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Abstract  There are demands for secure group communication on the internet, such as pay-per-view type
broadcasting, business confidential information sharing and teleconference. Secure communication inside
a groups on an open network is critical to enhance the internet capability. The public key system is not
sufficient to support the group security, since it is not scalable for large groups. Some researchers propose a
scalable group security model, managing several common keys for encryption and decryption sharing inside
the community. In this paper, we will evaluate the performance of these group security model. Using
M /G /oo queueing models and the basic queueing theory, we show how to find the optimal condition of the
allocation of the common keys if the joins to group is a Poisson process. In addition, we show our optimal
condition may work for more general arrival processes by using the cross covariance formula (a variant of
Papangelou’s formula) for the stochastic intensity of departure process.

Keywords: Applied probability, information technologies, Markov process, queue,
telecommunication

1. Introduction

The basic model of secure communication is one-to-one and sharing the information between
two person. One-to-one secure communication has been widely used on the internet such
as, SSL (Secure Sockets Layer) [12]. We will illustrate a common procedure of these one-
to-one secure communication. In the public key environment [2], two person, say Alice
and Bob, have their own private and public key. When Alice wants to start a one-to-one
secure communication with Bob, she creates a symmetric key, and send the key to Bob
by using Bob’s public key. Bob will decrypt the symmetric key with his own private key.
The shared symmetric key among Alice and Bob will be used to encrypt and decrypt their
communication. In general, since encryption and description using the public key system
requires longer time for encryption than conventional symmetric encryption system like DES.
It is appropriate to use public key system only once at the start to send the symmetric key,
and then use the symmetric key to encryption and description of the information.

As the internet grows all over the world, we get the freedom to communicate with
anyone, anytime, anywhere. On the internet, we can easily make a community which shares
common interest. Inside the community, sometimes we need a secure communication to
protect their own interest. For example, we need a secure group communication for pay TV
on the internet, or sharing the business confidential information on the internet.

These secure group communication might be solved by one-to-one secure communication
by specifying one sender and one receiver. However, if we use one-to-one model in group,
the sender has to encrypt the information using different symmetric keys to each receivers.
When the group size is large and we need real-time encryptions, the one-to-one model will
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not be scalable. For example, consider an internet broadcasting company which has 10,000
subscribers. The server has to encrypt the data 10,000 times with different keys. Thus, it
is impossible for streaming type real-time applications like Pay TV or teleconference.

One of the solutions to this problem is to share a common symmetric group key among
the group, and use it when sending information [6] [5]. Using the group key, the sender can
reduce the number of encryptions to one per data in the group. The group key might be sent
to the participants of the group by using the one-to-one secure communication in advance.
This group key model also has a problem to be solved. Since groups might be instable,
some of the participants will leave and join the group in the future. If one participants left
the group, we cannot use the same group key to keep the security of the communication.
For example, a subscriber of Pay TV on the internet will quit watching the program when
he/she feels it is not worth watching. If we keep using the same group key after the leave,
some malicious subscriber will quit watching but keep watching the program using the group
key in his/her hand. So, when the participants change in the group, we need to renew the
old group key. Now, every time if one participant leaves a group of 10,000 participants, we
have to encrypt the new group key 10,000 times to send them to each participants. Clearly,
this model is not scalable.

In Wong [15] and RFC2627 [13], the authors introduce a concept of subgroup in the
secure group communication to solve the above problem. They showed that using additional
subgroup keys, they can decrease the number of encryptions of the group key, dramatically.
The subgroup keys are exclusively shared in its subgroup, and used to encrypt a new group
key.

In this paper, we use basic queueing theory to evaluate the number of encryptions in
the subgroup model and show the optimal number of subgroups for Poisson arrivals. In
addition, we show our optimal condition may work for more general arrival processes by
using covariance formula for the stochastic intensity of departure process.

2. Secure Group Communication

Here we briefly summarize the idea of secure group communication. In the following, we
write (A)p, when data A is encrypted by a key b. For simplicity, suppose we have a group
of 15 subscribers, Uy, ..., U5, and we have a key server which manages to issue group and
subgroup keys.

A participant U; has its own public key O; and secret key S; (or symmetric key if both
sides has already negotiated). The key server initially generate a group key G(0). The
group key G(0) is encrypted by O;, and (G(0))p, is sent to U; on an open network. Each
user uses his own secret (or symmetric) key to decrypt G(0). Thus, participants can send
the information encrypted by G(0) to share them inside the group.

Now let us consider a scenario;

1. First, U;s leaves the group.
2. Then, a new participant Ujg joins the group.

As pointed out in the previous section, when the participants changed, we need to renew
the group key and send them to each participants with encryption. We will estimate the
number of encryptions of new group keys. First, we will consider the case when there is no
subgroup, and then we will evaluate the case with subgroups.

2.1. Without subgroups

Assume Uy leaves the group. Since Uj; knows G(0), the key server has to generate new
group key G(1) to keep the security inside the rest of the group {Ui,...,Uy4}. The new
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group key G(1) is encrypted by each participant’s open key to send it to them. Thus, we
need the following encryptions;

{(GM)o iz, - (2.1)

Let Ai5 be the number of encryptions required for the leave of Ujs, then we have
Ay = 14. (2.2)

Now, assume a new participants U;g subscribes to join the group. To protect the infor-
mation shared by the group before Uyg joins, the key server generates another new group
key G(2) instead of G(1). Since U;¢ does not know G(1), we can use G(1) to encrypt G(2).
Together with encryption to Ujg, we need the encryptions as

{(G(2)a), (G(2))os } -
Thus, letting Byg be the number of encryptions at the join of Uyg, we have
Bis = 2. (2.3)

2.2. With subgroups
Here, we divide the group into 3 subgroups: SGy = {Uy, ..., Us}, SGy = {Us, ..., U1o}, SG3 =
{Ui1, ..., Uss}. Initially, the key server generates and sends subgroup keys (SG;(0));=123
to members of each subgroups. For example, since Ug belongs to SG5, Ug has the keys
(G(0),S5G2(0), S6), but does not have the keys of other subgroups like SG;(0) and SG3(0).
Now suppose Ui leaves the group. To keep the security, not only renew the group key
G(0) to G(1), but the subgroup key SG3(0) should also be renewed to SG5(1). Since Uys
does not know the keys of other subgroup SG; and SG2, we can send the new group key

G(1) to SG; and SG5 using their subgroup keys. Thus we need the following 2 encryptions
to SG;1 and SG,.

{(G(1))sc(0): (G(1))sca0) } - (2.4)

Next, we should consider to send the new group key GG(1) to the members of the subgroup
SG35. Uy knows the old subgroup key SG5(0), so it is not appropriate to send G(1) encrypted
by SG3(0). First, we generate a new subgroup key SG3(1), and send SG5(1) encrypted by
each member’s public key. Thus we need the following 4 encryptions to the members of
SGj.

{(SG3(1))01~}¢=11 ..... 14 - (2-5)
Then, using this new subgroup key SG35(1), we can encrypt the new group key G(1) as
(G(1))ses)- (2.6)

Thus, summing up (2.4), (2.5) and (2.6), we can get the total number of encryptions
required for the leave of Uys,

Ais=T. (2.7)
Compare to (2.2), the number of encryptions is decreasing when we introduce the concept

of subgroup.

(© Operations Research Society of Japan JORSJ (2004) 47-1



Secure Group Communication 41

Table 1: The number of encryptions

Ays(Leave) | Byg (Join) | Total
Without SG 14 2 16
With SG 7 4 11

Now let us suppose Ujg joins the group. Assume the new participant Uyg will join to the
subgroup SG3. As in the previous section, since we can reuse the old group key G(1), we
have

{(G@2)ew): (G(2)oy} - (2.8)

Thus, only 2 encryptions are required to renew the group key. However, since we need to
send the new subgroup key SG3(2) to the members of SG3, we need 2 more encryptions:

{(SG3(2))sc,1), (SG3(2))0ys } - (2.9)
Together with (2.8) and (2.9), we need
B = 4, (2.10)

for sending the new keys to each participants when Uig joins the group. Note that compare
to (2.3), the number of encryptions is increased because of the additional subgroup keys.

2.3. Encryptions and subgroups

We summarize the results of our example in Table 1. We can find the total number of
encryptions decreases, but the number of encryptions at the join increases, due to the
additional subgroup keys. If we use subgroups, we can reduce the number of encryptions of
the group key, but at the same time the number of encryptions to send the subgroup keys
is increased.

Thus, to see the effect of the subgroups, we need to take into account the number
of participants and the number of subgroups. To do this, we need to establish a queueing
model. By using the queueing theory, we will see how to estimate the number of encryptions
in the next section.

3. Queueing Model

We make a queueing model to deal with the secure group communication. Note that the
subgroup keys are used only for the delivery of the group key, but not for the communi-
cation inside the group. Thus, we assume the subgroup can be made independent of the
member’s attribute. Of course, we can use the subgroup keys for the communication inside
the subgroup, if the members of the subgroup shares some special interest (e.g. a company
is a group and a department is its subgroup). However, in the following, we assume the
subgroup is purely for the delivery of the group keys.

Let U, be the n-th participant of the group, 7, be the join (arrival) time of the U,,
and 5, be the sojourn time of U, in the group. We assume the point process of the new
participant’s join is Poisson process with rate A. Also, assume the sojourn time S, has
independent and identical distribution F(z) = P[S, < z| with its mean E[S,] = 1/p.
There is no limit of the number of participants in the group.
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Remark 3.1 The assumption of Poisson arrival is not always valid for secure group com-
munications. In general, arrival processes highly depend on the contents. However, it is
known that the aggregation of independent rare events can be a Poisson process. So, if the
decision of joining and leaving the group is independent to other users, it is safe to assume
Poisson arrival. For example, Poisson arrival may be assumed for subscription to stored
information like music or videos, and membership service to reqular TV programs. Also, we
will discuss the possibility to extend our solution for general arrival cases (see Section 5).

We divide the group into N subgroups, (SG;)i=1,. . Let L;(t) be the number of members
of subgroup SG;, and L(t) be the number of the participants to the group at time ¢.

When a new participant joins the group, the participants will be assigned to a subgroup
with equal probability independent of any other event (Bernouilli trial). Thus, let J,, be the
index of the new participant U,, then we have

PLJ, =i} = P{U, € SG;} — % (3.1)

It is well-known that if we divide the Poisson process with Bernouilli trial, each stream
is also independent Poisson process ([11] P.69). Thus, the arrivals to each subgroup can
be regarded as the independent Poisson process with rate A/N, and L;(t) is the number
of customers at time ¢ of the M/G /oo queue with its service time distribution F'(z) (for
example, see [8]). The customers of this queueing system receive service immediately at the
arrival and leave the system when the service is finished.

In the equilibrium state, the steady state distribution of the number of members L;(t)
of the M/G /oo queue at arbitrary time is the Poisson distribution with mean A/(uN) [8].
Since the arrival rate to the subgroup SG; is A/N, we have

P{L(t) = n} = % (;%N) M W) (3.2)

Since the arrival stream to each subgroup is independent, {L;(¢)},=1. n has independent
and identical Poisson distribution.
The mean number of members in a subgroup is obtained by

E[L(1)] = Niﬂ (3:3)

and the mean number of participants to whole group is obtained by

4. The Number of Encryptions

We use the queueing model M/G /oo to estimate the number of encryptions.

Let G(t) be the group key and (SG(t), ..., SGn(t)) be the subgroup keys at time ¢. In
the following, we assume the functions G(t) and SG;(t) are right-continuous. Note that
G(t) has jumps at arrivals {7, } and departures {D,, = T;, + S, }. Also, the function SG;(t)
has jump at the arrival and departure of the subgroup.
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4.1. Leaving the group

Let us consider the case when a participant U, leaves the group at the time D,,. Since U,, has
been a member of SG,, two keys, the group key G(D,,—) and subgroup key SG, (D,—),
should be renewed. However, unlike the joining case shown in Section 4.2, U,, knows G(D,,—)
and SG, (D,—). So, we should follow the procedure below to renew the two keys.

1. The key server generates a new group key G(D,,) and a new subgroup key SG, (D).
2. The key server encrypts the new subgroup key with the public key O, of each member
in the subgroup SG,,

{(SGJn (Dn))Ok }kZl,...,LJn(Dn—‘,-))

and send them to each member who remains in the subgroup SG;, immediately after
the time D,,. Here, k is the index of members of SG;, at D, +.
3. The key server can use the subgroup keys to encrypt the new group key G(D,,),

{(G(Dn))sc; ) Yi=t,...N,

and send them to the each participants.

Letting A,, be the number of encryptions required for the leave of U,,, we have
A, =1Ly (D,+)+ N, (4.1)

where L;, (D,+) is the number of members of SG;, immediately after the leave of U,*. In
general, if we have M layers and NN, subgroups in the m-th layer, we have

M
Ay =Ly, (Dy=)+ Y N (4.2)
m=1
4.2. Joining the group

Let us assume a new participant U, joins the group at the time 7;, . Since U, joins a subgroup
SGy,, the group key G(T,,—) and the subgroup key SG, (T,,—) should be renewed at the
time 7), . Under the assumption that U,, does not know two key G(T,,—) and SG, (T,,—),
we can renew them according to the following procedure.

1. The key server generates a new group key G(7,,) and a new subgroup key SG (T,).
2. The key server encrypts the new group key with the old group key,

(G(T0)a, ),

and send it to the L(7,,—) participants who are already in the group just before the
arrival of U,,.
3. The key server encrypts the new subgroup key with the old subgroup key,

(8G1,(T))sa,, (1)

and send it to the L;(T,,—) members who are already in the subgroup just before the
arrival of U,,.

*When a customer leaves a subgroup and the subgroup becomes empty, we do not need to encrypt a new
group key with the subgroup key. However, for simplicity, we assume that the group key is encrypted with
the subgroup key even in such cases.
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4. The key server use the public key of U, to encrypt as

{(G(T))o,, (SG,. (Th))on }

and send it to U,,.

Let B,, be the number of encryptions at the join of U,. Then, we have
B, =4, (4.3)

which is independent of the number of subgroups and members.
In general, if we make more layers of sub-subgroups inside a subgroup, we have

B, = 2M, (4.4)

where M is the number of layers.
4.3. Optimal number of subgroups

Now we consider a problem to find the optimal number of subgroups, which minimizes the
mean number of encryptions.

From (4.3) and (4.1), we can see the number of encryptions depends on the number
of subgroups and the number of members to each subgroups. Especially, the number of
encryptions at the join is constant, so it is sufficient to estimate the one for the leave to get
the optimal number of subgroups. Thus, we will find the number of subgroups N™", which
minimizes the mean number of encryptions at the n-th leave, E[A,]. Note that A, is the
burst workload and critical performance index for the key server.

From (4.1), the expectation of A,, can be obtained by

E[A,) = N + E[L;,(Dy+)]. (4.5)

It is well-known in the queueing theory that if a system allows only discontinuous changes
of size (plus or minus) one at the arrival and departure, then the probability distribution of

the number of customers in the system seen by the arrivals is equal to the one left behind
by departure (see [8], P176). Thus,

P[Ly (Dy+) = k| = P[L, (T,—) = k. (4.6)

Further more, by Poisson Arrivals See Time Average (PASTA)([14] p.294), Poisson arrivals
see the same distribution of the number of customers in the system at arbitrary time, i.e.,

PIL(t) = k] = P[Ly,(To—) = kI. (4.7)

Thus, by (3.2), P[L,,(D,+) = k] is also Poisson distribution and its mean is obtained by
A/(Np). Hence, we have

E[A,] = N + Niﬂ (4.8)

By a simple calculation, we can minimize E[A,] when N = (\/u)'/2.

number of subgroups can be obtained by

So, the optimal

min __ i 1/2_ 1/2
v (2) = ) (19)
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Thus, the optimal number of the subgroups is the square root of the expected number of
the participant to the whole group.

In addition, from (4.1) and the fact that P[L;, (D,+) = k] is also Poisson distribution,
we can obtain the distribution of the number of encryptions by

P[AY™ = k] = P[L]™(t) = k — N™"]
[ OVu)1/2}/2
_ ! A T e (4.10)
{k— (/w23 \ ’

for k> N™" = (\/p)'/2. Also, the mean optimal number of encryptions is

E[A7™) = 2B[L(1)))". (4.11)
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Figure 1: Log plot of the mean number of encryptions vs the number of participants: the
upper line is the case of no subgroup, while the lower line is the case of the optimal number
of subgroups.

Here in Figure 1, we compare the no-subgroup model and the optimal subgroup model.
We can see the clear advantage of the subgroup model in terms of the number of encryptions.
Since the mean number C' of encryptions in a unit interval is given by

C = \NE[A,] + E[B,]) = ME[A,)] +4), (4.12)
we have the optimal mean number of encryptions in a unit time C™" as

Cmin — \(E[A™"] 4 4)
= A2E[L(1)]Y? + 4). (4.13)

Finally, consider the group has M layers of subgroups. Let N be the optimal number
of subgroups in i-th layer. We can easily obtain the optimal number,

min __ - min __ i 1/M_ 1/M
N — = NT _(“) — (E[L())™M. (4.14)
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Remark 4.1 In general, the encryption workload using public keys is longer than the one
using secret keys. Set the encryption time using secret key to be a unit time, and the
encryption time using public key to be ae. Then, as similar to (4.8), we have

A
EW,|=N —, 4.15
W) = N o (4.15)
where W, is the workload required for the encryptions at the leave. Thus, the optimal number
of subgroups to minimize the total workload can be obtained by

min __ Oé_>\ Y2 - 1/2
N — (H ) — (aE[L()])V2. (4.16)

5. General Arrival Processes

In the previous sections, we obtained the optimal number of subgroups assuming Poisson
arrival of users. In this section, we discuss the possibility of extension of our result to more
general arrival processes. Since L(D,+) = Zf\il L;(D,+), and the subgroup to be joined is
determined independently to anything else, we have

E|L(D,+
Thus, for general arrivals, the optimal condition (4.9) can be replaced by
N — (B[L(Dy))) 2 (5.2)

Hence, to show that (4.9) still works for general arrivals, we need to estimate the difference
between the event average E[L(D,+)] and the time average E|[L(t)] for general arrival
processes. More precisely, let A™" be the number of encryptions for the optimal case
N = E[L(D,+)]"/?, and let A” be the number of encryptions when we set N = E[L(t)]'/2.
We will show the relative difference between A™" and A” can be small for the large group,
ie.,

E[A"] - BLA™
E[A™]

— 0, as E[L(t)] — oo. (5.3)

Since E[AT] = E[L(t)]*/? + E[L(D,+)]/E[L(t)]"? and E[A™"] = 2E[L(D,+)]"/?, we have

E[AP] — E[A™")  {E[L(1)]"? — BIL(D,+)]"/?}’
E[Amin] ~ T 2B[L(Dn )] 2E[L(D)]2

(5.4)

Now, recall the definition of the (conditional) stochastic intensity of point processes [9].
Let T}, be the time of n-th join and A(¢) be the number of joins in (0, ¢], then the stochastic
intensity of A(t) given L(t) is defined by

A(H) = lim E[A(t+5) — AQILE-)] _ . PIAR+s) — A®) = 1 L{t-)]

s—0 S s—0 S

(5.5)

Intuitively, A(¢) is the stochastic intensity conditioned by the number of users in the group
just before arrivals. Note that the ordinary stochastic intensity is defined to be conditioned
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by the history of system up to t, F; = o(L(s—), A(s); s < t) [1], but the above definition is
sufficient for our purpose. By using the heuristic argument similar to [7], for a small s

E [L(t—)l{A(t,t+s]=1}:|
PlA(t,t+ s] = 1]

_ E [L(t—)E[l{A(t,tJrs]:l}|L(t_m

PlA(t, t+s] =1]

EL{t-)|A(t, t+s]=1] =

Letting s — 0 on both sides, we have
(5.6)

where A = E[A(1)] = E[A(1)] is the intensity of A(t). The equation (5.6) is known to
be Papangelou’s formula [1,7]. Using (5.6), we can obtain the so-called cross-covariance
equation [9, 10];
A(t)
E[L(T,—)] — E[L(t)] = Cov | L(t—), —~ | (5.7)
Note that (5.7) holds for all processes which has the stochastic intensity.

Now, we consider the reverse process. Let D(t) be the left-continuous counting process
of leaves, i.e. the number of leaves during [0,%). By reversing the sample path of process
L(t), the leaves of original process are considered to be joins to the reversed process. Define
the reversed stochastic intensity Ap(t) of D(t) by

E[D(t) — D(t — s)|L(t
Ap(t) = lim 1D®) (t = 5)IL( +)] (5.8)

s—0 S

Intuitively, Ap(t) can be regarded as the stochastic intensity conditioned by the number of
users left behind at the leave. Then by using (5.7) for this reversed process, we have

E[L(D,+)] — E[L(t)] = Cov {L(H—), ADA@)] : (5.9)

since E[D(1)] = E[A(1)] = X for stationary systems. For simplicity, let L = E[L(t)] and
C = Cov[L(t+), Ap(t)/A]. Then, by using (5.9), we can rewrite (5.4) as

E[A] - BlA™"] _ {1-(1+0/L)*}

1
E[Amin 211 C/L)\/2 (5.10)
Since in general |Cov(X,Y)| < Var[X]/?Var[Y]"/?, we have
L 1/2
IC/L| < MVW[AD@)/A]”{ (5.11)

where we used the fact Var[L(t+)] = Var[L(t)]. Note that the second term Ap(t)/\ has
already been normalized and stable relative to L, so the first term should be estimated.
Now we assume the following;

Var[L(t)]'/?
L
This assumption is valid if there is some kind of independence among the users in the group.
For example, when the group is consisted by M independent subgroups, then we can show
(5.12) by taking M — oco. Under the assumption (5.12), using the fact C/L — 0 as L — oo
in (5.10), we can obtain (5.3).

— 0 as L — oo. (5.12)
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Remark 5.1 Even for a small group, if the covariance appeared on the right hand side of
(5.9) is equal to O or at least sufficiently small, then (4.9) is a good engineering solution.
This can be attained by the following cases;

1. A group with frequent joins and leaves, which results a large \ and small (5.9).

2. If the arrival process is simple and the sojourn time of each user is independent, then
E[L(D,+)] = E[L(T,—)], and we have Cov[L(0—),A(0)] = Cov[L(0+),Ap(0)]. In
this case, when the arrival stream is stable relative to L(t), then we have a small
Cov[L(0—),A(0)/A]. The condition Cov[L(0—),\(0)] = 0 is known to be the lack of
bias assumption (LBA), and is intensively studied to find the processes with LBA in the
context of ASTA (arrivals see time-average) [3, 4, 7, 9, 10].

6. Numerical Example

Let us consider the pay TV on the internet for an example. Suppose we can expect the
mean number of the participants is 10,000. Assume each participants will remain the group
30 minutes on the average. Thus, we have = 1/30, A = pE[L] = 1000/3 for the M/G /oo
queue. By (4.9), we can estimate the optimal number of subgroups,

N™™ = 100002 = 100. (6.1)

As described in the previous section, the expected number of encryptions at the leave
E[A™"] which corresponds the burst workload for the key server, can be obtained by

E[A™™] = 200. (6.2)
By (4.13), the average encryption rate C™" is

1000
Ot = == (2100 + 4)

= 68000. (6.3)

We summarize the result of the optimal case and compare it with the cases of the non-
optimal number of subgroups in Table 2. As you see in Table 2, for the large group such as
the multicast group of the size 10,000, the number of the subgroup has the great significance
in terms of the performance of the key server.

Next, we will show the advantage of our optimal solution in the sense of distribution of
the number of encryptions as well as its mean. Since the number of encryptions for non-
optimal cases is also Poisson distribution as discussed in Section 4.3, we can compare the
distribution among the different number of subgroups. In Figure 2, we show the distribution
of optimal solution and non-optimal cases. Of course, there is a chance to have a large
number of encryptions in the optimal case, but as you can see in the Figure 2 the large
number of encryption happens less likely compared to the non-optimal cases.

7. Conclusion
Introducing the subgroup concept into the group communication such as Pay TV, we can
make a scalable secure group communication. Further, we showed that the number of sub-
groups should be the square root of the expected number of participants, since it minimizes
the number of encryptions at the key server.

Dynamic control of the subgroup and the efficient subgrouping considering network
topology might be the future work.
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Table 2: The number of encryptions

Number of SGs | E[A,] (leave) | C' (encryption rate)
No SG 10000 3334 x 103

10 1010 338 x 10°

100 200 68 x 103

1000 1010 338 x 10°

100

Prob
0.1

50

- —---200

o Encriptions

Figure 2: Probability distribution of the number of encryptions at the leave: Each line
corresponds to the different number of subgroups. The optimal solution is 100 in this case.
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