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Abstract The dominance test is a bounding operation in branch-and-bound algorithms, where each sub-
problem is examined whether it can be terminated or not by comparing, implicitly or explicitly, with another
subproblem. For a single machine scheduling problem with release dates to minimize total flow time, Chu [5]
proposed a branch-and-bound algorithm with a dominance test based on already known and new dominance
properties and reported that the dominance test works successfully to solve problem instances exactly with
up to 100 jobs. On the other hand, a naive combination of these dominance properties may delete all of
the optimal solutions. The purpose of this paper is to point out such a pitfall and then propose a way to
avoid it. Furthermore, new dominance properties based on the property developed by Chu [5] are proposed.
Computational experiments are performed to see how often the branch-and-bound algorithm with a naive
dominance test fails and to show an effectiveness of our branch-and-bound algorithm.

Keywords: Scheduling, dominance test, branch-and-bound algorithm

1. Introduction

Branch-and-bound algorithm is a fundamental exact solution approach to combinatorial
optimization problems including scheduling problems. It is an enumerative algorithm in
which a given problem is repeatedly decomposed into several subproblems. Each subproblem
is tested by computing a lower bound to the optimal solution value of the subproblem (if
the given problem is a minimization one). If the lower bound is greater than or equal to
the best solution value obtained until the test, which will be called an incumbent value,
then the subproblem can be concluded not to provide a better solution and it is terminated.
The dominance test is known as another test for subproblems. While the bounding test
compares a lower bound of a subproblem with an incumbent value, the dominance test
compares a subproblem with an another subproblem. More precisely, when we know that
an optimal solution value of a subproblem is not better than that of an another subproblem,
the subproblem can be terminated. Besides these tests, several techniques for reducing the
search space have been proposed. See, e.g., [3] for the techniques developed for scheduling
problems.

In this paper, we consider dominance tests for a single machine scheduling problem
with release dates to minimize total flow time. Dominance properties for this problem
were proposed in [4,5,6] and were used in branch-and-bound algorithms. In particular,
Chu [5] combined some already known and new dominance properties and reported that
the dominance test works successfully to solve problem instances with up to 100 jobs. This
paper concerns with a combination of dominance properties.

We first point out that, by a naive combination of dominance properties, we may fail to
obtain an optimal solution even if each of them alone is correct. Next, we show that slight
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modification of the dominance properties is enough for branch-and-bound algorithms to work
correctly. We further propose some new dominance properties. Computational experiments
are performed to see (i) how often the naive dominance test fails, (ii) which combination
of the dominance properties works effectively, and (iii) how large problem instances our
branch-and-bound algorithm can solve. The remainder of the paper is organized as follows.
In Section 2, we describe the scheduling problem and give some notations which are used
throughout the paper. Dominance properties are discussed in Section 3. Section 4 devotes
to our computational experiments. Finally, concluding remarks are described in Section 5.

2. Single Machine Scheduling Problem with Release Dates

2.1. Problem definition

Let N = {1, 2, . . . , n} denote the set of jobs to be processed on a single machine. Each job
i is given a processing time pi and a release date ri. No preemption is allowed, and each
job is available at ri. For a given schedule (permutation) S of N , we denote by Ci(S) the
earliest completion time of job i. Fi(S) = Ci(S) − ri is called a flow time of job i. Hence,
it is equivalent to a minimization of the total flow time F (S) =

∑n
i=1 Fi(S) and that of the

total completion time C(S) =
∑n

i=1 Ci(S). In this paper, we are concerned with a problem
of finding a schedule S which minimizes C(S). The problem is strongly NP-hard [10].

2.2. Notations

Notations used in this paper are basically based on [5]. A partial schedule K is a permutation
of jobs in a subset of N . For a partial schedule K, we define the following notations.

J(K) : the set of jobs in K,

Φ(K) : the earliest completion time of the last job of K,

ΣK : a schedule minimizing the total completion time among those starting with
K. Note that, in the case that two or more such schedules exist, we can take
any of these throughout this paper.

For a partial schedule K and a job i ∈ N \ J(K), (K, i) denotes a partial schedule starting
with K followed by i. Accordingly, (K, L) denotes a partial schedule K followed by another
partial schedule L where J(K) ∩ J(L) = ∅, and so on. For a time ∆ and a job i, we define
Ri(∆) = max{∆, ri} and Ei(∆) = Ri(∆) + pi. Hence Ei(∆) is the earliest completion time
stating with the time ∆.

3. Dominance Properties

We call a partial schedule K is dominated by another partial schedule L if C(ΣK) ≥ C(ΣL).
Similarly, a partial schedule K is strictly dominated by a partial schedule L if C(ΣK) >
C(ΣL). We may say a partial schedule K is dominated (resp. strictly dominated) if K is
dominated (resp. strictly dominated) by some another partial schedule.

An active schedule is a schedule each job in which cannot be scheduled earlier without
delaying another. Chu [5] introduced the notion of F-active schedules. F-active sched-
ule is an active schedule with the property that any pair of adjacent jobs i and j such
that i followed by j satisfies at least one of the conditions : (1) Ri(∆i) < Rj(∆i), (2)
Ri(∆i) + Ei(∆i) ≤ Rj(∆i) + Ej(∆i), where ∆i denotes the earliest completion time of the
job immediately preceding job i in the schedule. Here we give a formal definition of active
and F-active partial schedules since they are not defined explicitly in [5]. A partial schedule
K is defined as active if K itself is active as a schedule of J(K) and, for any i ∈ N \ J(K),
(K, i) is active as a schedule of J(K ∪ {i}). Equivalently, K is defined as active if each
job in K cannot be scheduled earlier without delaying another and any job in N \ J(K)
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cannot be placed between the jobs in K without delaying them. F-active partial schedules
are defined similarly. It is clear that inactive partial schedules are strictly dominated. Also,
partial schedules which are not F-active are strictly dominated (see [5]).

Theorems 3.1-3.5 below are sufficient conditions that the partial schedule (K, i) is dom-
inated.

Theorem 3.1 ([4]) Given a partial schedule K and i, j /∈ J(K), i �= j, if Ei(Φ(K)) ≥
Ej(Φ(K)) and Ei(Φ(K))−Ej(Φ(K)) ≥ (pi − pj)(|N \ J(K)| − 1), then (K, i) is dominated
by (K, j).

Theorem 3.2 ([4]) Given a partial schedule K and i, j /∈ J(K), i �= j, if Ei(Φ(K)) ≤
Ej(Φ(K)) and pi − pj ≤ [Ei(Φ(K)) − Ej(Φ(K))] |N \ J(K)|, then (K, i) is dominated by
(K, j).

Theorem 3.3 ([5]) Given a partial schedule K of the form K = (K1, j, K2) and i /∈ J(K),
if Ei(Φ(K1)) ≤ Ej(Φ(K1)) and Ei(Φ(K1))−Ej(Φ(K1)) ≤ (pi−pj)|N \J(K)|, then (K, i) =
(K1, j, K2, i) is dominated by (K1, i, K2, j).

Theorem 3.4 ([5]) Given a partial schedule K of the form K = (K1, j, K2) and i /∈ J(K),
if pi ≥ pj and pi − pj ≥ [Ei(Φ(K1)) − Ej(Φ(K1))] (|J(K2)| + 2), then (K, i) = (K1, j, K2, i)
is dominated by (K1, i, K2, j).

Theorem 3.5 ([5]) Given two partial schedules K and K ′, if J(K ′) = J(K), C(K ′) ≤
C(K) and |N \ J(K ′)|Rj(Φ(K ′)) + C(K ′) ≤ |N \ J(K)|Rj(Φ(K)) + C(K), where j =
arg min{rk : k ∈ N \ J(K ′)} then K is dominated by K ′.

Chu [5] proposed a branch-and-bound algorithm in which the dominance properties of
active partial schedules, F-active partial schedules and Theorems 3.1-3.5 are used. Each of
these dominance properties is correct. However, by a naive combination of these properties,
we may fail to obtain an optimal solution. For example, consider the problem instance of
n = 5 where ri and pi (i = 1, 2, . . . , 5) are given as follows.

i 1 2 3 4 5
ri 0 5 8 12 26
pi 9 8 8 1 5

There are two optimal schedules S1 = (1, 2, 4, 3, 5) and S2 = (1, 3, 4, 2, 5) with the
minimum total completion time C(S1) = C(S2) = 101. An enumeration tree of active
partial schedules is displayed in Figure 1. In the figure, each node represents a job in a
position which is equal to the depth of the tree, defining the depth of the root node is zero.
Hence, each node also represents a partial schedule. All the partial schedules appearing in
the tree are active, and vice versa. OPT denotes that the corresponding schedule is optimal.
Figure 2 shows an enumeration tree of F-active partial schedules. Shaded nodes correspond
to active but not F-active partial schedules. For instance, a partial schedule (2, 1) is not
F-active since (2, 1, 3) is not F-active as a schedule of {1, 2, 3}. In this tree, the two optimal
schedules are not deleted (Recall that the active and the F-active partial schedules are strict
dominance properties).

Now, let us use Theorems 3.1-3.4 to test whether partial schedules of the form (K, i)
are dominated. We suppose the test is performed when (K, i) is generated from K and
is proved to be active and F-active. We first apply Theorems 3.1 and 3.2 to the tree in
Figure 2. Then we have a tree in Figure 3. For each node dominated by some theorem,
the name of the theorem is denoted below the node. We note that the set N \ J(K) is
ordered to avoid deleting both of the partial schedules (K, i) and (K, j) where (K, i) is
dominated by (K, j) and vice versa. In this tree, one of the optimal schedules, S1, is deleted
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Figure 1: Enumeration tree of active partial schedules
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Figure 2: Enumeration tree of F-active partial schedules
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but the other optimal schedule S2 is not. We then apply Theorems 3.1 and 3.2 followed by
Theorems 3.3 and 3.4 to the tree in Figure 2. Then we have a tree in Figure 4 and all of the
optimal schedules are deleted. In this example, even a feasible schedule cannot be obtained.
To see why such an incorrect result is produced, one should know dominators by which
partial schedules are dominated. Figures 5 and 6 displays Figures 3 and 4, respectively,
with dominators. In these figures, each broken arrow indicates that the dominance property
of the theorem shown below the arrow is applied. As Figure 6 shows, (1, 3, 2) and (1, 3, 4, 2)
are dominated by (1, 2, 3) and (1, 2, 4, 3), respectively, by Theorem 3.3, both of which are
descendants of the already dominated partial schedule (1, 2). This is the reason why the
dominance test fails. Namely, all of the partial schedules which contain optimal schedules
may be dominated (by Theorem 3.3 or 3.4) by partial schedules whose ancestors are already
dominated (by Theorem 3.1 or 3.2).

Such an illegal domination might occur since the dominance test of (K, i), which is
compared implicitly with (K, j), can be done without knowing if (K, j) is a descendant
of an already dominated partial schedule. Therefore, care has to be taken in using domi-
nance properties not only for the problem considered in this paper. For instance, in [8, 9],
some conditions that the dominance test has to satisfy are assumed in the study of general
branch-and-bound algorithms. Of course, the dominance properties considered here does
not satisfy the conditions. The another way to avoid an illegal domination of (K, i) is to
apply the dominance properties with an explicit comparison. This is realized by restricting
a comparison with (K, i) to the one contained in a subproblem pool (a list of unprocessed
subproblems). On the other hand, there is an apparent drawback that scanning subproblems
in the pool is quite time-consuming in general. In this paper, we modify Theorems 3.3–
3.5 into Theorems 3.6–3.8 below, where sufficient conditions that a partial schedule (K, i)
is strictly dominated are given. Strict dominance properties ensure that partial schedules
which contain an optimal solution cannot be deleted by applying them. Hence, by applying
Theorems 3.1 and 3.2 carefully, an optimal solution is always obtained.

Theorem 3.6 (Refinement of Theorem 3.3) Given a partial schedule K of the form
K = (K1, j, K2) and i /∈ J(K), if Ei(Φ(K1)) ≤ Ej(Φ(K1)) and Ei(Φ(K1)) − Ej(Φ(K1)) <
(pi − pj)|N \ J(K)|, then (K, i) = (K1, j, K2, i) is strictly dominated by (K1, i, K2, j).

Proof : Let Σ(K1, j, K2, i) = (K1, j, K2, i, K3). Then, to prove the theorem, it is
enough to show that C(K1, i, K2, j, K3) < C(K1, j, K2, i, K3). For convenience of nota-

c© Operations Research Society of Japan JORSJ (2004) 47-2



Dominance Test for Scheduling Problem 101

tion, let Ck and C ′
k denote the completion times of job k in schedules (K1, j, K2, i, K3) and

(K1, i, K2, j, K3), respectively.
First suppose pi > pj. Since Ei(Φ(K1)) ≤ Ej(Φ(K1)), we have C ′

k ≤ Ck for k ∈ J(K2).
It is clear that ri, rj ≤ Φ(K1, i, K2) ≤ Φ(K1, j, K2). Hence pi > pj implies Φ(K1, i, K2, j) <
Φ(K1, j, K2, i) (or, equivalently, C ′

j < Ci). Since then C ′
k ≤ Ck for any k ∈ J(K3), we have

C(K1, i, K2, j, K3) < C(K1, j, K2, i, K3).
Next suppose pi ≤ pj. Since Ei(Φ(K1)) ≤ Ej(Φ(K1)), we have C ′

k ≤ Ck for k ∈ J(K2),
and thus C ′

j − Ci ≤ pj − pi and C ′
k − Ck ≤ pj − pi for k ∈ J(K3). Hence, we have

C(K1, i, K2, j, K3) − C(K1, j, K2, i, K3)

= Ei(Φ(K1)) − Ej(Φ(K1)) +
∑

k∈J(K2)

(C ′
k − Ck) + (C ′

j − Ci) +
∑

k∈J(K3)

(C ′
k − Ck)

≤ Ei(Φ(K1)) − Ej(Φ(K1)) + (pj − pi) + (pj − pi)|J(K3)|
= Ei(Φ(K1)) − Ej(Φ(K1)) − (pi − pj)|N \ J(K)| < 0.

Therefore, (K1, j, K2, i) is strictly dominated by (K1, i, K2, j).

Theorem 3.7 (Refinement of Theorem 3.4) Given a partial schedule K of the form
K = (K1, j, K2) and i /∈ J(K), if pi ≥ pj and pi−pj > [Ei(Φ(K1)) − Ej(Φ(K1))] (|J(K2)| + 2),
then (K, i) = (K1, j, K2, i) is strictly dominated by (K1, i, K2, j).

Proof : Let Σ(K1, j, K2, i) = (K1, j, K2, i, K3). Then, the proof of Theorem 10 in [5]
shows that

C(K1, i, K2, j, K3)−C(K1, j, K2, i, K3) ≤ [Ei(Φ(K1)) − Ej(Φ(K1))] (|J(K2)| + 2)−(pi−pj).

Hence, we have C(K1, i, K2, j, K3) − C(K1, j, K2, i, K3) < 0 and (K1, j, K2, i) is strictly
dominated by (K1, i, K2, j).

Theorem 3.8 (Refinement of Theorem 3.5) Given two partial schedules K and K ′, if
J(K ′) = J(K), C(K ′) ≤ C(K) and |N \J(K ′)|Rj(Φ(K ′))+C(K ′) < |N \J(K)|Rj(Φ(K))+
C(K) where j = arg min{rk | k ∈ N \ J(K)}, then K is strictly dominated by K ′.

Proof : If Rj(Φ(K ′)) < Rj(Φ(K)) then it is clear that K is strictly dominated by K ′.
Suppose Rj(Φ(K ′)) ≥ Rj(Φ(K)). Let

∑
K = (K, L) and C� and C ′

� denote the comple-
tion times of job � in (K, L) and (K ′, L), respectively. Then

C(K ′, L) − C(K, L) = C(K ′) − C(K) +
∑

�∈N\J(K)

(C ′
� − C�)

≤ C(K ′) − C(K) + |N \ J(K)|(Rj(Φ(K ′)) − Rj(Φ(K))) < 0.

Therefore, K is strictly dominated by K ′.

Finally, we propose new dominance properties Theorems 3.9 and 3.10 below, each of
which compares two partial schedules (K1, j, K2, i) and (K1, i, K2, j).

Theorem 3.9 Given a partial schedule K of the form K = (K1, j, K2) and i /∈ J(K), if
Ei(Φ(K1)) ≤ Ej(Φ(K1)) and Ei(Φ(K1)) − Ej(Φ(K1)) +

∑
k∈J(K2)(C

′
k − Ck) < (pi − pj)|N \

J(K)|, then (K, i) = (K1, j, K2, i) is strictly dominated by (K1, i, K2, j).

Proof : The proof proceeds in the same way as that of Theorem 3.6.
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Theorem 3.10 Given a partial schedule K of the form K = (K1, j, K2) and i /∈ J(K),
if Ei(Φ(K1)) ≥ Ej(Φ(K1)) and pj − pi < [Ej(Φ(K1)) − Ei(Φ(K1))](|J(K2)| + 2), then
(K, i) = (K1, j, K2, i) is strictly dominated by (K1, i, K2, j).

Proof : Let Σ(K1, j, K2, i) = (K1, j, K2, i, K3) and Ck and C ′
k denote the completion

times of job k in schedules (K1, j, K2, i, K3) and (K1, i, K2, j, K3), respectively. By definition,
C ′

i = Ei(Φ(K1)) and Cj = Ej(Φ(K1)), and thus C ′
i ≥ Cj by the condition. Then we can

show that C ′
j − Ci ≤ (C ′

i + pj) − (Cj + pi) holds. Hence it follows that

C ′
j − Ci ≤ (pj − pi) + (C ′

i − Cj)

< (pj − pi) + (C ′
i − Cj)(|J(K2)| + 2)

< 0,

and thus C ′
k ≤ Ck for k ∈ J(K3). Therefore

C(K1, i, K2, j, K3) − C(K1, j, K2, i, K3)

= (C ′
i − Cj) +

∑

k∈J(K2)

(C ′
k − Ck) + (C ′

j − Ci) +
∑

k∈J(K3)

(C ′
k − Ck)

≤ (|J(K2)| + 1)(C ′
i − Cj) + ((C ′

i + pj) − (Cj + pi))

= (|J(K2)| + 2)(C ′
i − Cj) + (pj − pi) < 0,

and (K1, j, K2, i) is strictly dominated by (K1, i, K2, j).

We note that, in Theorems 3.9 and 3.10, (K1, j, K2, i) is dominated by (K1, i, K2, j) if
‘<’ is replaced by ‘≤’.

4. Computational Experiments

In this section, we report our computational experiments of the dominance properties dis-
cussed in the previous section. In Section 4.1, we describe a branch-and-bound algorithm
developed for our experiments. Computational results are reported in Section 4.2, where
it is shown how often Theorems 3 and 4 lead to delete optimal solutions and that which
combination of the dominance properties is effective in our implementation.

4.1. Branch-and-bound algorithm

A branch-and-bound algorithm used in this section is based on the algorithm, named BB C,
developed by Chu [5]. In BB C, a lower bound is an optimal solution value of a relaxation
problem which is obtained by allowing preemption. The relaxation problem is solved by the
SRPT (Smallest Remaining Processing Time) rule [2]. In this rule, at any time, a job is
selected among those available with the smallest remaining processing time. In [1], Ahmadi
and Bagchi compared six lower bounds in the literature and proved that the lower bound
based on the SRPT rule is the dominant both in quality and in time complexity. Heuristic
algorithms used in BB C are those named PRTF and APRTF. In PRTF jobs are ordered
according to a function PRTF(i, ∆) = Ri(∆) + Ei(∆), while APRTF orders jobs according
to functions PRTF(i, ∆) and Ri(∆). For a detailed description of these algorithms, see [5].
Now, we are ready to state the branch-and-bound algorithm. In the following, L is the
subproblem pool.
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Branch-and-Bound Algorithm

Step 0. Let S∗ be a schedule obtained by APRTF and PRTF. Let L := {∅}.
Step 1. If L = ∅ then output S∗ and stop. Otherwise, select K ∈ L in a depth-first fashion

and delete it from L.
Step 2. If |J(K)| < n − 1 then let A := N \ J(K) and go to Step 3. Otherwise (i.e.,
|J(K)| = n − 1), we have a unique schedule (K, i). If C((K, i)) < C(S∗) then let
S∗ := (K, i) and update L (that is, delete subproblems, whose lower bound is greater
than or equal to C(S∗), from L). Go to Step 1.

Step 3. If A = ∅ then go to Step 1. Otherwise, select i ∈ A and delete it from A.
Step 4. Compute a lower bound z based on the SRPT rule for (K, i). If z ≥ C(S∗) then

go to Step 3. If z < C(S∗) and non-preemptive schedule T is obtained by the rule then
let S∗ := T , update L and go to Step 3.

Step 5. Dominance test is applied to (K, i) in some order of the dominance properties
discussed in Section 3. If (K, i) is dominated by the test then go to Step 3.

Step 6. Let L := L ∪ {(K, i)} and go to Step 3.

We note that our branch-and-bound algorithm adopts a depth-first search and the heuris-
tic algorithm is applied only to the root problem (root heuristics strategy), while BB C
adopts a best-bound search and the heuristic algorithm is applied to every partial sched-
ule (node heuristics strategy). The depth-first search is used since, in our preliminary
experiments, many problem instances cannot be solved by the best-bound search because
of a huge number of partial schedules in L. Comparison between the root and the node
heuristics strategies will be discussed in the next subsection.

4.2. Computational results

The branch-and-bound algorithm is written in C and all problem instances were solved on
a Pentium IV 1.6GHz and a 512Mbyte memory. The problem instances were generated
as described in [5] and [7]. Each processing time pi is an integer between 1 and 100,
and each release date ri is an integer between 0 and 50.5 · n · λ, where λ is taken from
{0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.50, 1.75, 2.0, 3.0}. The dominance test is described by a sequence
of a subset of the dominance properties denoted by A (active partial schedules), F (F-
active partial schedules) and 1–10 (Theorems 1–10). For example, (A,F,1,2) is a dominance
test which consists of active partial schedules, F-active partial schedules, Theorem 1 and
Theorem 2 and uses them in this order. Hence, an enormous number of dominance tests can
be designed. In this paper, we consider dominance tests starting with active partial schedules
and F-active partial schedules since they are simple but strong enough to dominate many
partial schedules as shown in Figures 1 and 2. We also examine Theorems 1 and 2 before
Theorems 3–10 since Theorems 1 and 2 are applied at the stage of branching of K and the
number of children generated from K can be reduced by these simple dominance properties
(See Figure 3). 100 problem instances were generated for each pair of n and λ, except for
Tables 6 and 5. In those tables, 50 problem instances were generated for each pair of n and
λ.

We first show how often Theorems 3.3 and 3.4 cause to delete all of the optimal solutions.
Table 1 compares with two dominance tests (A,F,1,2,6,7) and (A,F,1,2,3,4) used in the
branch-and-bound algorithm. Recall that Theorems 6 and 7 are refinement of Theorems 3
and 4, respectively. In the table, “time” denotes the average computing time in seconds,
“terminated by LB” the average number of partial schedules which are terminated by the
lower bounding computation based on the SRPT rule in Step 4, “generated subproblems”
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the average number of generated subproblems (i.e., the number of subproblems that are
not dominated by the test), “updates” the average number that an incumbent solution is
updated, and “failed instances” the number of the problem instances (out of 100) which
are failed to be solved to optimality. Also, each column of the dominance test denotes the
average number of partial schedules which are terminated by the corresponding dominance
property. From the table, we know that many problem instances are failed, especially for
those whose λ value is around 0.8. The number of failed problem instances grows as n
increases, see Table 2. Table 2 shows the result when the heuristic algorithm in Step 0
is omitted as well as the result with the heuristic algorithm. These tables indicate that
Theorems 3 and 4 are strong dominance properties so that many partial schedules are
dominated illegally. On the other hand, the refinement dominance properties Theorems 6
and 7 turn weak (See Table 1). It should be noted, however, that there is no apparent
difference in statistics between (A,F,1,2,6,7) and (A,F,1,2,3,4). In particular, (A,F,1,2,3,4)
does not always outperform (A,F,1,2,6,7) in terms of the number of generated subproblems
and the computing time.

Next, we discuss a design of the dominance test as a combination of the dominance
properties A, F and Theorems 1, 2, 6–10. Theorem 5 is dropped since it is not a strict
dominance properties. Table 3 compares the tests (A), (A,F), (A,F,1,2) and (A,F,1,2,6,7).
We first know that many subproblems are dominated by the test of active partial schedules,
and the test by active and F-active partial schedules reduces the computational time con-
siderably. Comparing (A) and (A,F) in terms of the computational time and the number
of terminated subproblems, we may observe that small partial schedules are dominated by
the test of F-active partial schedules. Theorems 1 and 2 help to reduce the computational
time further. Hence, as described already, we shall consider dominance tests starting with
(A,F,1,2). If we start with (A,F,1,2) then few subproblems are dominated by Theorems 6
and 7 as shown by Tables 3 and 4 (See also Table 1). As a result, the computational time
increases by adding these theorems to (A,F,1,2). The same can be observed for Theorems
9 and 10 from Table 4. Hence, Theorems 6, 7, 9 and 10 are useless when the dominance
test starts with (A,F,1,2). However, we observed Theorem 8 successfully reduces the com-
putational time. Recall that Theorem 8 compares two partial schedules K and K ′ such
that J(K) = J(K ′). In our computational experiments, given a partial schedule K, we first
generated K ′ by the heuristic algorithm PRTF for J(K) and compare K and K ′. If K is
not dominated by K ′, then we next generated K ′ by the heuristic algorithm APRTF for
J(K). Though this test based on Theorem 8 can be done efficiently, it is not necessarily
the best way to apply it to every partial schedule. To see this, we introduce the Depth
Parameter d (0.0 ≤ d ≤ 1.0) so that the test based on Theorem 8 is applied to partial
schedules K with |J(K)| ≤ d · n. Hence, d = 0.0 means that the test is not applied, while
every partial schedule is tested if d = 1.0. Figure 7 displays the normalized computational
time for (A,F,1,2,8) as functions of the Depth Parameter d. For each λ, the test is executed
for d = 0.0, 0.05, 0.1, . . . , 1.0 in Figure 7(i) and d = 0.3, 0.35, 0.4, . . . , 0.7 in Figure 7(ii) and
each computational time (average computational time taken from 100 problem instances) is
normalized by dividing it by the smallest computational time. From the figure, d = 0.5 is
acceptable though it is not always the best. Table 5 shows a comparison between (A,F,1,2)
and (A,F,1,2,8) with d = 0.5. We know that, by adding the test based on Theorem 8, the
number of generated subproblems as well as the number of dominated subproblems reduces
considerably. Hence, we concluded that the test (A,F,1,2,8) with d = 0.5 is a candidate of
the effective dominance test.

Before solving large scale problem instances, the root heuristics (i.e. the heuristic algo-
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Table 1: Result of the branch-and-bound algorithm
dominance test (A,F,1,2,6,7) terminated generated up-

n λ time total A F 1 2 6 7 by LB subproblems dates
50 0.20 0.07 5409.8 4586.8 126.4 696.5 0.0 0.0 0.0 3381.1 260.0 3.4

0.40 0.38 43242.7 38905.4 1178.0 3153.4 5.9 0.0 0.0 21711.5 2142.5 4.2
0.60 1.78 351218.9 321734.6 12465.0 16941.5 76.0 0.0 1.8 111873.3 19767.0 4.7
0.80 4.05 1006319.3 909536.7 38331.4 57996.3 427.1 0.0 27.8 274769.3 67878.4 5.3
1.00 1.44 636510.1 603464.2 15230.5 17498.5 280.4 0.0 36.5 75613.0 33921.3 3.8
1.25 0.13 86197.2 83661.5 1303.3 1192.0 30.4 0.0 9.9 5201.6 4102.5 2.6
1.50 0.04 23536.6 22698.0 463.6 366.4 5.7 0.0 3.0 1289.0 1224.5 1.6
1.75 0.01 9338.4 9149.8 98.1 85.6 3.5 0.0 1.4 306.0 429.7 1.2
2.00 0.01 5748.3 5656.6 43.9 45.3 1.5 0.0 0.9 137.6 262.0 0.7
3.00 0.00 2374.0 2356.8 6.1 10.2 0.7 0.0 0.2 23.6 92.0 0.2

dominance test (A,F,1,2,3,4) terminated generated up- failed
n λ time total A F 1 2 3 4 by LB subproblems dates instances
50 0.20 0.08 6796.7 5759.2 218.8 768.6 0.0 50.0 0.1 3954.7 314.0 3.1 27

0.40 0.47 59492.6 53070.9 2079.2 3635.8 8.4 697.2 1.0 27111.8 2850.9 3.7 41
0.60 1.94 441202.6 397449.0 17562.2 20246.0 74.8 5858.3 12.3 116570.4 23602.0 3.6 42
0.80 4.30 1092181.5 968247.0 43802.7 67517.8 441.1 12092.2 80.7 284959.6 73560.2 4.3 50
1.00 1.27 557583.4 520872.8 14275.0 16170.2 279.4 5935.0 51.0 65053.1 29354.9 3.0 40
1.25 0.15 90891.5 87375.1 1501.3 1717.9 32.3 251.7 13.3 6013.5 4509.4 2.2 23
1.50 0.03 23893.3 22928.8 481.5 401.1 5.4 72.3 4.2 1230.9 1231.8 1.4 12
1.75 0.01 9252.2 9056.1 98.3 86.9 3.5 5.0 2.4 297.8 421.6 1.1 4
2.00 0.01 5619.4 5527.0 43.7 44.5 1.5 1.8 1.0 133.1 255.7 0.7 2
3.00 0.00 2316.4 2299.7 5.9 10.0 0.7 0.0 0.2 22.9 89.3 0.2 0
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Table 2: The number of failed problem instances (out of 100)

(with heuristics)
n

λ 30 40 50
0.20 3 13 27
0.40 15 21 41
0.60 9 19 42
0.80 17 24 50
1.00 14 26 40
1.25 12 16 23
1.50 2 10 12
1.75 2 7 4
2.00 0 2 2
3.00 0 0 0

(without heuristics)
n

λ 30 40 50
0.20 8 18 36
0.40 20 26 49
0.60 19 27 50
0.80 25 26 51
1.00 19 32 40�

1.25 14 18 24
1.50 5 13 15
1.75 3 10 6
2.00 1 5 4
3.00 0 0 0

�Two problem instances cannot be solved within 1800 seconds.

Table 3: Comparison between dominance tests
dominance dominance properties

n λ test time total A F 1 2 6 7
40 0.60 (A) 3.51 496820.8 496820.8 — — — — —

(A,F) 0.17 28780.8 27527.1 1253.7 — — — —
(A,F,1,2) 0.13 25493.4 22661.7 1031.8 1789.1 10.7 — —

(A,F,1,2,6,7) 0.15 25448.0 22617.3 1031.3 1788.2 10.7 0.0 0.4
0.80 (A) 7.38 2104437.3 2104437.3 — — — — —

(A,F) 0.34 98243.0 94437.2 3805.8 — — — —
(A,F,1,2) 0.26 82153.4 75401.5 3013.0 3711.8 27.1 — —

(A,F,1,2,6,7) 0.30 81881.2 75139.4 3006.6 3705.9 27.0 0.1 2.1
1.00 (A) 6.64 2153865.1 2153865.1 — — — — —

(A,F) 0.38 154749.5 147654.1 7095.5 — — — —
(A,F,1,2) 0.17 68916.6 63061.5 3235.0 2556.8 63.3 — —

(A,F,1,2,6,7) 0.20 68624.9 62778.2 3229.9 2552.0 63.2 0.1 1.5
1.25 (A) 1.13 607596.8 607596.8 — — — — —

(A,F) 0.05 33098.4 32398.0 700.4 — — — —
(A,F,1,2) 0.03 21653.7 20656.4 527.2 461.0 9.0 — —

(A,F,1,2,6,7) 0.04 20569.8 19641.2 478.4 439.8 8.9 0.0 1.4
50 0.60 (A,F) 2.93 580819.8 557773.0 23046.9 — — — —

(A,F,1,2) 1.58 351386.2 321900.2 12466.5 16943.5 76.1 — —
(A,F,1,2,6,7) 1.78 351218.9 321734.6 12465.0 16941.5 76.0 0.0 1.8

0.80 (A,F) 6.43 1552145.7 1486403.3 65742.4 — — — —
(A,F,1,2) 3.46 1011501.3 914067.6 38421.8 58584.6 427.3 — —

(A,F,1,2,6,7) 4.05 1006319.3 909536.7 38331.4 57996.3 427.1 0.0 27.8
1.00 (A,F) 2.29 1137987.6 1110325.3 27662.2 — — — —

(A,F,1,2) 1.26 641770.8 608619.7 15303.5 17563.6 283.9 — —
(A,F,1,2,6,7) 1.44 636510.1 603464.2 15230.5 17498.5 280.4 0.0 36.5

1.25 (A,F) 0.16 116708.3 114928.1 1780.2 — — — —
(A,F,1,2) 0.12 89539.3 86939.8 1347.2 1220.6 31.6 — —

(A,F,1,2,6,7) 0.13 86197.2 83661.5 1303.3 1192.0 30.4 0.0 9.9

c© Operations Research Society of Japan JORSJ (2004) 47-2



Dominance Test for Scheduling Problem 107

Table 4: Comparison between dominance tests (contd.)

dominance dominance properties
n λ test time total A F 1 2 6 7 9 10
50 0.60 (A,F,1,2) 1.58 351386.2 321900.2 12466.5 16943.5 76.1 — — — —

(A,F,1,2,9) 2.20 351249.3 321759.6 12463.8 16937.0 76.1 — — 12.9 —
(A,F,1,2,10) 1.64 351218.9 321734.6 12465.0 16941.5 76.0 — — — 1.8

(A,F,1,2,6,7,9) 2.42 351082.0 321594.0 12462.2 16935.0 76.0 0.0 175.0 12.9 —
(A,F,1,2,6,7,10) 1.84 351218.9 321734.6 12465.0 16941.5 76.0 0.0 175.0 — 0.0

0.80 (A,F,1,2) 3.46 1011501.3 914067.6 38421.8 58584.6 427.3 — — — —
(A,F,1,2,9) 5.70 1011260.7 913430.9 38394.0 58533.4 425.9 — — 476.4 —

(A,F,1,2,10) 3.67 1006319.3 909536.7 38331.4 57996.3 427.1 — — — 27.8
(A,F,1,2,6,7,9) 6.37 1006078.7 908900.0 38303.7 57945.1 425.8 0.0 2776.0 476.4 —

(A,F,1,2,6,7,10) 4.27 1006319.3 909536.7 38331.4 57996.3 427.1 0.0 2776.0 — 0.0
1.00 (A,F,1,2) 1.26 641770.8 608619.7 15303.5 17563.6 283.9 — — — —

(A,F,1,2,9) 1.91 641642.3 608145.9 15266.9 17538.7 283.8 — — 406.9 —
(A,F,1,2,10) 1.31 636510.1 603464.2 15230.5 17498.5 280.4 — — — 36.5

(A,F,1,2,6,7,9) 2.10 636381.5 602990.4 15193.9 17473.5 280.3 0.0 3646.0 406.8 —
(A,F,1,2,6,7,10) 1.50 636510.1 603464.2 15230.5 17498.5 280.4 0.0 3646.0 — 0.0

1.25 (A,F,1,2) 0.12 89539.3 86939.8 1347.2 1220.6 31.6 — — — —
(A,F,1,2,9) 0.18 89531.6 86931.0 1347.1 1220.5 31.6 — — 1.4 —

(A,F,1,2,10) 0.12 86197.2 83661.5 1303.3 1192.0 30.4 — — — 9.9
(A,F,1,2,6,7,9) 0.19 86189.4 83652.7 1303.2 1192.0 30.4 0.0 987.0 1.4 —

(A,F,1,2,6,7,10) 0.14 86197.2 83661.5 1303.3 1192.0 30.4 0.0 987.0 — 0.0
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Figure 7: Computational time of (A,F,1,2,8) with varying Depth Parameter d
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Figure 8: Comparison between the root and the node heuristics
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Table 5: Comparison between (A,F,1,2) and (A,F,1,2,8) with d = 0.5
total dominance test (A,F,1,2) terminated generated up-

n λ time total A F 1 2 8 by LB subproblems dates
50 0.20 0.06 5409.7 4586.8 126.4 696.5 0.0 — 3381.1 260.0 3.4

0.40 0.35 43242.7 38905.4 1178.0 3153.4 5.9 — 21711.5 2142.5 4.2
0.60 1.60 351386.2 321900.2 12466.5 16943.5 76.1 — 111887.0 19772.2 4.7
0.80 3.53 1011501.3 914067.6 38421.8 58584.6 427.3 — 275891.0 68170.2 5.3
1.00 1.28 641770.8 608619.7 15303.5 17563.6 283.9 — 75950.9 34171.1 3.8
1.25 0.13 89539.3 86939.8 1347.2 1220.6 31.6 — 5354.2 4266.2 2.6
1.50 0.03 24366.8 23506.0 472.1 382.7 6.1 — 1335.3 1265.2 1.6
1.75 0.01 9855.1 9662.3 99.9 89.4 3.5 — 319.4 451.4 1.2
2.00 0.01 5956.2 5863.2 44.6 46.9 1.6 — 143.0 271.1 0.7
3.00 0.00 2393.5 2376.3 6.1 10.4 0.7 — 24.1 93.3 0.2

total dominance test (A,F,1,2,8) with Depth Parameter = 0.5 terminated generated up-
n λ time total A F 1 2 8 by LB subproblems dates
50 0.20 0.05 3594.7 2975.4 84.0 388.4 0.0 146.9 1771.6 162.0 3.4

0.40 0.17 14030.2 11840.6 449.7 1265.3 1.4 473.2 6108.3 682.9 4.2
0.60 0.56 76786.6 69025.4 2799.3 3475.2 10.8 1475.8 25708.0 4300.1 4.7
0.80 0.98 225151.6 194420.8 14504.1 14480.9 201.9 1544.0 81775.7 20637.8 5.0
1.00 0.25 93794.8 86516.4 3113.1 3115.8 56.7 992.8 13074.9 5845.3 3.8
1.25 0.03 13698.5 13044.4 293.4 203.0 6.4 151.4 705.7 664.9 2.5
1.50 0.01 6458.8 6176.1 145.3 93.9 2.1 41.5 318.2 333.6 1.5
1.75 0.01 3496.0 3406.1 42.0 34.5 1.9 11.5 95.0 162.0 1.1
2.00 0.00 2261.5 2219.9 17.9 15.9 0.8 7.0 38.5 94.0 0.7
3.00 0.00 1526.2 1513.3 4.4 6.3 0.5 1.7 13.5 57.5 0.2

rithm is performed only for the root problem) and the node heuristics (i.e. the heuristic
algorithm is performed for subproblems as well as the root problem) are compared here. To
this end, we again introduce the Depth Parameter for the node heuristics. For each λ, the
test is executed for d = 0.0, 0.05, 0.1, . . . , 1.0 in Figures 8(i) and 8(ii). d = 0.0 is equivalent
to the root heuristics. It is clear from the figures that the root heuristics should be selected.

Finally, large scale problem instances are solved by the branch-and-bound algorithm with
the dominance test (A,F,1,2,8) with the Depth Parameter d = 0.5 and the root heuristics.
For each pair of n and λ, 50 problem instances were generated. The result is shown in Tables
6 and 5, where “opt. time” is the average time in seconds that an optimal schedule is found
and “unsolved” the average number of problem instances (out of 50) that cannot be solved
within 1800 seconds. Averages in these tables are taken from the solved problem instances.
Since the average computational time of the solved problem instances is far less than 1800
seconds, the problem instances may be classified into easy and quite hard. We have quite
hard problem instances even with n = 70 and 80. A difference between “total time” and
“opt. time” is the time spent to prove the optimality. Since much time is spent to prove
the optimality, lower bounding computations and dominance tests should be improved to
deal with large scale problem instances.

5. Concluding Remarks

In this paper, we considered the dominance test for a single machine scheduling problem
with release dates to minimize total flow time, based on the work of Chu [5]. We pointed out
that a naive combination of some dominance properties may lead to delete all of the optimal
solutions, and showed the way to avoid the pitfall by revising some dominance properties
into strict ones. Furthermore, new dominance properties were proposed though they were
ineffective in our computational experiments. Chu [5] reported that the proposed branch-
and-bound algorithm named BB C successfully solved problem instances with up to 100
jobs. Though the computational environment has been improved since then, our proposed
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Table 6: Result for large scale problem instances
total opt. dominance test (A,F,1,2,8) terminated generated up- un-

n λ time time total A F 1 2 8 by LB subproblems dates solved
60 0.20 0.31 0.19 13537.5 10674.2 304.3 1668.7 0.0 890.2 8204.0 555.7 4.5 0

0.40 0.84 0.31 57121.4 47106.5 1493.9 6205.6 0.6 2314.9 23214.3 2182.6 4.0 0
0.60 3.17 0.97 351105.5 308342.8 9536.0 24205.0 88.7 8933.0 101333.5 14488.9 5.3 0
0.80 6.36 2.71 1470734.5 1330724.6 40365.8 78584.9 498.9 20560.3 281951.7 72359.8 5.3 0
1.00 0.91 0.37 395801.8 375933.7 10571.0 5979.7 99.9 3217.6 37326.9 19916.3 5.7 0
1.25 0.24 0.14 143418.6 137515.7 2809.2 2526.3 16.2 551.2 8592.8 7412.0 3.5 0
1.50 0.02 0.01 13811.1 13426.7 188.3 118.3 6.8 71.0 390.8 562.2 2.1 0
1.75 0.01 0.00 6359.4 6231.8 65.5 42.9 1.6 17.6 139.2 257.6 1.3 0
2.00 0.01 0.00 4446.1 4375.7 33.6 26.4 2.6 7.9 68.0 173.9 1.0 0
3.00 0.00 0.00 2437.6 2419.1 7.6 8.2 0.4 2.3 17.8 82.4 0.5 0

70 0.20 1.57 1.33 46956.0 35016.8 1145.6 8536.7 0.0 2256.9 34937.2 1814.5 4.0 0
0.40 2.04 0.84 127419.2 108614.6 2919.2 12202.8 0.9 3681.8 49878.4 4097.4 5.1 0
0.60 8.06 3.33 806139.1 677297.9 26414.2 86247.1 162.8 16017.2 336654.9 35998.7 6.6 0
0.80 15.37 5.91 3528999.7 3211548.3 108435.0 189505.5 700.8 18810.2 768381.6 160526.2 9.3 1
1.00 11.30 4.70 3737012.1 3499009.8 93416.1 119544.8 250.7 24790.8 468242.8 174939.9 7.4 0
1.25 13.21 6.40 3988904.4 3640524.2 169136.2 147043.4 170.6 32030.0 783259.3 262482.7 5.4 0
1.50 0.14 0.03 82453.7 79373.6 1639.7 817.2 12.7 610.4 4251.3 3834.5 2.4 0
1.75 0.06 0.02 34265.8 32856.2 1018.2 357.7 4.7 29.0 2741.8 1656.1 1.8 0
2.00 0.01 0.00 10213.2 9998.7 114.3 62.9 1.6 35.8 226.3 376.6 1.1 0
3.00 0.00 0.00 3602.7 3573.8 14.4 10.9 0.9 2.7 36.1 109.7 0.3 0

80 0.20 0.77 0.33 35193.8 28073.8 610.2 5357.3 0.0 1152.4 16030.4 918.8 5.0 0
0.40 13.84 4.94 681801.4 555310.8 15320.7 92403.2 0.2 18766.5 299944.0 21743.0 7.0 0
0.60 68.86 33.93 6603614.4 5847493.5 195999.4 485020.9 85.8 75014.8 2270287.2 240590.9 9.2 1
0.80 84.58 43.23 19624147.3 18455309.4 421650.9 612620.7 844.4 133722.0 3013144.0 689906.6 13.1 1
1.00 36.76 22.84 9609814.5 8589677.4 320013.8 658808.0 1963.2 39352.2 2026418.7 446571.0 7.6 1
1.25 3.44 0.60 1558621.0 1490335.3 34124.3 27120.9 399.4 6641.1 163155.3 65936.0 4.6 0
1.50 0.34 0.15 252458.4 247369.6 2375.9 2128.8 8.7 575.4 4880.9 8738.0 2.6 0
1.75 0.03 0.01 25552.4 25149.8 218.1 135.9 2.8 45.9 434.1 902.6 1.7 0
2.00 0.01 0.01 11566.1 11392.1 89.0 53.6 4.7 26.7 147.1 356.2 1.4 0
3.00 0.00 0.00 4897.1 4863.6 13.3 15.4 1.5 3.3 28.5 139.6 0.3 0

90 0.20 2.85 1.20 109090.4 85232.5 1875.5 18376.0 0.0 3606.5 50399.3 2433.5 5.5 0
0.40 62.03 25.48 3320939.6 2721881.9 64148.3 434997.8 1.3 99910.3 1225481.1 85885.3 11.4 0
0.60 105.63 38.64 8390173.7 7382105.6 197946.9 576086.9 36.0 233998.4 2527398.7 237696.1 11.2 3
0.80 162.14 73.53 30498155.0 28164970.3 699792.3 1483509.4 1650.9 148232.1 6979456.1 1110939.7 10.7 3
1.00 208.62 79.41 70468482.2 67019471.6 1713893.7 1550141.7 12126.4 172848.8 10056570.6 3001029.4 10.9 5
1.25 9.45 2.95 5897047.7 5731111.0 84426.0 72432.5 410.6 8667.7 284239.0 222298.2 5.7 1
1.50 1.35 0.09 628862.8 606669.7 10470.0 10855.0 83.0 785.2 55295.9 22384.5 2.8 0
1.75 0.13 0.03 84122.3 82096.3 1077.1 830.7 11.1 107.2 4162.9 2976.2 2.1 0
2.00 0.03 0.01 23948.2 23560.8 173.3 187.1 4.1 22.9 619.7 850.0 1.8 0
3.00 0.01 0.00 8156.1 8103.4 24.3 23.1 1.2 4.2 54.0 225.2 0.9 0
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Table 7: Result for large scale problem instances (contd.)
total opt. dominance test (A,F,1,2,8) terminated generated up- un-

n λ time time total A F 1 2 8 by LB subproblems dates solved
100 0.20 3.48 1.53 136974.0 105464.9 1887.7 24980.3 0.0 4641.1 58765.7 2733.9 6.6 0

0.40 126.92 64.71 5365681.7 4280785.2 90150.7 861897.0 0.1 132848.8 2269907.1 130393.5 8.5 0
0.60 191.14 90.90 15475998.5 13064419.3 280093.5 1852240.9 1644.7 277600.1 4944087.3 409606.3 11.1 10
0.80 283.54 128.44 53271605.0 49222717.7 957637.1 2790066.8 3346.1 297837.3 9086021.3 1490558.5 11.2 8
1.00 147.81 42.38 47775044.7 45455974.5 1166193.6 877498.5 1711.9 273666.1 5418414.1 1594694.9 10.8 15
1.25 36.87 11.99 19612105.0 18905816.1 264517.1 361596.0 2572.0 77603.8 1202758.2 700344.0 6.5 2
1.50 1.45 0.61 775656.6 739728.6 18234.7 16442.9 564.0 686.3 71355.5 38798.7 3.5 0
1.75 0.18 0.05 160191.6 158195.0 1045.3 843.8 5.6 101.9 3361.9 5453.4 2.1 0
2.00 0.03 0.01 24820.9 24465.6 170.0 143.2 5.3 36.7 359.0 786.5 1.7 0
3.00 0.01 0.00 10112.9 10052.3 27.9 23.9 2.1 6.7 56.8 259.7 0.8 0

110 0.20 10.82 5.33 376458.7 292139.7 5587.6 64737.9 0.0 13993.4 160219.0 6657.2 7.5 0
0.40 205.30 101.39 8906038.2 7220911.3 144175.6 1316164.6 0.0 224786.6 3007994.7 174352.5 10.1 3
0.60 361.73 180.52 25408378.5 22359694.0 401989.0 2383674.5 210.0 262811.0 7379873.4 581622.1 14.3 17
0.80 412.12 185.47 73500592.7 66756257.0 1374318.0 4979849.2 1241.0 388927.4 15132465.0 2195539.2 11.9 20
1.00 305.76 83.60 112649972.5 107644263.8 1967400.5 2716676.8 13868.1 307763.2 11639149.4 3748471.5 10.1 19
1.25 33.00 16.68 19599772.4 18985041.4 218692.0 384639.7 2815.2 8584.0 1001533.3 646428.3 7.2 3
1.50 1.90 0.32 1313372.5 1278840.0 13080.7 20511.4 421.3 519.1 64801.5 51567.1 4.1 0
1.75 0.13 0.02 114753.1 112935.5 791.3 886.5 19.3 120.5 2299.8 3774.1 2.6 0
2.00 0.06 0.02 59073.3 58230.2 377.3 424.6 6.3 34.8 1088.1 2093.3 2.1 0
3.00 0.01 0.00 12216.8 12136.8 31.7 42.2 0.6 5.5 70.1 313.3 0.8 0

120 0.20 40.35 17.73 1247747.6 923130.0 15019.3 250208.8 0.0 59389.4 527621.5 20498.0 8.1 0
0.40 274.65 138.91 9594414.6 7820240.2 113102.8 1488076.9 0.0 172994.7 3773522.3 185977.3 13.4 15
0.60 435.18 90.33 32058010.5 27990498.1 478598.5 2961442.4 324.6 627146.8 7163372.8 609708.9 15.1 33
0.80 423.70 193.83 68613594.5 63414285.7 985198.4 3898956.1 1478.7 313675.5 14717966.8 1757496.8 11.2 39
1.00 368.47 123.41 156302410.0 150093230.5 2549304.1 3273660.4 24445.7 361769.3 13292652.9 4430534.5 13.0 34
1.25 95.00 41.23 68806510.0 67566700.6 640364.6 457149.3 2590.6 139704.9 1777436.0 1908890.2 6.4 8
1.50 25.62 0.64 23155942.5 22844369.7 172352.5 132202.4 253.5 6764.5 519166.6 604830.6 3.2 0
1.75 1.07 0.25 987962.2 975914.3 6218.2 5295.3 22.9 511.7 15937.6 26707.5 2.6 0
2.00 0.10 0.02 92021.9 90950.8 608.9 373.1 7.4 81.6 1210.5 2492.2 1.7 0
3.00 0.02 0.01 17720.5 17627.0 42.0 42.3 2.0 7.3 91.2 398.1 0.9 0
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branch-and-bound algorithm with the dominance test (A,F,1,2,8) with the Depth Parameter
d = 0.5 cannot outperform BB C. Moreover, as was pointed out in Section 4.2, the branch-
and-bound algorithm with incorrect dominance test may run slower than the algorithm with
the corresponding correct dominance test. Since detailed description of BB C (especially a
design of the dominance test used in BB C) is not provided in [5], our result may be a true
limit of branch-and-bound algorithms using the lower bounding computation based on the
SRPT rule and the dominance properties introduced in Section 3.
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