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Abstract In this paper, a new class of three-term memory gradient methods with Armijo-like step size
rule for unconstrained optimization is presented. Global convergence properties of the new methods are
discussed without assuming that the sequence {xk} of iterates is bounded. Moreover, it is shown that, when
f(x) is pseudo-convex (quasi-convex) function, this new method has strong convergence results. Combining
FR, PR, HS methods with our new method, FR, PR, HS methods are modified to have global convergence
property. Numerical results show that the new algorithms are efficient.
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1. Introduction

Consider the following unconstrained problem

min{f(x) : x ∈ Rn}, (1)

where f : Rn → R is a continuously differentiable function.
In [2], the memory gradient algorithm for problem (1) was first presented. Compared

with the ordinary gradient method, this algorithm has the advantage of high speed. Cragg
and Levy [1] made a generalization of the memory gradient algorithm and presented a
method called the super-memory gradient algorithm which from numerical experience has
been shown to be much more rapidly convergent, in general, than the memory gradient
algorithm.

In this paper, we consider a new three-terms memory gradient method for problem (1)
whose search directions are defined by

dk = −∇f(xk) + βkdk−1 + αkdk−2, (2)

and

xk+1 = xk + λkdk, (3)

where βk and αk are parameters and λk is a step-size obtained by means of a one-dimensional
search. Conditions are given on βk and αk to ensure that dk is a sufficient descent direction
at the point xk of iterate. Global convergence properties of the new class of three terms
memory gradient methods with Armijo-like step size rule are discussed without assuming
that the sequence {xk} of iterates is bounded. Moreover, it is shown that, when f(x) is
pseudo-convex (quasi-convex) function, this new method has strong convergence results.
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64 S. Qingying & L. Xinhai

Combining FR, PR, HS methods with our new method, FR, PR, HS methods are modified
to have global convergence property. Numerical results show that the new algorithms are
efficient.

In Section 2, we present a new method. We start the convergence analysis of the new
method in Section 3. The convergence properties for generalized convex functions are dis-
cussed in Section 4. Finally, a detailed list of the test problems that we have used is given
in Section 5.

2. The New Three-term Memory Gradient Algorithm

Consider the three-term memory gradient method (2) and (3). Let Sk = −∇f(xk)+βkdk−1.
In order to ensure that dk is a sufficient descent direction, we assume that




∇f(xk)
T∇f(xk) > |βk∇f(xk)

T dk−1|,
‖∇f(xk)

T Sk‖ ≥ (1 + �k
1)|βk| · ‖∇f(xk)‖ · ‖dk−1‖

(4)

and



|∇f(xk)
T Sk| > |αk∇f(xk)

T dk−2|,
|∇f(xk)

T dk| ≥ (1 + �k
2)|αk| · ‖∇f(xk)‖ · ‖dk−2‖

(5)

where �k
1 > 0, �k

2 > 0 are parameters.
Condition (4) plays a vital role in choosing βk, and a new choice for βk is given by

βk ∈ [−β
k
(�k

1), βk(�k
1)], (6)

βk(�k
1) =

1

(1 + �k
1) + cos θk

· ‖∇f(xk)‖
‖dk−1‖ , (7)

β
k
(�k

1) =
1

(1 + �k
1) − cos θk

· ‖∇f(xk)‖
‖dk−1‖ , (8)

where θk is the angle between ∇f(xk) and dk−1.
Condition (5) plays a vital role in choosing αk, and a new choice for αk is given by

αk ∈ [−αk(�k
1,�k

2), αk(�k
1,�k

2)], (9)

αk(�k
1,�k

2) =
1 + �k

1

2 + �k
1

· 1

(1 + �k
2) + cos θk

· ‖∇f(xk)‖
‖dk−2‖ , (10)

αk(�k
1,�k

2) =
1 + �k

1

2 + �k
1

· 1

(1 + �k
2) − cos θk

· ‖∇f(xk)‖
‖dk−2‖ , (11)

where θk is the angle between ∇f(xk) and dk−2.
The new three-terms memory gradient algorithm (NTMG):

Data: ∀ x1 ∈ Rn, d0 = 0, �0
1 > 0, �0

2 > 0, µ1, µ2 ∈ (0, 1) and µ1 ≤ µ2, γ1, γ2 > 0, γ2 < 1.

Step1: Compute∇f(x1), if ∇f(x1) = 0, and x1 is a stationary point of (1), stop; else set
d1 = −∇f(x1), k := 1, and go to step2.

Step2: xk+1 = xk + λkdk, the step size λk is chosen so that

f(xk + λkdk) ≤ f(xk) + µ1λk∇f(xk)
T dk, (12)
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and

λk ≥ γ1 or λk ≥ γ2λ
∗
k > 0, (13)

where λ∗
k satisfies

f(xk + λ∗
kdk) > f(xk) + µ2λ

∗
k∇f(xk)

T dk, (14)

Step3: Compute ∇f(xk+1). if ‖∇f(xk+1)‖ = 0, and xk+1 is a stationary point of (1), stop;
else let k : = k + 1, �k

1 ≥ �0
1, �k

2 ≥ �0
2, and go to step4.

Step4: Let dk = −∇f(xk) + βkdk−1 + αkdk−2,
where βk ∈ [−β

k
(�k

1), βk(�k
1)], αk ∈ [−αk(�k

1,�k
2), αk(�k

1,�k
2)], go to step 2.

Remark We can give the new choice of the parameter βk:

βk = argmin{|β − βFR
k ||β ∈ [−β

k
(�k

1), βk(�k
1)]};

βk = argmin{|β − βPR
k ||β ∈ [−β

k
(�k

1), βk(�k
1)]};

βk = argmin{|β − βHS
k ||β ∈ [−β

k
(�k

1), βk(�k
1)]};

where βFR
k = ‖ gk ‖2/‖ gk−1 ‖2 (Fletcher-Reeves), βPR

k = gT
k (gk − gk−1)/‖ gk−1 ‖2 (Polak-

Ribiere), βHS
k = (gT

k (gk − gk−1))/d
T
k−1(gk − gk−1) (Hestenes-Stiefel), and three classes of new

methods are established, denoted by NTFR, NTPR, NTHS, respectively. In particular, we
can take αk = 0 in NTMG, NTFR, NTPR, NTHS methods, and four classes of new methods
are established, denoted by NCG, NFR, NPR, NHS, respectively.

Lemma 1 If xk is not a stationary point for problem (1), then ‖ dk ‖ ≤ c1‖∇f(xk)‖, where
c1 = 1 + 1

�0
1

+ 1
�0

2
.

Proof. It follows from the definition of dk.

Lemma 2 If xk is not a stationary point for problem (1), then dk is a descent direction,

i.e. ∇f(xk)
T dk ≤ −c2 · ‖∇f(xk)‖2, where c2 =

1+�0
1

2+�0
1
· 1+�0

2

2+�0
2
.

Proof. For k = 1, it is clear that d1 = −∇f(x1) is a descent direction. For k ≥ 2, by
using assumption (4) and the definition of Sk, we have

∇f(xk)
T Sk = −‖∇f(xk)‖2 + βk · ∇f(xk)

T dk−1

≤ −‖∇f(xk)‖2 + |βk · ∇f(xk)
T dk−1|

≤ −‖∇f(xk)‖2 + ‖∇f(xk)‖2

= 0.

It follows from (4) that

∇f(xk)
T Sk ≤ −‖∇f(xk)‖2 + |βk · ∇f(xk)

T dk−1|
≤ −‖∇f(xk)‖2 +

1

1 + �k
1

|∇f(xk)
T Sk|.

The above inequality and |∇f(xk)
T Sk| = −∇f(xk)

T Sk imply that

∇f(xk)
T Sk ≤ −1 + �k

1

2 + �k
1

· ‖∇f(xk)‖2. (15)
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Since for k = 2, d2 is identical with s2, the result follows from equation (15). For k ≥ 3, it
follows from (5) and the definition of dk and (15) that

∇f(xk)
T dk ≤ −1 + �k

2

2 + �k
2

· |∇f(xk)
T Sk| ≤ −1 + �k

1

2 + �k
1

· 1 + �k
2

2 + �k
2

· ‖∇f(xk)‖2.

By using
1+�k

1

2+�k
1
≥ 1+�0

1

2+�0
1
, for �k

1 ≥ �0
1 and

1+�k
2

2+�k
2
≥ 1+�0

2

2+�0
2
, for �k

2 ≥ �0
2, we obtain that

∇f(xk)
T dk ≤ −1+�k

1

2+�k
1
· 1+�k

2

2+�k
2
· ‖∇f(xk)‖2.

3. Convergence Analysis

Throughout this paper, let {xk} denote the sequence generated by (NTMG). If ∇f(xk) = 0
for a finite integer k, xk is a stationary point of (1). In what follows, we assume that
(NTMG) generates an infinite sequence. We now present our global convergence results.

Theorem 1 Suppose that f(x) ∈ C1. Then:
(i) either f(xk) → −∞ or lim infk→∞‖∇f(xk)‖ = 0;

(ii) either f(xk) → −∞ or limk→∞‖∇f(xk)‖ = 0, if ∇f is uniformly continuous on Rn .

Proof. Since for all k, ∇f(xk)
T dk < 0, we havef(xk+1) < f(xk), which implies that

{f(xk)} is a monotonically decreasing sequence. If f(xk) → −∞, then we complete the
proof. Therefore, in the following discussion, we assume that {f(xk)} is a bounded set.

Suppose (i) is not true. Then, there exists ε > 0 such that, for all k,

∇f(xk) ≥ ε. (16)

It follows from Lemma 2, (12) and (16) that

f(xk + 1) − f(xk) ≤ µ1λk∇f(xk)
T dk ≤ −c2λkµ1‖∇f(xk)‖2 ≤ −c2λkµ1ε‖∇f(xk)‖. (17)

The above inequality and the boundedness of {f(xk)} imply that

∞∑
k=1

λk‖∇f(xk)‖ < +∞. (18)

It follows from Lemma 1 and (2) that, for all k,

‖xk+1 − xk‖ = λk‖dk‖ ≤ c1λk‖∇f(xk)‖.
The above inequalities and (18) yield

∑∞
k=1 ‖xk+1 − xk‖ < +∞, which yields that{xk} is

convergent, say to a point x∗. From (16), (18), we have

lim
k→∞

λk = 0. (19)

It follows from Lemma 1, the convergence of {xk} and f(x) ∈ C1 that {dk} is bounded.
Without loss of generality, we may assume that there exists an index set K ⊂ {1, 2, ...}
such that limk→∞,k∈K dk = d∗. It follows from (13) and (19) that, when k(k ∈ K) is large
enough, we have λk < γ1, and hence it follows from (13) that, λk ≥ γ2λ

∗
k, where λ∗

k satisfies
(14), i.e. f(xk + λ∗

kdk) − f(xk)/λ
∗
k ≥ µ2λ

∗
k∇f(xk)

T dk. Taking the limit for k ∈ K, we have

∇f(x∗)T d∗ ≥ µ2∇f(x∗)T d∗. (20)
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By using (20) and µ2 ∈ (0, 1) , we obtain that

∇f(x∗)T d∗ = 0. (21)

It follows from Lemma 2 and (21) that ‖∇f(x∗)‖ = 0 , which contradicts (16). This
completes the proof of (i).

Suppose that there exist an infinite index set K1 ⊂ {1, 2, ...} and a positive scalar ε > 0
such that, for all k ∈ K1,

∇f(xk) > ε. (22)

It follows from Lemma 2 and (12)that

f(xk) − f(xk+1) ≥ −µ1λk∇f(xk)
T dk ≥ c2λkµ1‖∇f(xk)‖2. (23)

By using (22) and (23), we obtain that λk ≤ µ−1
1 ε−2c−1

2 (f(xk) − f(xk+1), ∀k ∈ K1.
The boundedness of {f(xk)} and the monotonically decreasing property imply that

{f(xk)} is convergent. Thus,

lim sup
k→∞,k∈K1

λk ≤ lim sup
k→∞,k∈K1

µ−1
1 ε−2c−1

2 (f(xk) − f(xk+1),

which yields that
lim sup

k→∞,k∈K1

λk = 0. (24)

It follows from (22) and (23) that λk∇f(xk) ≤ µ−1
1 ε−1c−1

2 (f(xk) − f(xk+1)), and
lim supk→∞,k∈K1

λk∇f(xk) ≤ lim supk→∞,k∈K1
µ−1

1 ε−1c−1
2 (f(xk) − f(xk+1)). Hence,

lim sup
k→∞,k∈K1

λk∇f(xk) = 0. (25)

It follows from Lemma 1 and (25) that

lim sup
k→∞,k∈K1

λk‖dk‖ ≤ lim sup
k→∞,k∈K1

c1λk‖∇f(xk)‖.

i.e.
lim sup

k→∞,k∈K1

λk‖dk‖ = 0. (26)

It follows from (24) that, when k(k ∈ K1) is large enough, we have λk < γ1, and hence it
follows from (13) that, λk ≥ γ2λ

∗
k, where λ∗

k satisfies (14). Now set x∗
k+1 = xk + λ∗

kdk. It
follows from (24), (26) and λk ≥ γ2λ

∗
k, ( k ∈ K1 is large enough) that limk→∞,k∈K1 λ∗

k = 0
and limk→∞,k∈K1 λ∗

k‖dk‖ = 0. Hence, limk→∞,k∈K1 ‖x∗
k+1 − xk‖ = 0.

Let ρ∗
k =

f(x∗
k+1)−f(xk)

λ∗
k
∇f(xk)T dk

, k ∈ K1, it follows from (14) that

ρ∗
k < µ2 < 1, k ∈ K1. (27)

It follows from Lemmas 1, 2 and (22) that

lim sup
k→∞,k∈K1

|ρ∗
k − 1| = lim sup

k→∞,k∈K1

|∇f(ξ∗k)
T (λ∗

kdk)

λ∗
k∇f(xk)

T dk

− 1|

= lim sup
k→∞,k∈K1

|(∇f(ξ∗k) −∇f(xk))
T dk

∇f(xk)
T dk

| ≤ lim sup
k→∞,k∈K1

‖∇f(ξ∗k) −∇f(xk)‖ · ‖dk‖
|∇f(xk)

T dk|
≤ lim sup

k→∞,k∈K1

‖∇f(ξ∗k) −∇f(xk)‖ · c1 · ‖∇f(xk)‖
c2 · ‖∇f(xk)‖2

≤ lim sup
k→∞,k∈K1

‖∇f(ξ∗k) −∇f(xk)‖ · c1

c2 · ε = 0, (28)
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where ξ∗k = xk + ϑk(x
∗
k+1 − xk), 0 < ϑk < 1, k ∈ K1.

Hence (28) establishes that ρ∗
k ≥ µ2 for all k ∈ K1 sufficiently large. This is the desired

contradiction because (27) guarantees that ρ∗
k < µ2. This yields (ii).

4. Convergence Properties for Generalized Convex Functions

In this section, we discuss the convergence properties of (NTMG) for generalized convex
functions. As shown in the following, parameters �k

1,�k
2 play an important role in our

analysis. We make the following assumption:
(Q) For any integer k,

�k
1 ≥ max{�0

1,
1 + ‖xk‖

f(xk−1) − f(xk)
‖∇f(xk)‖},

�k
2 ≥ max{�0

2,
1 + ‖xk‖

f(xk−1) − f(xk)
‖∇f(xk)‖}.

Thus we have the following results.

Lemma 3 Suppose that (Q) holds and f(x) ∈ C1. Let λ0 = sup{λk, k = 1, 2, ...} and
suppose that λ0 < +∞. If f(x) is a quasi-convex function and the solution set of problem
(1) is nonempty, then {xk} is a bounded sequence, each accumulation point x∗ of which is
a stationary point of problem (1) and limk−→∞ xk = x∗.
Proof. Note that for all x ∈ Rn and all k,

‖xk+1 − x‖2 = ‖xk − x‖2 + 2(xk+1 − x, xk − x) + ‖xk+1 − xk‖2

= ‖xk − x‖2 + 2λk(dk, xk − x) + λ2
k‖dk‖2

= ‖xk − x‖2 + 2λk(−∇f(xk) + βkdk−1 + αkdk−2, xk − x) + λ2
k‖dk‖2

≤ ‖xk − x‖2 + 2λk(∇f(xk), x − xk)

+2λk|βk|‖dk−1‖‖xk − x‖ + 2λk|αk|‖dk−2‖‖xk − x‖ + λ2
k‖dk‖2

≤ ‖xk − x‖2 + 2λk(∇f(xk), x − xk)

+4λk
f(xk−1) − f(xk)

1 + ‖xk‖ (‖xk‖ + ‖x‖) + λ2
k‖dk‖2

≤ ‖xk − x‖2 + 2λk(∇f(xk), x − xk)

+4λ0(1 + ‖x‖)(f(xk−1) − f(xk)) + λ2
k‖dk‖2. (29)

It follows from Lemma 1, Lemma 2 and (12) that

‖dk‖2 ≤ c2
1‖∇f(xk)‖2; (30)

‖∇f(xk)‖2 ≤ c−1
2 (−∇f(xk))

T dk); (31)

−λk∇f(xk))
T dk ≤ µ−1

1 ((fk) − f(xk+1)). (32)

By using (29), (30), (31), (32) and the above inequality, we obtain that

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2λk(∇f(xk), x − xk)

+4λ0(1 + ‖x‖)(f(xk−1) − f(xk)) + λ0λkc
2
1c

−1
2 (−∇f(xk)

T dk)

≤ ‖xk − x‖2 + 2λk(∇f(xk), x − xk)

+4λ0(1 + ‖x‖)(f(xk−1) − f(xk)) + λ0c
2
1c

−1
2 µ−1

1 (f(xk) − f(xk−1))).

= ‖xk − x‖2 + 2λk(∇f(xk), x − xk)

+m1(x)(f(xk−1) − f(xk)) + m2(f(xk) − f(xk−1))), (33)
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where m1(x) = 4λ0(1 + ‖x‖), m2 = λ0µ
−1
1 c2

1c
−1
2 .

Because the solution set of problem (1) is nonempty, we can choose y ∈ Rn satisfying
f(y) ≤ f(xk). Since f(x) is a quasi-convex function, we have

(∇f(xk), y − xk) ≤ 0. (34)

It follows from (33), (34) that

‖xk+1 − y‖2 + m1(y)f(xk) + m2f(xk+1) ≤ ‖xk − y‖2 + m1(y)f(xk−1) + m2f(xk)

which implies the sequence {‖xk − y‖2 +m1(y)f(xk−1)+m2f(xk)} is descent. Since we have
assumed that the solution set of problem (1) is nonempty, and so inf{f(xk) : k = 1, 2, ...} >
−∞ both sequence {f(xk)} and {‖xk − y‖2 + m1(y)f(xk−1) + m2f(xk)} are bounded from
below and converge. Therefore, the sequence {‖xk − y‖2} converges and {xk} is bounded.
This implies that {xk} has an accumulation point x∗ and that there exists an index set
K1 ⊂ {1, 2, ...} such that limk→∞,k∈K1xk = x∗, and limk→∞,k∈K1f(xk) = f(x∗). It follows
from the above equation and the fact {f(xk)} is a monotonically decreasing sequence implies
limk→∞,k∈K1f(xk−1) = f(x∗). Therefore, we have

lim
k→∞

{‖xk − x∗‖2 + m1(x∗)f(xk−1) + m2f(xk)}

= lim
k→∞,k∈K1

{‖xk − x∗‖2 + m1(x∗)f(xk−1) + m2f(xk)}

= [m1(x∗) + m2]f(x∗),

which implies limk→∞ xk = x∗. From Theorem 1 the limit point x∗ is a stationary point of
problem (1).

Theorem 2 Suppose that (Q) holds and f(x) ∈ C1 . Let λ0 = sup{λk, k = 1, 2, ...} and
suppose that λ0 < +∞ . If f(x) is a pseudo-convex function, then:

(i) {xk} is a bounded sequence if and only if the solution set of problem (1) is nonempty;

(ii) limk→∞ f(xk) = inf{f(x) : x ∈ Rn};
(iii) If the solution set of problem (1) is nonempty, then any accumulation point x∗ of
{xk} is an optimal solution of problem (1) and limk→∞ xk = x∗.

Proof. Since f(x) is pseudo-convex, it is quasi-convex and a stationary point of problem
(1) is also an optimal solution of problem (1).
First, we will show part (i). If {xk} is a bounded sequence, then it follows from Theorem 1
that there exists an index set K2 ⊂ {1, 2, ...} and a point x∗ ∈ Rn such that limk→∞,k∈K1xk =
x∗, and x∗ is a stationary point of problem (1), and is also an optimal solution of problem
(1). Conversely, if the solution set of problem (1) is nonempty, then it follows from Lemma
3 that {xk} is a bounded sequence.

Next, we will prove (ii). We prove this conclusion by the following three cases (a), (b),
(c).

(a) limk→∞ f(xk) = inf{f(x) : k = 1, 2, ...} = −∞; It follows from {f(xk)} is a descent
sequence, and limk→∞ f(xk) = inf{f(x) : k = 1, 2, ...} ≥ inf{f(x) : x ∈ Rn}.

(b) {xk} is bounded: It follows from (i) of this theorem that the solution of problem (1)
is nonempty, and there exists an index set K3 ⊂ {1, 2, ...} and a point x∗ ∈ Rn such that
limk→∞,k∈K1xk = x∗, it follows from Theorem 1 that x∗ is a stationary point of problem (1),
and is also an optimal solution of problem (1).
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(c) inf{f(x) : k = 1, 2, ...} > −∞; and {xk} is unbounded: Suppose that there exists
x̄ ∈ Rn, ε > 0, and k1 such that for all k ≥ k1, f(xk) > f(x̄) + ε. Since f(x) is a pseudo-
convex function, we have (∇f(xk), x̄ − xk) ≤ 0, for all k ≥ k1. Setting x = x̄ in (33)
that

‖xk+1 − x̄‖2 + m1(x̄)f(xk) + m2f(xk−1) ≤ ‖xk − x̄‖2 + m1(x̄)f(xk−1) + m2f(xk),

which implies the sequence {‖xk − x̄‖2 + m1(x̄)f(xk−1) + m2f(xk)} is descent. Since we
have assumed that inf{f(x) : k = 1, 2, ...} > −∞; both sequence {f(xk)} and {‖xk − x̄‖2 +
m1(x̄)f(xk−1) + m2f(xk)} are bounded from below and converge. Therefore, the sequence
{‖xk − x̄‖2} converges and {xk} is bounded, which contradicts our assumption.

(iii) immediately follows from Lemma 3.

Corollary 1 Suppose that (Q) holds and f(x) ∈ C1 . Let λ0 = {sup{λk, k = 1, 2, ...} and
suppose that λ0 < +∞ . If f(x) is a convex function, then:

(i) {xk} is a bounded sequence if and only if the solution set of problem (1) is nonempty;

(ii) limk→∞ f(xk) = inf{f(x) : x ∈ Rn}.
(iii) If the solution set of problem (1) is nonempty , then any accumulation point x∗ of
{xk} is an optimal solution of problem (1) and limk→∞ xk = x∗.

Proof. Since f(x) is convex, it is pseudo-convex. It immediately follows from Theorem
2.

Corollary 2 Suppose that (Q) holds and f(x) ∈ C1. Let λ0 = sup{λk, k = 1, 2, ...} and
suppose that λ0 < +∞. If f(x) is a quasi-convex function, then either the solution set of
problem (1) is empty or any accumulation point x∗ of {xk} is a stationary point of problem
(1) and limk→∞ xk = x∗.

Proof. It immediately follows from Lemma 3.

Note that Wei and Jiang [4] has obtained a similar result to Corollary 1 for gradient
descent method with convex function.

5. Numerical Experiments

We choose three numerical examples from [3], and report some numerical results by using
the new methods in this paper. We take �0

1 = 0.067, �0
2 = 3, αk = αk(�k

1,�k
2), µ1 =

µ2 = µ = 0.25, β = 1/2.9, γ = 1, ( NTMG βk = βk(�k
1).) We denote by ”IT” the number

of iterations, by ”fopt” the objective function value at the solution, by ”T” computational
time, by ”3.6461(-3)” ”3.6461 ” etc. The following is the numerical results.

Example 1

f(x) = 10(x2
1 − x2)

2 + (1 − x1)
2 + 9(x4 − x2

3)
2 + (1 − x3)

2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

x1 = (−3,−1,−3,−1)T ; xopt = (1, 1, 1, 1); f(xopt) = 0.

‖∇f(xk)‖ ≤ 10−1, 10−2

Example 2 f(x) =
∑N/2

i=1 [(x2i − x2
2i−1)

2 + (1 − x2i−1)
2];

x1 = (−1.2, 1,−1.2, 1, ...,−1.2, 1)T ;−xopt = (1, 1, ..., 1); f(xopt) = 0.

‖∇f(xk)‖ ≤ 10−1, 10−2, N=120
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Table 1: Numerical results of example 1

Method(M=1) IT T fopt

NTMG 13, 37 0.0600s, 0.1099s 7.4247(-4), 9.3087(-6)
NTFR 17, 35 0.5900s, 0.5999s 4.6057(-3), 3.6098(-5)
NTPR 12, 119 0.0499s, 0.2200s 7.6747(-4), 4.2176(-5)
NTHS 13, 21 0.0000s, 0.0400s 7.6751(-4), 7.6750(-5)

FR 51, 73 0.2800s, 0.4400s 2.0677(-4), 1.5005(-6)
PR 15, 22 0.0500s, 0.0600s 1.7343(-4), 5.1071(-6)
HS 18, 26 0.0500s, 0.0600s 3.2442(-3), 2.0893(-6)

NCG 20, 50 0.0499s, 0.0500s 4.5151(-3), 2.0094(-5)
NFR 23, 59 0.0590s, 0.1100s 4.5809(-3), 3.4529(-5)
NPR 49, 81 0.3300s, 0.3800s 6.9121(-3), 6.3727(-6)
NHS 26, 52 0.0590s, 0.1100s 3.0037(-3), 5.2729(-5)

Table 2: Numerical results of example 2

Method(M=1) IT T fopt

NTMG 8, 11 14.6599s, 19.5000s 5.8984(-3), 7.9117(-6)
NTFR 8, 11 14.6700s, 19.3800s 6.1615(-4), 1.3811(-5)
NTPR 9, 14 16.2600s, 23.5600s 1.6195(-3), 6.9608(-5)
NTHS 9, 25 16.1000s, 39.6499s 4.7874(-3), 1.4845(-5)

FR 13, 19 39.2699s, 56.3499s 2.0765(-3), 1.4603(-5)
PR 9, 11 26.4200s, 32.1299s 8.0624(-3), 4.1389(-4)
HS 9, 11 26.4800s, 32.3933s 1.1136(-3), 8.9999(-5)

NCG 12, 16 19.0600s, 24.9900s 1.7409(-2), 4.2189(-4)
NFR 12, 19 35.3099s, 55.8100s 3.2288(-2), 1.7576(-4)
NPR 14, 15 41.0899s, 43.8800 1.3835(-3), 1.2374(-5)
NHS 17, 23 49.8799s, 67.3900s 2.3040(-2), 1.3199(-5)

c© Operations Research Society of Japan JORSJ (2004) 47-2



72 S. Qingying & L. Xinhai

Example 3
f(x) =

∑N/4
i=1 [(x4i−1 + 10x4i−2)

2 + 5(x4i−1 − x4i)
2 + (x4i−2 − 2x4i−1)

2 + 10(x4i−3 − x4i)
2];

x1 = (3,−1, 0,−3,−3,−1, 0,−3, ...,−3,−1, 0, 3)T ;−xopt = (0, 0, ..., 0); f(xopt) = 0.

‖∇f(xk)‖ ≤ 10−1, 10−2, N=60

Table 3: Numerical results of example 3

Method(M=1) IT T fopt

NTMG 54, 82 24.5000s, 36.8000s 4.4338(-3), 1.2339(-4)
NTFR 57, 231 42.0699s, 102.0500s 7.8181(-3), 3.5408(-4)
NTPR 40, 124 18.6700s, 55.7500s 6.0185(-3), 2.4653(-4)
NTHS 37, 81 17.2541s, 36.7450s 2.2546(-3), 1.2546(-4)

FR 44, 74 39.4400s, 66.2400s 8.2052(-4), 3.2891(-5)
PR 30, 70 26.0299s, 60.7500s 7.2680(-3), 6.3319(-5)
HS 33, 41 29.6200s, 35.5900s 3.3625(-3), 3.3124(-6)

NCG 55, 131 24.6099s, 57.9500s 5.1785(-3), 2.7273(-4)
NFR 64, 129 55.4799s, 111.930s 6.4145(-3), 2.7230(-4)
NPR 40, 144 34.7099s, 125.000s 2.3033(-3), 3.1234(-4)
NHS 33, 94 41.5199s, 82.0099s 5.2568(-3), 2.9378(-4)

The numerical results indicate the proposed new methods have performance superior to
the classical FR, PR, HS algorithms with Armijo-like step size rule, especially in the total
amount of computational time. Moreover, the new methods are stable, and attractive for
large-scale optimization problems.
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