 —1.16E4 4.56E3

4.47E-5  -7.82E2/

As defined before,
a7 (=) = 17 + 57 fi(2).

2y
Similar to Interval I, for Interval II, the large data length (i = 4,5) appears within a short
time through the path (). On the other hand, the arrival rate of 100,000 packets for Interval
Il is almost twice as high as that of the first one. For A = 543780.4 and p = 0.5437804, the
probability density functions are shown in Figures 7 and 8. Those characteristics are shown
in Table 4.1 which differs from that of Interval I. For example, see tglz) and tﬁ) 1 =2,3,4,5:

t§1; > tf%, tﬁ?, > tf%, tﬂ < tfi and tﬁ% < tﬁ) This means that Interval I intends to visit

phase 2 or 3 frequently, whereas Interval II intends to visit phase 4 or 5. These results are
also predicted from Table 1.

5. A Nearly Completely Decomposable TSMAP

In the previous section, we estimate two T'SM APs from the short-term data: 100,000
packets. There are several differences between components of D! (z) and D®)(z). In this
section, we attempt at estimating whole data from the results of two discriminative intervals,
i.e. intervals with the lowest and the highest arrival rates.

Simon and Ando [29] introduce the concept of a “nearly completely decomposable”
system and apply it to economics, physics etc. The principal idea of this system is as
follows: for each subsystem, the intragroup interaction may be defined as if the intergroup
interaction did not exist, and the intergroup interaction may be defined independently of
the intragroup interaction. This concept is used as a technique in order to evaluate the
dynamics of systems of great size and complexity. And it is applied to queueing networks
and computer systems by Courtois [7].

Using the concept of a nearly completely decomposable system, a nearly completely
decomposable T'S M AP is constructed from the two heterogeneous T'S M A Ps in this section.
As illustrated in Figure 9, the phase 0 connects two T'SM APs and is the root node of
the graph with new tree structure. Note that a tree structure is preserved under this
construction.

(© Operations Research Society of Japan JORSJ (2004) 47-3
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Figure 9: A nearly completely decomposable system with tree structure

The rate matrix D(z) corresponding to this new T'SM AP is composed of two matrices
DW(z) and D®(z) on the diagonal. The explicit representation is

[ 0 O O i -*251 S1 O S1 O i
- S9 —S89 0
0 DM (z)
D(z) = 0 +] 0" 0
0" DO (2) o 0 0

where s; and sy connecting two short-time T'SM APs have an influence on long-term dy-
namics.

The second-order self-similarity

It is recognized that the measured network traffic shows the self-similar nature. In particular,
the second-order self-similarity is widely studied, e.g. [13]. This property is shown by
considering the aggregated processes of LAN trace. Here we use following expressions. Let
X(0,7T) and Var[X(0,7)] be the number of arrivals during (0,7") and its variance in the
stationary version, respectively. If arrivals are formulated as an asymptotically second-order
self-similar process with the Hurst parameter H =1 — (/2 (1 > 8 > 0), then

logyo(Var[X (0, T)]/T) = (1 = 8) x logyy T + logy 0. (2)

So, log,,(Var[X (0,7)]/T) is approximated by a linear function of log,, 7" with slope (1— ).
To observe the second-order self-similarity of LAN trace, we consider an aggregated
process X;(7T') of the number of data units during ((¢ — 1)7,¢T]. Define the variance of
{Xi(T);i=1,...,n} as Var[X(0,T)]. For T =10"" (n = —2,...,2), log,,(Var[X (0,7)]) is
illustrated in Figure 10, whose horizontal axis is log,,7". The length of the linear segment
with a positive slope is considered as the time scale of the second-order self-similarity. The
time scale of LAN trace seems to be greater than 4.
For a MAP, the variance Var[X (0, T")] of the aggregated process is analytically derived in [17]
and [28]. Here we consider the second-order self-similarity as the criterion for determining
s1 and s;. When s; = 100 and sy = 0.1, the solid line fits well with the dotted line in
Figure 10. In this case, the arrival rate of the nearly completely decomposable TSM AP is
384477.4. Tt also fits with that of all the 1,000,000 packets (362742.8 in Table 2).
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Numerical results of 1,000,000 packets
Finally, we make an analysis of long-term dynamics for 1,000,000 packets for p = 0.36 and
0.5, i.e. same traffic intensity and higher one. For each distribution, the mean, the standard
deviation, the coefficient of variation, and the idle probability at an arbitrary time are given
in Table 8. For p = 0.36, the probability density functions are illustrated in Figures 11,12
and the value of the density p, and the cumulative distribution function F'(n) are given in
Table 7. Each value of analytical model fit well to that of simulation results. For p = 0.5,
the probability density functions are illustrated in Figures 13,14. This case may needs a
modification of the model.

0. 0005

0. 0004
0. 0003
0. 0002
0. 0001

Probability function

1000 2000 3000 4000 5000
Nunmber of customers in the system

Figure 11: Bellcore trace for whole interval

(p = 0.36)

6. Concluding Remarks

Probability function
© o o o o

. 0005
. 0004

0003

. 0002
. 0001

Figure 10: Second-order self-similarity

1000

2000 3000 4000 5000

Nunmber of customers in the system

Figure 12: TSMAP for whole interval

(p = 0.36)

Table 7: Probability and distribution function for p = 0.36

n Pn F(”)
input  Bellcore TSMAP Bellcore TSMAP
1 2.533E-4 2.632E-4 0.6375 0.6375
10 2.559E-4 2.645E-4  0.6398 0.6399
100 2.117E-4 1.901E-4 0.6619 0.6633
1000 2.569E-4 2.012E-4  0.8387 0.8144
10000 6.649E-8 1.093E-7  0.9999 0.9999

In this study, a modeling procedure of burst traffic using a M AP is proposed. Our model al-
lows for relatively large batch arrivals. Bellcore Ethernet LAN trace is used as raw data. The
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Table 8: Characteristics for whole interval

p 0.36 0.5
input  Bellcore TSMAP Bellcore TSMAP
mean 382.7 485.5 2360 1229
s.d. 714.6 975.6 4092 2099
c.v. 1.867 2.010 1.734 1.708

Pr(idle)  0.6372 0.6372 0.5009 0.5000

c c

o o

S 0.00025 S 0.00025

2 0.0002 2 0.0002

>0.00015 >0.00015

= 0.0001 = 0.0001

§ 0.00005 § 0. 00005

2 2000 4000 6000 8000 10000 ° 2000 4000 6000 8000 10000

e Nunmber of customers in the system e Nunmber of custoners in the system
Figure 13: Bellcore trace for whole interval Figure 14: TSMAP for whole interval

(p=0.5) (p=10.5)

maximum Ethernet data length is 1518. In order to deal with such large data length, enor-
mous calculations are required, particularly the calculation of Ay. Considering a TSM AP
and using three spectral methods in Appendix B, this difficulty is overcome.

First, by classifying the data length into levels and setting Assumption 1, the detailed
structure of a TSM AP in Figure 4 is specified. Next, the infinitesimal generator of the
underlying process is estimated by the EM algorithm. It should be noted that the tree
structure is preserved through iterations. By applying the spectral method for the EM al-
gorithm, the result is obtained after 26 iterations for 100,000 packet arrivals. The computing
time required for each iteration is about 20 minutes on a 1.5GHz Pentium processor with
512 MB RAM, which is shorter than that of the Runge-Kutta method in [3].

The spectral method is very useful although it needs the assumption of distinct eigen-
values. In our model, as a numerical results, the following three types of eigenvalues are
distinct; eigenvalues of T', all zeros zI — A(z) on the unit disk and for each z on the unit
circle and all eigenvalues D(z). That is to say, Assumption 2 is satisfied numerically. In
our experiments, we have never encountered the multiple eigenvalues for the other TSM AP
models, so the Assumption 2 seems not so strong in applications.

We focus on the density function of the queue length, not the cumulative distribution.
For the trace-driven simulation and our analytical model, the probability density functions
are quite similar. It is notable that our newly method can calculate the probability density
function of the queue length precisely even though there are large batch arrivals which other
methods can not deal with. However, the long-term dynamics of a queueing system is not
predicted well in Section 5. That is, the influence of parameters s; and s, on the distribution
remains unclear. With regard to this attempt, these points should be refined.
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Appendix

A. A Markovian Arrival Process

Consider a Markovian arrival process (M AP) introduced by Neuts [19] on a state space
{i :i=1,..., M} whose underlying process has an infinitesimal generator D = D(1)(D(z) is
defined below). Assume that for |z| < 1, the z-transform of rate matrices D(z) = > p ; Dy2*
is analytic. Let m = (my,m2,...,ma) be the stationary probability vector of D (wD = 0
and we = 1). The mean arrival rate is A = wD(1)’e = w > -, kDye, where e is the 1s
column vector. Let H(t) be the distribution function of a service time with a mean u=!. Let

= [, e*dH (t) and h™'(z)be the moment generating function of a service time and its

inverse function, respectively. Then A(z) 2 S o Azt = [77ePEdH () is the probability
generating matrix function of the number of arrivals during a service time. Assume that
the traffic intensity p = ﬁ < 1.

Let p,, = (Pnas-- -, Poar) (n > 0) be the M-dimensional row vector whose ith entry is
the stationary joint probability that an arrival phase is ¢ and the number of customers in
the system is n at an arbitrary time. Let G and g be the phase transition stochastic matrix
of the first passage time from the level n 4+ 1 to the level n and its invariant probability
vector (gG = g, ge = 1), respectively. The probability generating function p(z) is given by

p(z) = A (1 = p)g(z — 1)A(2)(=] — A(2))

see [14]. Let a;(2) (i = 1,..., M) be the eigenvalues of D(z) and wu;(z) and v;(2) be corre-
sponding normalized left and right eigenvectors: w;(2)D(z) = a;(z)u;(z) and D(z)v;(z) =
a;(2)v;(z). Particularly, a;(1) = 0, u1(1) = 7 and v;(1) = e. To simplify our discussion,
the following regularity condition is set.

Assumption 2

All eigenvalues o (z) (i =1,..., M) discussed in this paper are simple.

B. The Spectral Methods for the Stationary Probability

For a BDMMAP and a TSM AP, spectral methods for the calculation of the probability
of the queue length at a service completion epoch are in [22] and [23]. The probability of
the queue length at an arbitrary time is derived by its easy modification.

Calculation of the matrix G

For the calculation of a stationary probability p,,, numerically precise values of the vector
g is necessary. Let z; (i =1,..., M) and n,; be zeros of det(zI — A(z)) on the unit disk and
a corresponding right null vector of zI — A(z), respectively. It is proved there exist M zeros
of det(z] — A(z)) in the unit disk ([9], [10], [11]). For z; = 1, we put 1, = e. Define the
matrix Y as Y = [ny,...,ny]

Proposition 1 The matrix Y is nonsingular and

21
G=Y L y—!

M

Calculation of the stationary probability
Using the fast Fourier inversion transform of the probability generating function p(z), the
spectral method for the calculation of a stationary vector p,, is given.
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Proposition 2 For a sufficiently large N1, let w = e827/N - Then

(Wr=1h(a1 (@)
N1 1 wk—h(al(wk))

]_ _
p, ~ g Z V " U(wk)wfkn
(Wk—1)h(apr (W)
wk—h(ap (WF))
In this equation, for k =0 and ¢ = 1, we define as % = 1%,0 The probability of

the queue length n at an arbitrary time is given by p, = p,e.

C. The Spectral Method for the EM Algorithm

In [3] and [2], Asmussen introduced the EM algorithm for the phase type distribution.
The components of an initial vector and a phase transition matrix are estimated using
an inter-arrival time as observed incomplete data. Based on this idea, the transition rate
matrix of a M AP are estimated under Assumption 1. Denote S = (sg;) = > .-, D, and
T = (tg;) = D — S as the transition rate matrices with and without arrival, respectively.
From observed incomplete data {(i*, 7", y") v =1,..., N}, where ¢ and j* are the starting
and the terminating phase during the vth inter-arrival time y”. That is, an intermediate
phase transition is estimated from an inter-arrival time. In equations below, the superscript
t represents the eigenvalue and the eigenvector of T', i.e. of, ul, and v!. Let Z; be the total
time spent in phase k. Let Mj; and Nj; be the number of transitions from £ to [ without
and with arrival, respectively. Spectral representations are derived as follows:

M M

. A
a;j(i,y; S, T) = e;rexp(Ty)Sej = vapZu‘,’;rsrj exp(agy),
p=1 r=1
y
g 8.7) £ el [ copTojeel cop(Tly - )Sesds
0
M M
- Z VipUpkVlp Z Uy 1y eXp(ay)
p*l r=1
M t t
t t eXp(Cpr) - eXp<aqy)
+ Z Z Yip pkvlq Zuqrs’”j al — ot
p=1g#p r=1 b )

where e; is the ¢th unit column vector and 1" represents the transpose.
Given rate matrices (S, 7T) and (7, j,y), the conditional expectations of Zj, Mj,; and Ny,
are given by

.. bk,k(zajayﬂsaT) .. bk,l(ivjvy;S7T)
E(S,T)[Zk|z7]7y] = a(z yS T) E(S,T)[Mk7l|17]7y] = a(z yS T) tk7l
I\ I M I\ I
I T ’
. e; exp(Ty)eysy,
Egsm)[Niylis oyl = ’
(S,T)[ k,j‘z7]7y] aj(i,y;S,T)

e E-step
Under the condition of the estimated matrices (S, T)™ of the 7th iteration and observed

data {(¢“,7",y") v=1,...,N}, Z,ETH], M,ZH} and N,ZH] are estimated as follows:

[T+1 [T+1
77 = ZEST m(Zg)i, 37y, Mt = ZEST = [Migli”, 3%, 97 ],
v=1 v=1

(© Operations Research Society of Japan JORSJ (2004) 47-3



142 S Nishimura & M. Shinno

N
1 . .
N;T = ZE(S,T)[T] [Nili”, 3%, 9"].

v=1

e M-step
From Z,[;H], M,ZH] and N,ZJFI]? the maximum likelihood estimators of the elements of
(S, 7)1 are given by

ey N ey MG fr+1] 1) N )

T+1] 2] T+ , T+l T+ T+

Skj = Z[T+1} tk,l - Z[r+1] thc __Zt’%l _Zskl .
koo, koo 1£k =1

D. A TSMAP

A TSMAP is defined as a M AP whose underlying process has a tree structure in [22].
For a real z, the eigenvalue «;(z) is real and under Assumption 2, three spectral methods
discussed in Propositions 1, 2 and in Appendix C are implemented as follows:

1. The matrix G: Zeros z; (i = 1,..., M) are obtained by a bisection method and corre-
sponding null vectors m; are inductively calculated.

2. The stationary probability: Using the Fourier inversion transform, eigenvalues o;(w")
(t=1,..., M) on the unit circle are inductively calculated by the Duran-Kerner-Aberth
(DKA) method and corresponding eigenvectors are inductively calculated.

3. The EM algorithm: For the matrix 7', eigenvalues of (i = 1,..., M) are obtained by a
bisection method and corresponding left and right eigenvectors u! and v} are inductively
calculated.
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