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Abstract  This paper studies a spatial duopoly model where customers are located at nodes and the demand
functions are given for each node. For any fixed location of two firms, we analyze Bertrand-Nash equilibrium
and derive a necessary and sufficient condition for the existence of equilibrium. We present an algorithm to
compute all equilibria, provided profit functions have a finite number of peaks. The algorithm terminates
within polynomial time if the number of peaks is polynomial in the number of nodes.
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1. Introduction

While the pricing is a key factor for a firm’s success in general, it renders an interesting
form of competition when the customers are spatially non-homogeneous. Examples include
access points for an Internet service provider, depots for a parcel delivery firm, branches for
a bank, etc., see Dewan et al. [3]. In this paper, we explore a price equilibrium problem in
a spatial competition model.

Since Hotelling, in his celebrated 1929 paper [9], presented the duopoly model, the
spatial competition model has been studied successfully in economics. Hotelling examines
the following duopoly model. The firms choose locations and compete in prices. The
customers are distributed uniformly on a line. They pay the linear transportation cost and
necessarily buy one unit of the product from the firm with the smallest sum of price and
transportation cost. He analyzes a Nash equilibrium in prices (Bertrand-Nash equilibrium)
given the fixed location of firms, and concludes that the equilibrium exists when firms locate
close to each other, known as the “Principle of Minimum Differentiation”. D’Aspremont
et al. [2] however show no Bertrand-Nash equilibrium exists in Hotelling’s original model
unless the locations of the firms are relatively far apart, and point out that his conclusion is
incorrect. Many extensions of Hotelling’s original model have arisen thereafter. Economides
[5] extends the duopoly model to a situation where customers are distributed uniformly on
a plane. He proves the existence of Bertrand-Nash equilibrium for all symmetric locations
of firms even if they are close to each other. Under more general distribution of customers’
location and demand, Thisse et al. [12] and Zhang and Teraoka [13] examine a spatial
duopoly model where the price discrimination is allowed. Other variations are explored by
Anderson [1] and Rath [11]. For the review of the literature, the readers are referred to
Gabszewicz et al. [6].

From the operational viewpoint, it is more important to obtain numerical solutions in
actual settings faced by firms while the economists analyze the basic mechanism of equilib-
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rium in relatively simple settings. A simple continuous model may yield various qualitative
results, however, a discrete model is often more appropriate to formulate a complex situ-
ation. Dobson and Karmarkar [4] study the problem of locating facilities on a network in
the presence of competition where customers are distributed at a finite number of nodes
and the demands of customers are constant. Marianov et al. [10] formulate a hub loca-
tion problem on a network in a competitive environment. Their works contribute to actual
decision-makings through the numerical analysis in discrete models.

In this paper, we examine the Hotelling duopoly model from the operational view. We
assume that customers are distributed discretely at n nodes on a plane and the demand
functions are given for each node. These assumptions are not only useful in calculations,
but they seem practical in many situations because cities are located discretely and unevenly
in the real world. Since Economides employs a continuous model, he obtains a result only for
a symmetric case. On the other hand, our discrete model enables us to obtain a necessary
and sufficient condition for the existence of Bertrand-Nash equilibrium in a general setting.
Furthermore we present an algorithm determining whether or not equilibrium exist and
finding all equilibrium prices of practical interest. Also obtained is the market area, that is
the set of nodes captured by each firm at equilibrium. In particular, if the number of peaks
in each profit function is polynomial in n, the algorithm terminates within polynomial time.

The remainder of this paper is organized as follows. Section 2 introduces our discrete
spatial duopoly model based on Hotelling’s original work, and formulates a Bertrand-Nash
equilibrium. Section 3 gives the necessary and sufficient condition for the existence of equi-
librium and the algorithm to compute equilibrium with an evaluation of the computational
complexity. In Section 4, we summarize our findings.

2. The Model

Consider two firms A and B providing a homogeneous service. They have nonnegative
constant marginal production costs c4 and cp, and choose pricing strategies t4 > c4 and
tg > cp, respectively. Customers are discretely located at nodes 1,2,...,n. For each node
ke N ={1,2,...,n}, let cka > 0 and cxp > 0 be transportation cost per customer.
Without loss of generality, let each node be numbered such that cip — ¢4 > cop — coa >
cov > cpp — Cna.t To exclude a trivial case, assume that there exists at least one node &’
such that cpa + ca # cwp + cp.

Let pr = pr(ta,tp) = min(cga+ta, ckp +tp) for node k. Customers’ demand at node k
is denoted by function gx(px). We make a reasonable assumption that g, is a nonnegative-
valued, continuous and nonincreasing function of py. In addition, we assume gy (cxa+ca) > 0
and qx(ckp + cg) > 0. Given t4 and tp, we define the market areas of firms A and B as
follows:

Qata,tp) ={klcka +ta < cxp +1tp},
Qp(ta,tp) ={klcka +ta > ckp +tp},
Qap(ta,tp) ={k|lcka +ta =ckp +tp}.

Firm A captures all customers located at node k € Q(ta,tp) and firm B captures all
customers at node k € Qp(ta,tp). We assume that firms A and B share customers located
at node k € Qap(ta,tp) at the ratio of a : 1 — a, where 0 < o < 1. With these notations,
the profit functions of A and B are:

*If nodes have the same value of cxp — cx 4, we aggregate the corresponding demands.
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Ta(ta,tp) = (ta —ca) { Z qr(cra +ta) + Z qr(Cra + tA)} )

k€Qa(ta,tn) k€Qap(ta,tB)

m5(ta,tp) = (tp — cB) { S qulas+its)+(1—a) > qr(crp + tB)} .

keQp(ta,tp) k€Qap(ta,tp)

Definition 2.1 The Bertrand-Nash equilibrium (t%,t5) for ma and 7w is defined as follows:

ma(th,ty) > ma(ta,ty), for allta € [ca, o), and
mp(th, th) > ma(thy, tp), for alltp € [cp,0).

We now give two examples:

Example 1. Let n = 2. Figure 1 describes locations of firms and customers. Circles
correspond to firms and squares correspond to customers. Transportation costs between
firm and customer are described in the figure. Let ¢4 = ¢ = 1. We consider the Bertrand-
Nash equilibrium regarding the following two cases. Since the procedures to obtain equilibria
are involved, we here show only an outline and relegate the details in Section 3.2.

A B

Cia=Cos= 2
CiB=Coa= 3

18 B2

Figure 1: Example 1

Example 1(a). The demand function at node k is given by qi(px) = max(—pi + 4,0).
Then (t%,t3;) = (1.5,1.5) is a unique equilibrium, where Q 4(t%,t};) = {1}, @s(th, t5) = {2}
and Qap(t%,t5) = 0. This result is obtained as follows:

First, we necessarily have Qa(ta,tp) = {1} and Qp(ta,ts) = {2} for an equilibrium
(ta,tp), since otherwise one of the firms who captures no customer (say firm A) can increase
his profit by charging t4 — ¢ appropriately, a contradiction. In a similar manner, we have
that (t%,t5) = (1.5,1.5), a pair of a unique maximal point of (t4—ca)q1(c14+1t4) and that of
(tg —cB)qa2(cap +1t5), is the only candidate for the equilibrium. Finally, given t = 1.5, firm
A maximizes his profit m4 at t%, = 1.5 and firm B vice versa. Therefore (t%,t5) = (1.5,1.5)
is a unique equilibrium.

Example 1(b). The demand function at node k is given by gqx(pr) = max(—px + 20,0).
There exists no equilibrium in this case. This result is obtained as follows:

Following an argument similar to Example 1(a), a point (t%,t5) = (9.5,9.5) is the only
candidate for the equilibrium. However, we have 74(8.5,9.5) = 135 > 72.25 = m4(9.5,9.5).
Hence this point is not an equilibrium and there exists no equilibrium in this case.
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A O = 4. C1A=20 C18=50
Coa=10 C28=36
Csa= 8 C3s=30
Csa=30 C4s=10
Csa=36 Css=10
= Cor=46 Cea—16
6 Ca=40 Cm= 6

Figure 2: Example 2

As seen in this example, an equilibrium does not necessarily exist even in a simple setting.
Example 2. Let n = 7. Figure 2 describes locations of firms and customers. Transporta-
tion costs between firm and customer are described in the figure. Let ¢4 = ¢g = 0. The
demand function at node k is given by

—pe+60  : 0<pp <36
ae(pe) = —3pu+42 : 36 < pj < 42

In this case, (t%,t5) = (35.7,36.8) is a unique equilibrium, where Q4(t%,t5) = {1, 2,3},
Qu(th, th) = {4,5,6,7} and Qup(th, t3) = 0.

This result can be obtained by examining all candidates for the equilibria as in Example
1. Since the process is lengthy, we describe it in Section 3.2.

3. The Bertrand-Nash Equilibrium
3.1. The equilibrium condition

Given tp, let t(tg) = cxp — cxa +tp (k = 1,...,n). Define t%(t4) similarly. Note that
th(tg) > --- > th(tp) and th(ta) < --- < th(ta). Let i*(tg) = max{i|t4(tp) > ca}
and j*(t4) = min{j|t,(t4) > cp}. Unless ambiguity arises, we denote them hereafter as
tyy, t), i*, and j*. We obtain the following propositions.

Proposition 3.1 Lettq > cyq and tg > cg. The market is shared by the firms as in Table
1.

Proof 1.(a): It is immediate that ty < cq <ty =cip —cia+tp<caforalli=1,... n.
Hence t4 < ca & Qa(ta,tg) =0 and Qp(ta,tp) = N.

1.(b): ca < th < Ez S ta < 15734 = cip —cia+tg foralli < i*and ty > cq >ty =
cip — cia + tp for all i > i* by definition of i*. Hence, ca < t4 < 4y & Qual(ta,tp) =
{1, ce ,i*}, QB(tAafB) = {’L* + 1, ce ,n} and QAB(tA,tB) = @

L.(c): ca <ta= ti; for some i* > i > 2 &ty = cyp —cypa +1ip, ta < Cig — Cia + tB
fori = 1,...,¢/ —1and t4 > ¢ip —ca+tp fori = ¢ +1,...,n. Hence, cy < ty =
ff}; for some ¢’ such that i* > i/ > 2 < Qua(ta,ts) = {1,...,¢ — 1}, Qap(ta,tp) =
{i/}, and QB(tA,tB) = {’i/ + 1, ce ,n}.

1.(d)-2.(f): Similar to the above and omitted. Q.E.D.
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Table 1: The market areas of A and B

29

No. The relation between t4 and tp Qa(ta,tp) Qap(ta,tp) Qp(ta,tp)
1.(&) tjA < cyg @ @ N
1.(b) ca <ta <ty {1,...,1*} 0 {i* +1,...,n}
1.(c) ca <tg=14 {1,...,i -1} {i"} {i' +1,...,n}
for some ¢’ s.t. * >4 > 2
1.(d) ca ST <tq <ty {1,....7 —1} 0 {i,....n}
for some ' s.t. * >4 > 2

1.(6) CAStA:ﬂ @ {1} {2,...,n}
1.(f) ca < EL‘ <ty 0 0 N
2.(&) {% < Cp N @ @
2.(b) cp <tp <ty {1,...,5*—1} 0 {j*,...,n}
2.(c) cp <tp=1 (1,...,5 —1} ('} (' +1, }

for some 5/ s.t. j* <7 <n-—1
2.(d) cp <y <tp <t {1,...,5} 0 {j' +1, }

for some j' s.t. j* < j/ ' <n-—-1
2.(e) cg <tp =1} {1,...,n—1} {n} 0
Q(f) cg < {% <tp N @ @
We now define the following single-variable functions:

—ZfritA 1=1,...,n,
k=1
Zﬁ% (t), j=1,....n,
where
ﬁi(tA)Z (tA—CA)qk(CkA—FtA), k=1,....,n,
ﬁk(tB): (tB—cB)qk(ckB+tB), k= 1,...,n

By 1.(a) and 2.(a) in Proposition 3.1, if Y < c4 then w4(ta,t5) = 0 for all t4 > ca.
Similarly if % < cp then mp(ta,t5) = 0 for all t5 > cg. We now assume that ¢} > c4 and
Then, from 1.(b)—(f) and 2.(b)—(f) in Proposition 3.1 we can rewrite ma(ta,t5)
and mp(ta,tp) as the following piecewise continuous functions (see Figure 3):

E% Z CB.

(
Ta(ta,tp) = U 1(tA)
(

; (i)
mB(ta, tp) = WJJB+1(tBZ

CAStA<lTZ

tA_f,i>¢>2

ty <ta<ty', i*>i>2 (1)
tA—tj
tA>E4,
CB<tB<Ej*
(tp) tB—t 77<35<n—-1
tj<t<yHM7§j§n—l (2)

tp = t"
tp > {%
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Figure 3: ma(ta,tp) for given t5 (n =4 and i*(tp) = 3)

Note that m4(ta,t5) and 75(ta, tg) are discontinuous at &% and #, respectively.

Next, we define peaks of 7%y and 7%.
Definition 3.1 The point # is a peak of 7, (h = A, B, i =1,...,n) if 7} (f) > 0 and there
exists d > 0 such that 7} (£) > i (t) for all t € (t — 6, t +0).

Let T4 and T% (i = 1,...,n) be the sets of peaks of 7y and 7%, respectively. We define
iy, and 7}, as follows:

P maX{WZ(tA” cA <ty < Eg (tB)'} o1 =1F

Ats T max{r(ta)| 5 te) <ta < ty(t)} : iF—1>i>1,
[ e cn <t < B} ¢ =g

Bin =\ max{h(to)| By (1) < tn < Balta)} © 7 41<j<n

We are ready to state a necessary and sufficient condition for the existence of Bertrand-
Nash equilibrium in our model.
Theorem 3.1
1. If A and B are located at the same point and ca = cp = c, then t%y = t;; = c is the
unique equilibrium.
2. Otherwise, (t%, t3) is an equilibrium iff (%, t3) satisfies one of conditions (a)—(c).
(a) 1. QA(tip CB) = N7 and QB(tip CB) = (D}
it e T,
iii. 7% (t%) = max (ﬁi’t%, e T )-
(b) i Qualea,ty) =10, and Qp(ca,t}y) = N,
ii. th e T,
iii. m5(t5) = max (Th s - -, ﬁ%,tg)'
(¢) 1 Qa(th,ty) = {1,...,1}, and Qp(ti,ty) = {{+1,...,n} (I < n-—1), and
Qan(thy, 1) =0,

(© Operations Research Society of Japan JORSJ (2004) 47-1
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ii. t* € TY and t € T,
(4% —1 i I+1 %\ —j* —n
i my () = max (T, ..., Ty, ) and mg (tp) = max (Tg,-, ..., T, ).

Proof Statement 1 is obvious. We first assume that (¢%, t3;) satisfies condition (a).
Since Q4(t%,cp) = N implies that cxa + t% < cxp + tp for any tp > cp, wp(th,tg) =
mp(th,t5) = 0 for any tp > cp. On the other hand, it follows from (1) that ma(t%,t};) =

max (777,14,@3» e ﬁﬁ,t%) = supma(ta,ty). We therefore have (t%,t3;) is an equilibrium. We
ta
can show that condition (b) or (c) implies (%, t3;) is an equilibrium in a similar manner and

omit the proof.

Next, we suppose that (t%,t5) is an equilibrium and Q 45 (t%, t5;) = {i'}. We furthermore
suppose t% = ca and t}; = cp. From the assumption, there exists k' such that cya + ca #
cw+cp. Without loss of generality, we assume ¢4 +c4 < ¢+ cp. Since g is continuous
and gp(cpa + ca) > 0, firm A can increase his profit from ma(ca,cg) = 0 by charging
ta = ca+ ¢ such that t4 < cpp + cg — cwa. Thus, it contradicts (t%,t5) = (ca, c) being
an equilibrium. Hence t% > c4 or t3; > cp. Without loss of generality, we suppose t% > ca.
Since t% = 1% (t%), firm A can capture customers at i’ by charging t* — ¢ and can increase
his profit, a contradiction. Hence Qap(t%,t;) = 0. We now assume Q4 (t%,t};) = N. Since
mp(th,t5) = 0 and (t%,t5) is an equilibrium, we have wg(t%,t5) = 0 for all t5 > cp, which
implies Qa(t%,tp) = N for all t5 > cp. Hence, (a)-i holds and this implies i* = n. Then
we have ¢y < t% < t4(t%) by 1.(b) in Proposition 3.1. Since ma(ta,t5) = 7% (t4) for any
ca < ta < t4(ty) from (1), wa(th,ty) = 7%(t%) also holds. Note that t* > ca, since
otherwise firm A can increase his profit. Furthermore, ¢, € T}, since otherwise firm A can
increase his profit by charging t* + ¢ or t%, — ¢ appropriately. Hence (a)-ii holds. We next

show (a)-iii holds. We have max (777,14,@3» oo Thgy) = supma(ta,tp) = ma(thy, tp). On the
ta

other hand, ma(t%,t5) > max (777,14,@3» e ,ﬁﬁ,t%), since otherwise there exists t4 such that

TA(t, 1) < Ta(ta,ty) < max (777,14,@3» .-,y ), which contradicts the fact that (¢}, ¢}) is

an equilibrium. Hence, m4(t%,t5) = 7% (t%) = max (ﬁi‘,t%, Ce ﬁﬁ’t%).

The statement (b) is symmetric to (a). The case (c) follows from 1.(b), 1.(d) and 2.(b),
2.(d) in Proposition 3.1. Q.E.D.

Theorem 3.1 describes the properties which an equilibrium satisfies. The equilibrium
(t%,t5) is a point such that: (1) Qap(th,ty) = 0, that is, ¢ # t)4(t5) and t # t(t%),
(ii) t% and t}; are peaks of m4(ta,ty) and 7wp(th, t5) respectively, and (iii) % and t}; attain
the maximum values of m4(ta,t%) and (%, ts) respectively (see Figure 4). Note that we
require fairly weak assumptions regarding a demand function, as described in Section 2. We
develop an algorithm for finding all equilibria (if any) based on Theorem 3.1.

3.2. The algorithm of finding equilibrium points

In this section, we present an algorithm to find equilibrium points. We assume that 7%
and T% (i = 1,...,n) are known and finite. Our algorithm can determine the existence of
equilibrium and find all equilibria in which each firm earns a positive profit. Furthermore,
not only the equilibrium prices but also market areas of both firms at each equilibrium are
determined simultaneously.

The following notation is useful to describe the algorithm:

Thy, ={t e TH £ (tp) <t <Ey(tp)} for i=1,....7",

where 4t (t) = ca. Define T fé}t , similarly.

Our algorithm is presented as follows:

(© Operations Research Society of Japan JORSJ (2004) 47-1
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1 Not B(E)
T A(ta, t8) - Peak
. rr][aan(tA, te")
; [ | £ | U e ,
tlts) & ()= taty) tlts) talts) ta

Figure 4: Equilibrium point (¢%,t};) (n = 4 and i*(tg) = 3)

FINDEQ
Step 0 E = 0.
Step 1
1. Foralli=1,...,n,let t4 = c;p — cia + cp.

2. Construct T, forall 1 <i <n.
3. (Check 2.(a)-i and iii in Theorem 3.1) For each £, € T,
if tga <cpp—cpa+cp, and
Th(ta) = max{my(t)| t € T, ort =1},
then add ((£4,cp), (IV,0)) to E.
4. If E = (), then go to Step 2. Otherwise, go to Step 4.
Step 2
1. Forallj=1,...,n,let th = cja — CjB + Ca.
2. Construct Tj’B’CA forall 1 <j<n.
3. (Check 2.(b)-i and iii in Theorem 3.1) For each t5 € T},
if tp < c1a— i+ c4, and
mh(tn) = max {r}(t)| t € Tp,, or t =3},
then add ((ca,t5), (0, N)) to E.
4. If E = (), then go to Step 3. Otherwise, go to Step 4.
Step 3 Forall (f4,t5) € Ty x T5', 1=1,...,n—1, do Steps 3-1 to 3-4.
1. Foralli=1,...,nand j=1,...,n,
let ty := ¢;3 — cia + g and 1% := cja — ¢+ ta
2. Let ¢* := max{i|ty, > ca}, j* := min{j|t}; > cp} and
construct TQ’EB for all 4 < i* and T;,EA for all j* < j.

(© Operations Research Society of Japan JORSJ (2004) 47-1
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3. (Check 2.(c)-i in Theorem 3.1)
If t571 <ta <ty and thy < ip <5t
then go to Step 3-4. Otherwise, skip Step 3-4.
4. (Check 2.(c)-iii in Theorem 3.1)
If 7y (ta) = lrg%{wg(tﬂ te T/i;,f ort =14} and

l+1 _ j j o
(t5) = jp%?%cn{wB(t)l tely,; ort= thl,

then add ((ta,t5), ({1,...,1},{l+1,...,n})) to E.
Step 4 All elements of E are equilibrium points, each representing both prices and the
market areas of each A and B. If E = (), there exists no equilibrium in our model.

The flow chart of FINDEQ is described in Figure 5. We note that Theorem 3.1 implies
that an equilibrium arises only in 7% x T% for some i and j. In condition 2.(a)-iii in
Theorem 3.1, max (., ..., T4, ) can be attained at either a peak or at some #;. This
fact is employed in Step 1-3. Step 2 is symmetric to Step 1. Steps 3-3 and 3-4 check the
equilibrium condition 2.(c¢) in Theorem 3.1 for each possible market segmentation. Equilibria
not obtained by FINDEQ are trivial ones. For example, when the condition 2.(a) is
satisfied, (t%,t;) is an equilibrium for all ¢ with cp <ty < t5.

In what follows, we describe how the equilibria in Section 2 are obtained.

Example 1(a). We have T} = {t,} = {1 5}, T2 = {t4} = {1.25}, T} = {tp} = {1.25}
and T3 = {t5;} = {1.5}. We first calculate £}y = 2 and 3 = 0 in Step 1-1. Since {4, >0, E
remains ) at the end of Step 1-3. Similarily, £ remains () at the end of Step 2. In Step 3,

it is sufficient to check only (#%,t%) = (1.5,1.5) € T} x T3. We have i* = 1 and j* = 2. Tt
can be dlrectly constructed that TAt = {tA} TAt =0, TBt = () and TBt = {t5}. The

value of 7% at each ), and peaks in T A (also the value of 75 at #%, and peaks in T' fgt )

are shown in Table 2, so that ((¢%,t5), ({1},{2})) is added to E from Table 2. Hence, it is
proved that (t%,t5) is the unique equilibrium.

Table 2: The values of 7% (t4) and 7%(tg) corresponding to Example 1(a).

ta ta=tyoriac fo,tg my(ta) | tp tp=Ttportp € Th, 75(ts)
L5 th € Thys 025 |15 ty €15, 0.25
2.5 th 0 |25 2 0

Table 3: The values of 7 (t4) and 7% (tp) corresponding to Example 1(b).

ta ta=tyorta€Th,. wy(ta)| tp tp=tportg € T mp(ts)
8.5 4 135 | 85 th 135

9.5 th € Thy 72.25 | 9.5 th € T 72.25
10.5 th 71.25 | 10.5 % 71.25

Example 1(b). We have T} = {t%} = {9.5}, T5 = {9.25}, T} = {9.25} and T3 =
{t3} = {9.5}. As in Example 1(a), there is only one candidate for equilibria, that is,
(t%,t5) = (9.5,9.5) € T} x TA. However, it follows that 7%(t%) > 74(¢%) from Table 3.
Therefore (t%,t5) is not an equilibrium, that is, there exists no equilibrium in this example.
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Figure 5: The flow chart of FINDEQ
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END
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Example 2. In this example, the sets of peaks are as follows: T} = {32}, T3 = {34.5},
T3 = {357}, T4 = {335}, T3 = {31.6}, TS = {25.5,27.3,20.5}, T = {25.1,26.6,28.4},
TL — {25.6,26.8,30.7}, T3 — {33}, T3 — {34.8)}, T4 = {36.8), T = {36.7}, TS —
{29.3,36.5} and T§ = {27,29}. Tt is verified that £ = () at the end of Step 1 and Step 2.
In Step 3, we need check each pair of peaks which belongs to T4 x Th5™. We can now verify
that only (t%,t%) = (35.7,36.8) € T3 x T4 is added to E from Table 4. Hence, it is proved
that (t%,t%) is the unique equilibrium.

Table 4: The values of 7 (t4) and 7% (t5) corresponding to Example 2.

ta ta=tyorta€Th,. wy(ta)| tp tp=tportg € T mp(ts)
1.5 t 343.1 | 5.7 th 1338.4
5.5 5 1029.9 | 9.7 4 1944.9
9.5 5, 1472.5 | 13.7 t 2100.9
16.8 th 1858.1 | 36.8 tp € Ty 2701.1
35.7 th € Thye 1908.2 | 55.7 th 1982.9
58.8 5 1105.4 | 61.7 % 1076.7
62.8 4 389.4 | 65.7 % 479.6
66.8 th 0 69.7 th 289.3

3.3. The computational complexity of FINDEQ

In this section, we evaluate the computational complexity of FINDEQ. Informally speaking,
the “time complexity” of an algorithm is the maximum amount of time necessary for the
algorithm to solve a problem instance of a specific size. A “polynomial algorithm” is the one
whose time complexity is bounded by a polynomial function of the problem size. If the time
complexity is not bounded by any polynomial function, then it is called an “exponential
algorithm”. As one may imagine, an exponential time algorithm is virtually intractable if
the problem size is even modestly large. For more rigorous treatment for the topics, the
readers are referred to the classic [7].

We now show that if the numbers of peaks |T%| and |T| are polynomial in n, within
polynomial time FINDEQ can determine the existence of equilibrium and find all equilibria
in which both firms earn a positive profit. Before we state this result as a theorem, we
formally define some terms used in the theorem as follows:

Definition 3.2 Let f(n) and g(n) be any functions. Then f(n) is O(g(n)) if there exists
a constant ¢ such that |f(n)| < c|g(n)| for all values of n > 0.

Definition 3.3 Let p be any positive number. An algorithm can solve a problem within
polynomial time if the time complexity of the algorithm is O(n?).

Now, we are ready to state our main theorem.

Theorem 3.2 If TY and T are known and the numbers of peaks |T%| and |T%| are poly-
nomial in n for v = 1,...,n, we can determine within polynomial time the existence of
equilibrium and find all equilibrium prices in which both A and B earn a positive profit. The
market areas of each firm at each equilibrium are also determined simultaneously.

Proof Suppose that |T%| and |T| are polynomial in n, that is, O(n?) for i = 1,..., n.

Stepl-3 requires at most |77 iterations and each iteration involves a comparison of at most
n

> |T%] values. Hence the complexity of Step 1 is O(n? x (n x n?)) = O(n?**!). Similarly,

i=1

(© Operations Research Society of Japan JORSJ (2004) 47-1
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n—1

Step 2 can be performed in O(n?*!) time. Finally, Step 3 requires at most > _ (|| x |T5™|)
=1

iterations, which is the complexity of O(n x n?P). Each iteration involves comparisons of at

most Y (|74 + 1) + > (JT%| + 1) values which take O(n x n?) time. Thus Step 3 can be
i=1 i=3"
performed in O(n**2) time. Q.E.D.

The condition regarding the number of peaks is satisfied for a wide class of demand
functions. In particular, if ¢ is given by qi(pr) = max(q',(pk),0) where ¢/, is strictly
decreasing and concave, then each 7, and 7% are quasi-concave functions which are single-
peaked and thus |T| and |T| are less than n.

4. Concluding Remarks

In this paper we explore a spatial duopoly model which is an extension of Hotelling [9].
We assume that customers are discretely distributed at nodes and the demand functions are
given for each node, while Economides [5] assumes that customers are uniformly distributed.
A necessary and sufficient condition for the existence of Bertrand-Nash equilibrium is de-
rived, and the polynomial time algorithm to compute all equilibrium points is presented for
a wider class of demand functions. Economides analyzes Bertrand-Nash equilibrium only
for a symmetric location of firms, which is a convenient assumption reducing analytical
difficulties. Our discrete model solves these difficulties and succeeds in obtaining results for
more general settings.

Generally speaking, it is not easy to determine an existence of Nash equilibrium and
compute the equilibrium points. For example, given a finite two-person game in normal
form, it is not necessarily possible to determine within polynomial time whether there exists
a unique Nash equilibrium in the game, see [8]. Our algorithm solves both problems at
the same time in polynomial time. This fact has a significant implication that the players
themselves can easily determine a rational price strategy in a discrete spatial duopoly setting.
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