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Abstract A mutual evaluation system deals with a decision making problem including the feedback struc-
ture between alternatives and criteria. By incorporating decision makers’ intuitive judgments from alterna-
tives to criteria into overall evaluations for alternatives, the mutual evaluation system may be effective to
make a consensus among the decision makers of the problem. An analyzing tool of the mutual evaluation
system, Concurrent Convergent Method (CCM) by Kinoshita and Nakanishi, has practical advantage. This
paper introduces an overall weight vector for criteria into CCM. By using the overall weight vector not for
alternatives but for criteria, we demonstrate irrationality of CCM under the Pareto principle.
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1. Introduction

Saaty [4] extends a hierarchical structure of criteria and alternatives into a network one, and
proposes Analytic Network Process (ANP). When evaluation values between criteria and
alternatives are derived by intuitive judgments of a decision maker, ANP provides overall
weights of criteria and alternatives.

In practice, it is not easy for the decision maker to evaluate criteria from alternatives.
So evaluation values from alternatives to criteria often appear to be very unstable. In
order to overcome this difficulty, Kinoshita and Nakanishi [2] develop an iterative method,
the Concurrent Convergence Method (CCM). Takahashi [9] explains that CCM not only
stabilizes evaluation values from alternatives to criteria but also provides the overall weights
of alternatives. Furthermore, the convergence of CCM is proved by Kinoshita, Sekitani and
Shi [3]. In spite of the practical advantage of CCM and the guarantee of its convergence,
there has never been any case study using CCM. That is the reason why properties of the
stable evaluation values has not been investigated sufficiently. Furthermore, Kinoshita et
al. [2] and [3] have never paid attention to overall weights of criteria in CCM.

In ANP, the overall weights of criteria are well defined. They are the linear combination
of evaluation values from alternatives to criteria with overall weights of alternatives, and
overall weights of alternatives are the linear combination of evaluation values from criteria
to alternatives with them since the overall weights of criteria and alternatives correspond
to a principal eigenvector of the so-called supermatrix of ANP (see [5, 9] for the details).
The two linear systems with overall weights of alternatives and criteria imply in terms
of the regression analysis that the overall weights of criteria are dependent variables of the
independent variables, overall weights of alternatives, and vice versa. This outer dependence
between the overall weights of criteria and the overall weights of alternatives may increase
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Shortcomings of CCM for Mutual Evaluation 83

accountability for each other effectively.
By introducing overall weights of criteria into CCM, this study shows that CCM has their

dependence on the overall weights of alternatives. Since the overall weights of criteria can
be regarded as what represents all preference relationships of criteria from each alternative,
they must satisfy some natural and reasonable requirements such as the Pareto principle [7].
For example, if each alternative has the same ranking for criteria as the others, then the
overall weights of criteria should also mean the same one. This study reports that the overall
weights of criteria by CCM may violate the Pareto principle while the overall weights of
criteria by ANP always satisfies it. This irrational relationship leads to lack of accountability
for overall weights of alternatives by CCM. Under the Pareto principle we can evaluate
whether the overall weights of alternatives by CCM is acceptable or not.

This paper is organized as follows: In section 2 we summarize CCM and introduce
the concept of overall weights of criteria into CCM. Furthermore, section 2 discusses the
properties of overall weights of criteria such as its existence and uniqueness. In section 3 we
show a numerical example of CCM such that the overall weights of criteria does not satisfy
the Pareto principle. Section 4 shows that the irrational overall weights of criteria in the
example of section 3 is not essentially caused by the sum-one column-wise standardization
of an evaluation matrix. Hence, we report that CCM provides irrational overall weights of
criteria when the evaluation matrix is standardized by some column-wise standardization
other than that of section 4. Section 5 gives appearance frequency of occurrence of the
irrational overall weights of criteria by numerical experiments. Finally, we devote section 6
to discussions.

2. Overall Weights for Criteria in CCM

First we introduce CCM [2] according to [3] briefly. Let I and J be a set of alternatives and
that of criteria, respectively, then a decision maker evaluates alternative i ∈ I from criteria
j ∈ J and the evaluation value is denoted by aij. A matrix A = [aij] is called the evaluation
matrix. In CCM the decision maker specifies some alternatives that play the role of a
yardstick in the evaluation process (see [2, 3] for details of the regulating alternatives). Let
K be a set of regulating alternatives and let Ak be a diagonal matrix whose (j, j) component
is akj for all k ∈ K, then CCM regards AA−1

k as the evaluation matrix of alternative k when
regulating alternative k is a yardstick in the evaluation process.

CCM requires the decision maker to evaluate criteria from the viewpoint of each regu-
lating alternative k ∈ K. The evaluation value from regulating alternative k to criterion j is

denoted by bk
j and bk =

[
bk
1, . . . , b

k
|J |
]�

is called the weight vector for criteria from alternative

k, where � stands for the transpose operation. All bk are normalized, that is, e�bk = 1 for
all k ∈ K, where e is an appropriate dimensional vector whose component is all one. The

set
{

bk| k ∈ K
}

is transformed into { b̂
k| k ∈ K} by the following iterative procedure:

Algorithm 0
Step 0: For the given set

{
bk | k ∈ K

}
of the weight vectors for criteria, let

bk
0 := bk (1)

for all k ∈ K. Let t := 0 and go to Step 1.
Step 1: Let

bi
t+1 :=

1

|K|
∑
k∈K

AiA
−1
k bk

t

e�AiA
−1
k bk

t

(2)
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for all i ∈ I.
Step 2: If maxi∈I ‖bi

t+1 − bi
t‖ ≤ ε then set b̂

i
:= bi

t+1 for all i ∈ I and stop. Otherwise,
update t := t + 1 and go to Step 1.

Here, ε in Step 2 is given as a tolerance of the convergence. Algorithm 0 makes { bi| i ∈ K}
into { b̂

i| i ∈ I} such that

A−1
k b̂

k

e�A−1
k b̂

k =
A−1

l b̂
l

e�A−1
l b̂

l (3)

for all k, l ∈ I. It follows from (3) that AA−1
k b̂

k
coincides (up to scalar multiples) with

AA−1
l b̂

l
for all l ∈ I. This means that

AA−1
k b̂

k

e�AA−1
k b̂

k =
AA−1

l b̂
l

e�AA−1
l b̂

l (4)

for all k, l ∈ I, that is called the consistency property [3]. Hereafter, if a vector a coincides
up to scalar multiples with a vector b, we say that a has the same direction as b. It follows

from (4) that AA−1
k b̂

k
has the same direction as AA−1

l b̂
l
for all l �= k. Therefore, Kinoshita

and Nakanishi [2] call

AA−1
k b̂

k

e�AA−1
k b̂

k (5)

the overall weight vector for alternatives, which is denoted by p. The pair of Algorithm 0
and (5) is called CCM by Kinoshita and Nakanishi [2].

We let I = {1, . . . , m} and assume I = K without loss of generality. For the the overall
weight vector for alternatives p, we consider a vector q such that

q =
[

b̂
1 · · · b̂

m
]
p. (6)

The equation (6) means that p are dependent variables of q. Since e�p and e�b̂
i
= 1 for

all i = 1, . . . ,m, it follows from (6) that e�q = 1 and that q is a convex combination of

{b̂1
, . . . , b̂

m} with p. In ANP, the overall weight vector for criteria is defined by a convex
combination of all weight vectors for criteria from each alternative with coefficients that are
components of the overall weight vector for alternatives. In the same way as ANP, we define
q of (6) as the overall weight vector for criteria by CCM.

Since it follows from (3) that A−1
i b̂

i
/(e�A−1

i b̂
i
) is constant independent of the choice of

i ∈ I, the overall weight vector for criteria q is associated with (3) by the following lemma:

Lemma 1 Suppose that K = I = {1, . . . ,m}. Let r be A−1
i b̂

i
/(e�A−1

i b̂
i
) satisfying (3)

for some i ∈ I, then the overall weight vector q for criteria has the same direction as
(
∑

i∈I Ai) r.

Proof: Since r = A−1
i b̂

i
/(e�A−1

i b̂
i
) for all i ∈ I, we have

e�A−1
i b̂

i
Air = b̂

i
(7)

for all i ∈ I. This means from (2) that

1 = e�b̂
i
= e�A−1

i b̂
i
e�Air (8)
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for all i ∈ I. From (7) we have

p =
AA−1

i b̂
i

e�AA−1
i b̂

i =
Ar(e�A−1

i b̂
i
)

e�Ar(e�A−1
i b̂

i
)

=
Ar

e�Ar
=

1

e�Ar




e�A1r
...

e�Amr


 . (9)

It follows from (6), (7), (9) and (8) that

q =
[

b̂
1 · · · b̂

m
]
p =

1

e�Ar

[
e�A−1

1 b̂
1
A1r · · · e�A−1

m b̂
m

Amr
] 

e�A1r
...

e�Amr




=
1

e�Ar

[
A1r · · · Amr

]



e�A−1
1 b̂

1
0

. . .

0 e�A−1
m b̂

m






e�A1r
...

e�Amr




=
1

e�Ar

[
A1r · · · Amr

]



e�A−1
1 b̂

1
e�A1r

...

e�A−1
m b̂

m
e�Amr


 =

1

e�Ar

[
A1r · · · Amr

] 
1
...
1




=
1

e�Ar

(∑
i∈I

Ai

)
r.

From Lemma 1 we have the following outer dependence between the overall weight vector
for alternatives and that for criteria:

Lemma 2 Suppose that K = I, then we have

p = A

(∑
i∈I

Ai

)−1

q. (10)

Proof: It follows from Lemma 1 that q =
(
e�AA−1

i b̂
i
)−1

(
∑

l∈I Al) A−1
i b̂

i
for all i ∈ I.

This means from (5) that

A


∑

l∈I

Al




−1

q =
1

e�AA−1
i b̂

i AA−1
i b̂

i
= p.

A meaning of the equation (10) is as follows: Since
∑

i∈I Ai is the diagonal matrix whose
(j, j) component is a sum of the jth column of A, A (

∑
i∈I Ai)

−1 has all column-sums equal
to 1, which is a typical column-wise standardization evaluation matrix in Analytic Hierarchy
Process (AHP) and ANP (e.g., see (2.9) of [4] for the evaluation matrix of AHP). AHP and
ANP define the overall weight vector for alternatives as multiplication of the typical column-
wise standardization evaluation matrix by the given overall weight vector for criteria. This
multiplication coincides with the right-hand side of (10) and it is equal to the overall weight
vector for alternatives p. Hence, it follows from (10) that the definition (6) of the overall
weight vector for criteria q is consistent with the way of definition of the overall weight
vector for alternatives in AHP and ANP. The fact is summarized as the following theorem:
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Theorem 3 Let I = {1, . . . ,m} and suppose I = K. Suppose that {b̂1
, . . . , b̂

m} satis-
fies (3), then the overall weight vector for criteria q defined by (6) is a positive principal
eigenvector of [

b̂
1 · · · b̂

m
]
A(
∑

i∈I Ai)
−1. (11)

Hence, [q�,p�]� is a positive principal eigenvector of a supermatrix[
0 b̂

1 · · · b̂
m

A(
∑

i∈I Ai)
−1 0

]
, (12)

where p is defined by (5).
Proof: It follows from (10) and (6) that[

b̂
1 · · · b̂

m
]
A(
∑

i∈I Ai)
−1q =

[
b̂

1 · · · b̂
m
]
p = q,

which implies that q is an eigenvector of (11). Since the matrix (11) is irreducible and q
is a positive vector, it follows from Perron-Frobenius Theorem (e.g., see Theorem 4 of [5])
that q is a principal eigenvector of (11).

In the same way, we can show that
[
q�,p�

]�
is a principal eigenvector of (12).

By Theorem 3 we have the unique pair of p and q satisfying (6) and (10).
Takahashi [8] implicitly assumes the assertion of Theorem 3 and then he defines CCM as

the pair of Algorithm 0 and applying the eigenvalue method to (12). Therefore, this study
contributes an explicit proof of Theorem 3.

Takahashi-type CCM seems different from the original CCM, the pair of Algorithm 0 and
(5) by Kinoshita and Nakanishi [2]. However Theorem 3 guarantees that the Takahashi-type
CCM is equivalent to the pair of the original CCM and (6). Namely, (6) may be a natural
definition of the overall weight vector of criteria by CCM.

3. A Numerical Example of a Paradox

This section demonstrates a potential irrationality of CCM by using the overall weight vector
not for alternatives but for criteria. We considers that the overall weight vector q for criteria
should satisfy the three following requirements:
1. qj ≤ ql if bk

j ≤ bk
l for all k ∈ K

2. qj < ql if bk
j < bk

l for all k ∈ K
3. qj = ql if bk

j = bk
l for all k ∈ K,

where qj is the jth component of q. These requirements for q is called Pareto principle. If
the overall weight vector for criteria violates at least one of three requirements, we say that
the overall weight vector for criteria is irrational.

Firstly, we show a numerical example with two criteria and three alternatives. Suppose
that I = K = {1, 2, 3}, J = {1, 2},

A =


 1 1

3/8 32
1/8 1/16


 , b1 =

[
0.520
0.480

]
, b2 =

[
0.510
0.490

]
and b3 =

[
0.530
0.470

]
. (13)

Since bj
1 > bj

2 for all j = 1, 2, 3, all alternatives prefer criterion 1 to criterion 2. From the
input data A, b1, b2 and b3 of (13), CCM provides

b̂
1

=

[
0.775
0.225

]
, b̂

2
=

[
0.039
0.961

]
, b̂

3
=

[
0.865
0.135

]
and p =


 0.116

0.871
0.013


 , (14)
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where ε = 10−3 in Step 2 in Algorithm 0. The numerical results of three iterates b1
t , b

2
t and

b3
t of Algorithm 0 are given in Appendix 1. From (6) we have

q =

[
0.135
0.865

]
. (15)

Since the first component of q of (15) is less than the second one, the overall weight vector
q means that criterion 2 is preferred to 1 in the aggregate. However, no alternative prefers
criterion 2 to 1. This does not satisfy the Pareto principle, that is, though each regulating
alternative has the same ranking of criteria as the others, the overall ranking of criteria is
against the same one.

In order to apply ANP to the numerical example (13), we have a supermatrix

S =




0 0 0.520 0.510 0.530
0 0 0.480 0.490 0.470

2/3 16/529 0 0 0
1/4 512/529 0 0 0
1/12 1/529 0 0 0




and find a principal eigenvector
[
x�,y�

]�
of S. Since

x

e�x
=

[
0.514
0.486

]
and

y

e�y
=


 0.357

0.599
0.044


 ,

the overall weight vector for criteria by ANP means that criterion 1 is preferred to 2 in
the aggregate. Therefore, the overall weight vector for criteria by ANP satisfies the Pareto
principle. Though the ranking of alternatives by ANP is equal to that by CCM, the overall
weight vector for alternatives by ANP is more easily accountable than that by CCM under
the Pareto principle. Furthermore, the following theorem guarantees that the overall weight
vector for criteria by ANP always satisfies the Pareto principle.
Theorem 4 Let I = {1, . . . ,m} and suppose I = K. If [x�,y�]� is a positive principal
eigenvector of a supermatrix [

0 b1 · · · bm

A(
∑

i∈I Ai)
−1 0

]
, (16)

then x satisfies the Pareto principle.
Proof: Since the supermatrix (16) is an irreducible nonnegative matrix, there exists a
positive principle eigenvector [x�,y�]� of (16). If bi

l ≤ bi
j for all i ∈ I and bh

l < bh
j for some

h ∈ I, then we have

xj − xl =
∑
i∈I

bi
jyi −

∑
i∈I

bi
lyi =

∑
i∈I

(bi
j − bi

l)yi >
∑
i�=h

(bi
j − bi

l)yi ≥ 0.

This means that the first and second requirement of the Pareto principle are met. In the
similar way, we can prove the third requirement of the Pareto principle.

A paradox is defined by a case where there exists an overall weight vector for criteria
violating the Pareto principle. Theorem 4 and the numerical example (13) imply that ANP
is free from the paradox but CCM is not.
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4. Variation of Column-wise Standardization of the Evaluation Matrix

This section relaxes and generalizes the definition (6) of the overall weight vector for criteria.
So we consider a problem of finding a positive vector qN and a positive number λ such that

AN−1qN = λp, (17)

where N is an m × m diagonal matrix whose diagonal component njj is positive for all
j = 1, . . . ,m. Replacing N and qN of (17) with

∑
i∈I Ai and q, respectively, and setting

λ = 1 in (17), (17) is equivalent to (10). Since q of (6) satisfies (10), a pair of qN = q and
λ = 1 satisfies (17) replacing N with

∑
i∈I Ai. In other words, the overall weight vector of

criteria defined by (6) satisfies (17) with N =
∑

i∈I Ai and λ = 1. Hence, (6) is relaxed and
generalized into (17). We call qN of (17) the overall weight vector of criteria with respect
to N .

The diagonal matrix N of (17) plays the role of the column-wise standardization of
the evaluation matrix A. For example, when the diagonal matrix N has each diagonal
component njj =

∑
i∈I aij for all j ∈ J , AN−1 is the sum-one column-wise standardization

evaluation matrix. When njj = maxi∈I aij for all j ∈ J , each column of AN−1 has at least
one maximum value 1 and it is so-called ideal mode [4]. The diagonal component njj can
be chosen independent of the jth column of A. Hence, any column-wise standardization
corresponds to a diagonal matrix N and AN−1 is any type of a column-wise standardization
evaluation matrix. We can consider qN with respect to any column-wise standardization.

Note that the output
{
b̂

i|i ∈ I
}

of Algorithm 0 remains unchanged if the input data

A is replaced with AN−1 for any standardizing matrix N . In other words, the output{
bi|i ∈ I

}
of Algorithm 0 is invariant under the column-wise standardization. Suppose that

A is replaced with AN−1, then the overall weight vector for alternatives is

AN−1 (AkN
−1)

−1
b̂

k

e�AN−1 (AkN−1)−1 b̂
k . (18)

It follows from (18) and (5) that

AN−1 (AkN
−1)

−1
b̂

k

e�AN−1 (AkN−1)−1 b̂
k =

AA−1
k b̂

k

e�AA−1
k b̂

k = p.

Therefore, the overall weight vector p for alternatives is also invariant under the column-
wise standardizations. From the invariance of overall weight vector for alternatives, it is
natural that the right-hand side of (17) is p.

Though the definition of (17) is a generalized version of (6), it has a drawback that qN is
not uniquely determined. Furthermore, qN of (17) does not necessarily satisfy (6). Avoiding
multiple overall weight vectors for criteria in the definition of (17), we assume that the set
of all columns of A is linearly independent. Under the linear independence assumption, we
have

qN =

(∑
i∈I

Ai

)−1

Nq, (19)

where q is defined by (6). Therefore, it follows from (6) that

qN = N

(∑
i∈I

Ai

)−1 [
b̂

1 · · · b̂
m
]
p. (20)

The pair of qN and p is characterized as the following corollary :
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Corollary 5 Let I = {1, . . . ,m} and suppose I = K. Suppose that {b̂1
, . . . , b̂

m} satisfies
(3) and assume that the set of all columns of A is linearly independent, then the overall
weight vector for criteria qN defined by (17) is a positive principal eigenvector of

N

(∑
i∈I

Ai

)−1 [
b̂

1 · · · b̂
m
]
AN−1. (21)

Hence, if [x�,y�]� is a positive principal eigenvector of a supermatrix

[
0 N (

∑
i∈I Ai)

−1 b̂
1 · · · N (

∑
i∈I Ai)

−1 b̂
m

AN−1 0

]
, (22)

then x and y has the same directions as the overall weight vector for criteria qN and the
overall weight vector for alternatives p defined by (5), respectively.

Proof: The principal eigenvalue of (22) is
√

λ and
[
qN�,

√
λp�

]�
is a principal eigenvector

of (22).

We consider the example (13) of section 3 again and show that the paradox occurs for
some standardizations of the evaluation matrix

A =


 1 1

3/8 32
1/8 1/16


 . (23)

Let N =

[
n11 0
0 n22

]
, then it follows from (15),(23) and (19) that

qN =

[
2n11

3
0

0 16n22

529

] [
0.135
0.865

]
=

[
2×0.135

3
n11

16×0.865
529

n22

]
. (24)

Therefore, qN of (24) implies that criteria 2 is preferred to criteria 1 if and only if (2 ×
0.135n11)/3 < (16×0.865n22)/529. If the column-wise standardizing matrix N =

[
n11 0
0 n22

]

has n11/n22 < 3.440, then the paradox of CCM occurs. This fact implies that two simple
standardizations lead to the paradox as follows: For the column-wise standardizing matrix

N =

[
1 0
0 32

]
, both the columns of the evaluation matrix AN−1 form the ideal modes.

Since n11/n22 = 1/32 < 3.440, the ideal mode standardization causes the paradox. The
other standardizing matrix N is given as n11 = 1× 0.375× 0.125 and n22 = 1× 32× 0.0625.
Then we have

∏
i∈I aij/njj = 1 for all j = 1, 2 that is a standardization of the logarithmic

least squared method of the AHP [10]. Since n11/n22 < 0.0235, CCM also provides the
paradox from the input data (13).

We consider another numerical example such that the sum-one column-wise standard-
ization does not cause the paradox but the ideal mode standardization does. Suppose that
I = K = {1, 2, 3}, J = {1, 2},

A =


 20.000 10.000

10.000 20.000
20.000 8.000


 , b1 =

[
0.600
0.400

]
, b2 =

[
0.500
0.500

]
and b3 =

[
0.600
0.400

]
. (25)
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From the input data A, b1, b2 and b3 of (25), CCM provides

b̂
1

=

[
0.654
0.346

]
, b̂

2
=

[
0.321
0.679

]
, b̂

3
=

[
0.703
0.297

]
and p =


 0.339

0.345
0.316


 , (26)

where ε = 10−3 of Step 2 in Algorithm 0. The numerical results of three iterates b1
t , b

2
t and

b3
t of Algorithm 0 are given in Appendix 2. From (6) and (19) we have

q =

[
0.554
0.446

]
and qN =

[
0.486
0.514

]
, (27)

respectively. It follows from (27) that the overall weight vector q for criteria with respect to
the sum-one column-wise standardization satisfies the Pareto principle but qN with respect
to the ideal mode standardization violates it.

5. Appearance Frequency of Paradox Occurrence

This section examines the appearance frequency of the paradox, violation of three conditions
1,2,3 of section 3, by using simple numerical examples. Avoiding complicated analysis of
experiment results, all examples of this section are set the simplest mutual evaluation system
with 2 criteria and 2 alternatives. Since it is too few actual case studies of CCM to simulate
A, b1 and b2, we introduce the standard scale {1, 3, 5, 7, 9} of AHP and generate each value

of components of A and
{

b1, b2
}

as follows:
Without loss of generality, the evaluation matrix A of alternatives from criteria is set A =[

a11 a12

a21 a22

]
=

[
1 1

a21 a22

]
. Each value of a21 and a22, is chosen from {1/9, 1/7, 1/5, 1/3, 1,

3, 5, 7, 9}. To examine occurrence of the paradox, we generate b1 = [b1
1, b

1
2]

� and b2 =
[b2

1, b
2
2]

� such that bk
1 ≥ bk

2 for k = 1, 2. That is, we assume that each bk is derived from

a pairwise comparison matrix C =

[
1 c12

c−1
12 1

]
, where c12 = 1, 3, 5, 7, 9. Analyzing C by

the standard method of AHP such as eigenvalue method or the geometric mean method, we

have bk =

[
c12/(1 + c12)
1/(1 + c12)

]
and bk

1 ≥ bk
2. Let ck be c12 of C that is the pairwise comparison

matrix with respect to alternative k, then bk =

[
ck/(1 + ck)
1/(1 + ck)

]
.

In each experiment we choose a21, a22 ∈ {1/9, 1/7, 1/5, 1/3, 1, 3, 5, 7, 9} and c1, c2 ∈ {1, 3,
5, 7, 9}, apply CCM to the numerical example,

[
1 1

a21 a22

]
,

[
c1/(1 + c1)
1/(1 + c1)

]
,

[
c2/(1 + c2)
1/(1 + c2)

]

and carry out the paradox test that is to check weather q satisfies three conditions 1,2 and
3. The program used in the experiments was coded in C language and was run on Sun
ultra-1 with double precision arithmetic. The tolerance ε of the stopping criteria in Step 2
of CCM was 10−8 and that of the paradox test was 10−3．

Since there are 81 combinations of the value of a12 and that of a22 and 25 combinations
of the value of c1 and that of c2, the total number of the numerical examples generated
in the experiments is 2055(= 92 × 52). We conduct one paradox test for each numerical
example and there exist 78 examples whose q violates at least one of three conditions 1, 2
and 3. The paradox example is called if it has q that violates at least one of three conditions
1, 2 and 3. That is, the total number of the paradox examples is 78 and its appearance
frequency is 3.80%(= 78/2055).
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For a given pair of a21 and a22 there exist 25 combinations of the value of c1 and that
of c2, i.e., (1, 1), (1, 3), · · · , (1, 9), (3, 1), · · · , (3, 9), · · · , (9, 9), and the number of the paradox
examples is denoted by G(a21, a22). All of G(a21, a22) are listed in Table 1．It follows from

Table 1: Paradox occurrence G(a21, a22) for a21, a22 = 1/9, 1/7, 1/5, 1/3, 1, 3, 5, 7, 9
������a21

a22 1/9 1/7 1/5 1/3 1 3 5 7 9

1/9 0 1 1 1 1 1 1 1 0
1/7 1 0 1 1 1 1 1 0 1
1/5 1 1 0 1 1 1 0 1 1
1/3 1 1 1 0 1 0 1 1 3
1 5 2 1 1 0 1 1 2 5
3 3 1 1 0 1 0 1 1 1
5 1 1 0 1 1 1 0 1 1
7 1 0 1 1 1 1 1 0 1
9 0 1 1 1 1 1 1 1 0

Table 1 that the paradox always occurs for each (a21, a22) with a21 �= a22 or a21 �= 1/a22.
Hence, the paradox occurs uniformly over all (a21, a22) with a21 �= a22 or a21 �= 1/a22.

For a given pair of c1 and c2 there exist 81 combinations of (a21, a22), i.e., (1/9, 1/9), (1/9, 1/7),
· · · , (1/9, 9), (1/7, 1/9), · · · , (1/7, 9), · · · , (9, 9), and the number of the paradox examples is
denoted by H(c1, c2). All of H(c1, c2) are documented in Table 2.

Table 2: Paradox occurrence H(c1, c2) for c1, c2 = 1, 3, 5, 7, 9
������c1

c2

1 3 5 7 9

1 64 3 2 1 1
3 3 0 0 0 0
5 2 0 0 0 0
7 1 0 0 0 0
9 1 0 0 0 0

Table 2 is summarized as the following two points:
• Finding 1: The total number of paradox examples is 78 and 64 paradox examples are

in (c1, c2) with c1 = c2 = 1. Hence, 82.1%(= 64/78) of all paradox examples occurs in
(c1, c2) with c1 = c2 = 1.

• Finding 2: Each (c1, c2) with min {c1, c2} > 1 has no paradox example and every (c1, c2)
with min {c1, c2} = 1 has at least one paradox example. Hence, H(c1, c2) = 0 if and only
if c1 > 1 and c2 > 1.

Note that ck > 1 if and only if bk
1 > bk

2 and that ck = 1 if and only if bk
1 = bk

2. From this fact
Finding 1 means that almost paradox examples violate the condition 3:

if b1
1 = b1

2 and b2
1 = b2

2, then q1 = q2. (28)

Finding 2 implies that all examples satisfy the condition 2 that

if b1
1 > b1

2 and b2
1 > b2

2, then q1 > q2. (29)
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In (c1, c2) = (1, 9) there exists the paradox example A =

[
1 1
1 9

]
, b1 =

[
1/2
1/2

]
and

b2 =

[
9/10
1/10

]
whose q =

[
0.498
0.502

]
violates the condition 1:

if b1
1 ≥ b1

2, b
2
1 ≥ b2

2, then q1 ≥ q2. (30)

It follows from Tables 2 that it is easy for CCM to satisfy the conditions (29), however,
it is hard to satisfy (28). Each sufficient condition of (28), (29) and (30) means similarity
among all alternatives’ evaluation to criteria. Even if all alternatives’ evaluation to criteria
are similar to each other, CCM sometimes provides irrational overall weight vector q of
criteria. It follows from Table 1 that almost evaluation matrices A of alternatives can not
avoid the paradox.

6. Concluding Remarks

For the overall weight vector for criteria that is left out of consideration in [2], this paper

introduces the definition (6) and summarizes some properties of the outputs
{

b̂
k | k ∈ K

}
of Algorithm 0 as Lemma 1, Lemma 2 and Theorem 3. By considering the Pareto principle
as the desirable requirements for overall weight vector for criteria, we illustrate that there
exist some examples such that the overall weight vector for criteria (6) violates the Pareto
principle. Furthermore, by the numerical experiments we see that appearance frequency of
the violation is 3.8% and the violation occurs in almost evaluation matrices A. On the other
hand, Theorem 4 states that the overall weight vector for criteria by ANP always satisfies
the Pareto principle．Hence, it is not severe to impose the Pareto principle on the overall
weight vectors in the mutual evaluation system. Therefore, the existence of such irrational
overall weight vector is a fatal shortage of CCM. These discussion may answer an open
problem of (i) in section 7 of [8] that is to find a way of determining whether the estimated

values
{

b̂
k | k ∈ K

}
by CCM is reasonable or not.

As stated in section 4, the sum-one column-wise standardizing matrix N of (10) does
not necessarily cause the paradox of CCM under the Pareto principle. The essential cause
is that there is a pair of an alternative k̂ ∈ K and an iteration t̂ of Algorithm 0 such that

A−1

k̂
bk̂

t̂ /∈







q1
...
qn



∣∣∣∣∣∣∣∣

qj ≤ ql if bk
j ≤ bk

l for all k ∈ K,
qj < ql if bk

j < bk
l for all k ∈ K,

qj = ql if bk
j = bk

l for all k ∈ K,
qj ≥ 0 for all j = 1, . . . , n


 . (31)

As stated in Theorem 3, if the set
{

b̂
k | k ∈ K

}
satisfies only (3), then p defined by (5)

and q defined by (6) have the outer dependence (10). Therefore, a sufficient condition for
avoiding (31) and satisfying (10) is to modify Algorithm 0 such that each iterate bk

t belongs

to the convex hull of
{

bk | k ∈ K
}

for any iteration t.
Finally, it is hoped that this study makes a small contribution of the future research

development of CCM and ANP, especially actual applications of CCM.
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Appendix 1

In order to report calculation results of each iteration in Algorithm 0, we visualize calculation
of each iteration in table as follows:

Table 3: Calculation in each iteration

Iteration t b1
t

A2A−1
1 b1

t

e�A2A−1
1 b1

t

A3A−1
1 b1

t

e�A3A−1
1 b1

t

A1A−1
2 b2

t

e�A1A−1
2 b2

t

b2
t

A3A−1
2 b2

t

e�A3A−1
2 b2

t

A1A−1
3 b3

t

e�A1A−1
3 b3

t

A2A−1
3 b3

t

e�A2A−1
3 b3

t

b3
t

1
3

∑3
i=1

AiA
−1
1 b1

t

e�AiA
−1
1 b1

t

1
3

∑3
i=1

AiA
−1
2 b2

t

e�AiA
−1
2 b2

t

1
3

∑3
i=1

AiA
−1
3 b3

t

e�AiA
−1
3 b3

t
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The iteration t of Algorithm 0 provides

b1
t+1 =

1

3

3∑
i=1

AiA
−1
1 b1

t

e�AiA
−1
1 b1

t

, b2
t+1 =

1

3

3∑
i=1

AiA
−1
2 b2

t

e�AiA
−1
2 b2

t

, b3
t+1 =

1

3

3∑
i=1

AiA
−1
3 b3

t

e�AiA
−1
3 b3

t

from the input data
{
b1

t , b
2
t , b

3
t

}
. The jth row and (i + 1)st column of Table 3 is given

AiA
−1
j bj

t

e�AiA
−1
j bj

t

for all j = 1, 2, 3 and all i = 1, 2. Therefore, input data of the iteration t are in

(j, j + 1) position of Table 3. The bottom line of Table 3 is given output of the iteration

t, that is input data of the iteration t + 1. For A =


 1 1

3/8 32
1/8 1/16


, b1 =

[
0.520
0.480

]
, b2 =

[
0.510
0.490

]
and b3 =

[
0.530
0.470

]
Algorithm 0 stops within 6 iterations under the tolerance

ε = 10−4. The numerical results of calculations of each iteration is represented according to
the format of Table 3 and the convergence behavior from the iteration 0 to the iteration 5
is in Table 4.

Table 4: Convergence behavior of the example in Section 3

b1
t b2

t b3
t

Iteration 0 0.520 0.480 0.013 0.987 0.667 0.333
0.989 0.011 0.510 0.490 0.994 0.006
0.378 0.622 0.007 0.993 0.530 0.470
0.629 0.371 0.177 0.823 0.730 0.270

Iteration 1 0.629 0.371 0.019 0.981 0.759 0.241
0.948 0.052 0.177 0.823 0.971 0.029
0.594 0.406 0.017 0.983 0.730 0.270
0.724 0.276 0.071 0.929 0.820 0.180

Iteration 2 0.724 0.276 0.030 0.970 0.829 0.171
0.867 0.133 0.071 0.929 0.923 0.077
0.711 0.289 0.028 0.972 0.820 0.180
0.767 0.233 0.043 0.957 0.858 0.142

Iteration 3 0.767 0.233 0.037 0.963 0.859 0.141
0.793 0.207 0.043 0.957 0.876 0.124
0.765 0.235 0.037 0.963 0.858 0.142
0.775 0.225 0.039 0.961 0.864 0.136

Iteration 4 0.775 0.225 0.039 0.961 0.864 0.136
0.776 0.224 0.039 0.961 0.865 0.135
0.775 0.225 0.039 0.961 0.864 0.136
0.775 0.225 0.039 0.961 0.865 0.135

Iteration 5 0.775 0.225 0.039 0.961 0.865 0.135
0.775 0.225 0.039 0.961 0.865 0.135
0.775 0.225 0.039 0.961 0.865 0.135
0.775 0.225 0.039 0.961 0.865 0.135
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Appendix 2

For the input data

A =


 20 10

10 20
20 8


 , b1 =

[
0.600
0.400

]
, b2 =

[
0.500
0.500

]
and b3 =

[
0.600
0.400

]
,

Algorithm 0 stops within 3 iterations under the tolerance ε = 10−3. The convergence
behavior from the iteration 0 to the iteration 2 is in Table 5.

Table 5: Convergence behavior of the example in Section 4

b1
t b2

t b3
t

Iteration 0 0.600 0.400 0.273 0.727 0.652 0.348
0.800 0.200 0.500 0.500 0.833 0.167
0.545 0.455 0.231 0.769 0.600 0.400
0.648 0.352 0.334 0.666 0.695 0.305

Iteration 1 0.648 0.352 0.316 0.684 0.698 0.302
0.668 0.332 0.334 0.666 0.715 0.285
0.646 0.354 0.313 0.687 0.695 0.305
0.654 0.346 0.321 0.679 0.703 0.297

Iteration 2 0.654 0.346 0.321 0.679 0.703 0.297
0.654 0.346 0.321 0.679 0.703 0.297
0.654 0.346 0.321 0.679 0.703 0.297
0.654 0.346 0.321 0.679 0.703 0.297
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