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Abstract We consider a compound problem of the generalized minimum-cost flow problem and the
independent-flow problem, which we call the generalized independent-flow problem. The generalized minimum-
cost flow problem is to find a minimum-cost flow in a capacitated network with gains, where each arc flow
is multiplied by a gain factor when going through an arc. On the other hand, the independent-flow problem
due to Fujishige is to find a minimum-cost flow in a multiple-source multiple-sink capacitated network with
submodular constraints on the set of supply vectors on the source vertex set and on the set of demand
vectors on the sink vertex set. We present a polynomial-time algorithm for the generalized independent-
flow problem, based on Wayne’s algorithm for generalized minimum-cost flows and Fujishige’s algorithm
for independent flows, which can be regarded as an extension of Wallacher and Zimmermann’s submodular
flow algorithm.
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1. Introduction
The independent-flow problem originally developed by Fujishige [3] is a generalization of a
network flow problem in a capacitated network with a source vertex set and a sink vertex set
on which submodular constraints are imposed for supply vectors and demand vectors. Fu-
jishige [3] also described several theorems that algorithmically characterize optimal solutions
of this problem and proposed algorithms for solving the independent-flow problem.

It is known that the submodular flow problem due to Edmonds and Giles [2], and the
polymatroidal flow problem due to Hassin [7], and Lawler and Martel [9] are equivalent to
the independent-flow problem, and the class of these three problems is called the neoflow
problem in [4].

On the other hand, the generalized minimum-cost flow problem has been considered in
the literature (see, e.g., [12] and its references), which is a generalization of an ordinary
network flow problem in a capacitated network. For each arc a we have a positive multiplier
α(a) called a gain factor, and each unit of flow in an arc a leaving its initial-vertex reaches
its terminal-vertex with α(a) units.

In the present paper we generalize the independent-flow problem by considering a com-
pound problem of the independent-flow problem and the generalized minimum-cost flow
problem. We call this compound problem the generalized independent-flow problem.

Wayne [12] recently proposed a combinatorial polynomial-time algorithm for the gener-
alized minimum-cost flow problem. His algorithm consists of two phases, (1) the approxi-
mation phase and (2) the purification phase. The approximation phase repeatedly performs
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2 A. Eguchi, S. Fujishige, & T. Takabatake

canceling scaled minimum-ratio circuits and eventually computes an approximately good
generalized flow. Then, the purification phase, beginning with the obtained approximately
good solution, finds a generalized minimum-cost flow by canceling negative cost circuits.
Wayne’s approach was further extended to linear programming by McCormick and Shioura
[10].

Based on Wayne’s algorithm for generalized minimum-cost flows, we propose a polynomial-
time algorithm for generalized independent flows. Our algorithm also has the approximation
phase and the purification phase. We cancel scaled minimum ratio circuits to find an ap-
proximately optimal solution and then transform it into an optimal one. We need to develop
new techniques both in the approximation phase and the purification phase, which will be
described in Section 4.

Our algorithm can also easily be adapted to get a polynomial-time algorithm for the
generalized submodular flow problem, which can be regarded as an extension of Wallacher
and Zimmermann’s submodular flow algorithm [11].

The present paper is organized as follows. Section 2 gives definitions and notation
concerned with submodular systems and generalized network flows, and introduces several
preliminary results as lemmas. Section 3 describes the generalized independent-flow problem
and defines residual network for solving the problem. In Section 4 we propose an algorithm
for generalized independent flows and analyze its time-complexity.

2. Definitions and Preliminaries

In this section we give definitions and notation concerned with submodular systems and
generalized network flows, and preliminary results to be used in the subsequent sections.

We denote the set of reals by R and the set of nonnegative reals by R+. For any finite
set X we denote its cardinality by |X|.
2.1. Submodular systems

Let E be a nonempty finite set and D be a collection of subsets of E which forms a distribu-
tive lattice with set union and intersection as the lattice operations, join and meet, i.e., for
each X,Y ∈ D we have X ∪ Y,X ∩ Y ∈ D. For a distributive lattice D ⊆ 2E , a function
f :D → R satisfying the following system of inequalities is called a submodular function on
the distributive lattice D.

∀X, Y ∈ D : f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (2.1)

For a distributive lattice D ⊆ 2E with ∅, E ∈ D and a submodular function f :D → R with
f(∅) = 0, we call the pair (D, f) a submodular system on E, where note that E is a unique
maximal element of D. For more details about submodular functions and submodular
systems see [4].

For each nonempty X ⊆ E and x ∈ RE we define

x(X) =
∑
e∈X

x(e) (2.2)

and x(∅) = 0. We also define a polyhedron

B(f) = {x | x ∈ RE, ∀X ∈ D : x(X) ≤ f(X), x(E) = f(E)}, (2.3)

which is called the base polyhedron associated with submodular system (D, f). Each x ∈
B(f) is called a base of (D, f). For any base x of (D, f) and any e ∈ E we define

D(x) = {X | X ∈ D, x(X) = f(X)}, (2.4)

D(x, e) = {X | e ∈ X ∈ D(x)}, (2.5)
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The Generalized Independent-Flow Problem 3

which are sublattices of D. EachX ∈ D(x) is called a tight set for x or an x-tight set. Denote
the unique maximal element of D(x, e) by dep(x, e). The function dep : B(f)× E → 2E is
called the dependence function. Note that

dep(x, e) =
⋂
{X | e ∈ X ∈ D, x(X) = f(X)}, (2.6)

which can be rewritten as

dep(x, e) = {e′ | e′ ∈ E, ∃β > 0 : x+ β(χe − χe′) ∈ B(f)}, (2.7)

where χe is the unit vector with χe(e) = 1 and χe(e
′) = 0 for e′ ∈ E \ {e}. An ordered pair

(e, e′) such that e′ ∈ dep(x, e) \ {e} is called an exchangeable pair associated with base x.
For any x ∈ B(f), e ∈ E, and e′ ∈ dep(x, e) \ {e} define

c̃(x, e, e′) = max{β | β ∈ R, x+ β(χe − χe′) ∈ B(f)}, (2.8)

which is called the exchange capacity associated with x, e, and e′. Here, we define c̃(x, e, e′) =
+∞ if there exists an arbitrarily large β satisfying the condition in the right-hand side of
(2.8).

The exchange capacity is also expressed as

c̃(x, e, e′) = min{f (X)− x(X) | e ∈ X ∈ D, e′ /∈ X}, (2.9)

which is assumed to be equal to +∞ if there does not exist any X satisfying the condition
in the right-hand side. Note that for any β ∈ R such that 0 ≤ β ≤ c̃(x, e, e′) we have
x+ β(χe − χe′) ∈ B(f).

The following lemma is fundamental and will be used in the subsequent sections.

Lemma 2.1 ([11]): Suppose x, y ∈ B(f). Consider a bipartite graph G∗ = (X,Y ;C∗) with
end-vertex sets

X = E, Y = E ′ = {e′ | e ∈ E} (2.10)

and an arc set

C∗ = {(u, v′) | u, v ∈ E, u ∈ dep(x, v) \ {v}} ⊆ E × E ′, (2.11)

where v′ denotes a copy of v. A capacity c(u, v′) of each arc (u, v′) in C∗ is defined to be
equal to c̃(x, v, u). Then, there exists a flow ϕ : C∗ → R+ in network N = (G∗, c) satisfying
the capacity constraints and

ϕ(δ+u) = max{0, x(u)− y(u)} (u ∈ X), (2.12)

ϕ(δ−v′) = max{0, y(v)− x(v)} (v′ ∈ Y ), (2.13)

where δ+u = {(u, v′) | v′ ∈ Y, (u, v′) ∈ C∗} and δ−v′ = {(u, v′) | u ∈ X, (u, v′) ∈ C∗}.
A weaker version of Lemma 2.1 with infinite capacities for C∗ was given in [3].
A sequence of monotone increasing elements

C : S0 ⊂ S1 ⊂ · · · ⊂ Sk (2.14)

of D is called a chain of D. If there exists no chain that contains C as a proper subsequence,
then C is called a maximal chain of D. Note that for any maximal chain C given by (2.14)
we have S0 = ∅ and Sk = E. We also have the following lemma.
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Lemma 2.2: Any maximal chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk = E of D gives us a partition

Π(D) = {Si \ Si−1 | i = 1, 2, · · · , k} (2.15)

of E, which is independent of the choice of a maximal chain of D.
Consider a submodular system (D, f) on E and a nonempty subset F of E. Regarding

F as a new singleton eF , define E||F = (E \ F ) ∪ {eF}, a distributive lattice D||F by

D||F = {X | X ∈ D, X ∩ F = ∅} ∪ {(X \ F ) ∪ {eF} | X ∈ D, X ⊇ F}, (2.16)

and a submodular function f : D||F → R by

(f ||F )(X) =

{
f(X) if eF /∈ X
f((X \ {eF}) ∪ F ) if eF ∈ X (X ∈ D||F ). (2.17)

Then (D||F, f ||F ) is a submodular system on E||F , which we call the aggregation of (D, f)
by F . For any collection of disjoint subsets F1, F2, · · · , Fk of E we get a submodular system
by repeated aggregations of (D, f) by F1, F2, · · · , Fk, which is also called the aggregation of
(D, f) by {F1, F2, · · · , Fk}. It should be noted that the definition of aggregation given here
is slightly different from the original one given in [4].

2.2. Generalized circulations

Let G = (V,A) be a directed graph with a finite vertex set V and a finite arc set A. For any
arc a ∈ A we denote by ∂+a and ∂−a, respectively, the initial end-vertex and the terminal
end-vertex of a. Also, for any vertex v ∈ V denote by δ+v and δ−v, respectively, the set
of arcs leaving v and the set of arcs entering v, i.e., δ+v = {a | a ∈ A, ∂+a = v} and
δ−v = {a | a ∈ A, ∂−a = v}. We sometimes express an arc a as the ordered pair (∂+a, ∂−a)
of its initial and terminal end-vertices when there is no possibility of confusion.

A generalized network G = (G = (V,A), c, α) is a capacitated network with gains, where
G = (V,A) is its underlying directed graph, c : A → R+ a capacity function, and α : A →
R+ a positive gain function. Here, one unit of flow in an arc a leaving its initial end-vertex
∂+a becomes α(a) units of flow when it reaches its terminal end-vertex ∂−a.

A function ϕ : A → R+ is called a generalized circulation, or simply a circulation, in G
if it satisfies the following capacity constraints (2.18) and flow conservation law (2.19):

∀a ∈ A : 0 ≤ ϕ(a) ≤ c(a), (2.18)

∀v ∈ V : ∂ϕ(v) = 0, (2.19)

where the boundary ∂ϕ : V → R of flow ϕ in G is defined as

∂ϕ(v) =
∑

a∈δ+v

ϕ(a)−
∑

a∈δ−v

α(a)ϕ(a) (v ∈ V ). (2.20)

The gain of a cycle C is defined as the product of gain factors α(a) of arcs a lying on
cycle C , where a cycle is a directed elementary closed path in G. Denote the gain of cycle C
by α(C). A cycle C with α(C) = 1 is called a unit-gain cycle. A cycle C with α(C) > 1 is
called a flow-generating cycle and a cycle C with α(C) < 1 a flow-absorbing cycle. A bicycle
consists of a flow-generating cycle, a flow-absorbing cycle and a (possibly degenerate) path
from the first cycle to the second, where the flow-generating and flow-absorbing cycles may
have common arcs or vertices and we assume that the path connecting the two cycles does
not have a common vertex with the cycles except for its initial and terminal vertices. A
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circuit is a circulation in G that takes on positive values only on arcs of a unit-gain cycle or
a bicycle.

We have the following lemma (see Gondran and Minoux [6]) that any circulation is
decomposed into a collection of a small number of circuits.

Lemma 2.3: Let ϕ be a circulation in G. Then ϕ can be decomposed into circuits ψ1,
ψ2, · · · , ψk in G with k ≤ m as ϕ =

∑k
i=1 ψi such that for each i = 1, 2, · · · , k and a ∈ A,

ψi(a) > 0 implies ϕ(a) > 0.

3. The Generalized Independent-Flow Problem

In this section we describe the generalized independent-flow problem and give the definition
of residual network associated with a generalized independent flow. We also show two funda-
mental theorems: one relates two generalized independent flows and the other characterizes
optimal generalized independent flows, both in terms of residual network.

3.1. Problem description

Let G = (V,A;S+, S−) be a graph with an n-vertex set V , an m-arc set A, a set S+ ⊆ V
of entrances (or sources), and a set S− ⊆ V of exits (or sinks), where we assume that
S+ ∩ S− = ∅. Also, let c : A → R+ be a capacity function, α : A → R+ a positive
gain function, and γ : A → R a cost function. Moreover, let (D+, f+) and (D−, f−) be
submodular systems on S+ and S−, respectively. The dependence functions and exchange
capacity functions for submodular systems (D±, f±) are denoted by c̃± and dep±. Let us
denote by NGI = (G = (V,A;S+, S−), c, γ, α, (D+, f+), (D−, f−)) the network described
above.

Now, consider the following flow problem in NGI .

PGI : Minimize
∑
a∈A

γ(a)ϕ(a) (3.1)

subject to 0 ≤ ϕ(a) ≤ c(a) (a ∈ A), (3.2)

∂ϕ(v) = 0 (v ∈ V − (S+ ∪ S−)), (3.3)

∂+ϕ ∈ B(f+), (3.4)

∂−ϕ ∈ B(f−). (3.5)

Here ∂+ϕ is the restriction of ∂ϕ to S+ and ∂−ϕ is the restriction of −∂ϕ to S−, where
note that ∂ is the boundary operator in the underlying generalized network G = (G, c, α)
with gain function α. A function ϕ satisfying constraints (3.2)∼(3.5) is called a generalized
independent flow, or simply a feasible flow, in NGI . A generalized independent flow ϕ can
be regarded as a flow in the underlying generalized flow network G = (G, c, α) with entrance
vertex set S+ and exit vertex set S− whose supply vector ∂+ϕ and demand vector ∂−ϕ
are, respectively, bases of (D+, f+) and (D−, f−). We call Problem PGI described above a
generalized independent-flow problem and an optimal solution of PGI an optimal generalized
independent flow, or simply an optimal flow, in NGI .

We assume that we are given an initial feasible flow in NGI (see Appendix A). Hence,
without loss of generality we assume 0 ∈ B(f+) and 0 ∈ B(f−) so that ϕ = 0 is a feasible flow
in NGI . We also assume that cost function γ, capacity function c, and submodular functions
f± are integer-valued and that gain function α is rational-valued, each α(a) (a ∈ A) being
expressed as a ratio of positive integers. We denote by B the maximum absolute value of
the integers taken on by these integer-valued functions f±, c and γ, and integers appearing
as ratios of two integers for gain factors. We assume B ≥ 2.
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6 A. Eguchi, S. Fujishige, & T. Takabatake

Given a feasible flow ϕ in NGI , we denote the objective function value of (3.1) for ϕ by
γ(ϕ). We also denote the minimum value of the objective function by γ∗. We call a feasible
flow ϕ in NGI ε-optimal if γ(ϕ) ≤ γ∗ + ε, i.e., its cost value is within ε from the optimal
one. Note that γ∗ ≤ 0 since the zero flow is feasible due to the assumption. The definition
of ε-optimality given here is different from the ordinary relative approximate optimality as
employed in [12]; readers will find it suitable for our purpose.

It should be noted that when S+ = V and S− = ∅, the generalized independent-flow
problem PGI can be regarded as a compound problem of generalized flows and submodular
flows, which we call the generalized submodular-flow problem.

3.2. Residual network

Given a feasible flow ϕ in NGI , define the residual network Nϕ=(Gϕ=(V,Aϕ), cϕ, γϕ, αϕ)
associated with ϕ as follows. The residual network is essential in our algorithm to find an
ε-optimal flow. The vertex set of Nϕ is V , the same as that of NGI , and the arc set Aϕ is
given by

Aϕ = A+
ϕ ∪A−

ϕ ∪ A∗
ϕ ∪ B∗

ϕ, (3.6)

A+
ϕ = {(u, v) | v ∈ S+, u ∈ dep+(∂+ϕ, v)− {v}}, (3.7)

A−
ϕ = {(v, u) | v ∈ S−, u ∈ dep−(∂−ϕ, v)− {v}}, (3.8)

A∗
ϕ = {a | a ∈ A, ϕ(a) < c(a)}, (3.9)

B∗
ϕ = {ā | a ∈ A, ϕ(a) > 0} (ā : a reorientation of arc a). (3.10)

Also, the residual capacity function cϕ : Aϕ → R+ is given by

cϕ(a) =

⎧⎪⎪⎨
⎪⎪⎩

c̃+(∂+ϕ, v, u) (a = (u, v) ∈ A+
ϕ )

c̃−(∂−ϕ, v, u) (a = (v, u) ∈ A−
ϕ )

c(a)− ϕ(a) (a ∈ A∗
ϕ)

α(ā)ϕ(ā) (a ∈ B∗
ϕ)

(a ∈ Aϕ), (3.11)

where c̃+ and c̃− are exchange capacities associated with (D+, f+) and (D−, f−), respec-
tively. Furthermore, the residual cost function γϕ : Aϕ → R is defined by

γϕ(a) =

⎧⎨
⎩

γ(a) (a ∈ A∗
ϕ)

−γ(ā)/α(ā) (a ∈ B∗
ϕ)

0 (a ∈ A+
ϕ ∪A−

ϕ )
(a ∈ Aϕ), (3.12)

and the residual gain function αϕ : Aϕ → R+ by

αϕ(a) =

⎧⎨
⎩

α(a) (a ∈ A∗
ϕ)

1/α(ā) (a ∈ B∗
ϕ)

1 (a ∈ A+
ϕ ∪A−

ϕ )
(a ∈ Aϕ). (3.13)

The following theorem is concerned with the expression of a difference of two generalized
independent flows in a residual network considered as a generalized flow network.

Theorem 3.1: For two feasible flows ϕ and ϕ′ in NGI consider the residual network Nϕ

associated with ϕ and define a function ψ : A∗
ϕ ∪ B∗

ϕ → R+ by

ψ(a) =

⎧⎨
⎩

ϕ′(a)− ϕ(a) if a ∈ A∗
ϕ and ϕ′(a) > ϕ(a)

α(ā)(ϕ(ā)− ϕ′(ā)) if a ∈ B∗
ϕ and ϕ′(ā) < ϕ(ā)

0 otherwise
(3.14)
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for each a ∈ A∗
ϕ ∪ B∗

ϕ. Then ψ can be extended on arc set Aϕ of Nϕ to be a generalized
circulation in Nϕ.
(Proof) Let ψ+ : A+

ϕ → R+ be a function such that

ψ+(u, v) ≤ c̃+(∂+ϕ, v, u) ((u, v) ∈ A+
ϕ ), (3.15)

∑
v: (u,v)∈A+

ϕ

ψ+(u, v) = max{0, ∂+ϕ(u)− ∂+ϕ′(u)} (u ∈ S+), (3.16)

∑
u: (u,v)∈A+

ϕ

ψ+(u, v) = max{0, ∂+ϕ′(v)− ∂+ϕ(v)} (v ∈ S+). (3.17)

The existence of such a function ψ+ follows from Lemma 2.1. Similarly we can define a
function ψ− : A−

ϕ → R+ such that the direct sum of ψ, ψ+, and ψ− is a desired extension
of ψ that is a circulation in Nϕ. �

Suppose that we are given a feasible flow ϕ in NGI and let ψ be a circuit in Nϕ that
takes on positive values only on a unit-gain cycle or bicycle Q. We change flow ϕ by using
ψ to get a new ϕ′ as follows. We denote by A(Q) the set of arcs in Q.

ϕ′(a) =

⎧⎪⎪⎨
⎪⎪⎩

ϕ(a) + ψ(a) if a ∈ A∗
ϕ and a ∈ A(Q)

ϕ(a)− ψ(ā)/α(a) if ā ∈ B∗
ϕ, ā ∈ A(Q),

and ā is a reorientation of a
ϕ(a) otherwise

(3.18)

for each a ∈ A. We call this operation changing flow ϕ by circuit ψ.
The following theorem characterizes optimal generalized independent flows in terms of

residual network.

Theorem 3.2: A feasible flow ϕ in NGI is optimal if and only if there is no circuit of
negative cost in residual network Nϕ with respect to cost function γϕ.
(Proof) If there is a circuit ψ of negative cost in residual network Nϕ with respect to cost
function γϕ, then for a sufficiently small β > 0 changing ϕ by circuit βψ yields a feasible
flow in NGI that has a cost smaller than that of ϕ. Hence ϕ is not optimal.

Conversely, suppose that there is no circuit of negative cost in residual network Nϕ. Let
ϕ′ be any feasible flow in NGI . Then let ψ : Aϕ → R+ be a generalized circulation in Nϕ as
in Theorem 3.1. From Lemma 2.3 ψ can be decomposed into circuits ψi (i ∈ I) such that
ψ =

∑
i∈I ψi. It follows from the assumption that

γ(ϕ′)− γ(ϕ) = γϕ(ψ) =
∑
i∈I

γϕ(ψi) ≥ 0. (3.19)

Hence ϕ is an optimal flow in NGI . �

4. Algorithms

We basically adopt Wayne’s approach [12] to the generalized independent-flow problem
by incorporating Wayne’s generalized minimum-cost flow algorithm [12] with Fujishige’s
independent-flow algorithm [3]. Our algorithm can be regarded as an extension of Wallacher
and Zimmermann’s submodular flow algorithm [11]. As in Wayne’s algorithm [12], our
algorithm consists of two phases: an approximation phase and a purification phase. The
approximation phase repeatedly modifies a current flow along circuits of negative cost to
improve the objective function value, and the purification phase along circuits of nonpositive
cost. In both phases we need new techniques that are not in [3, 11, 12].

c© Operations Research Society of Japan JORSJ (2004) 47-1
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4.1. A scaling algorithm for approximation

The following lemma is fundamental in getting a new feasible flow by changing a feasible
flow ϕ by a circuit in its associated residual network Nϕ.

Lemma 4.1: Let ϕ be a feasible flow in NGI and ψ be a circuit in Nϕ with its associated
unit-gain cycle or bicycle Q. Define k = max{1, |A(Q) ∩ A+

ϕ |, |A(Q) ∩ A−
ϕ |}, where A(Q)

denotes the set of arcs in Q. Then a new flow obtained by changing ϕ by (1/k)ψ is also a
feasible flow in NGI.
(Proof) Let the arcs in A(Q) ∩ A+

ϕ be given by (ui, vi) (i ∈ I). Then, for any λi ∈ R such
that 0 ≤ λi ≤ c̃+(∂+ϕ, vi, ui) we have

∀i ∈ I : ∂+ϕ+ λi(χvi − χui) ∈ B(f+). (4.1)

Since B(f+) is a convex set, for any positive integer l ≥ |I | we have

∂+ϕ+
1

l

∑
i∈I

λi(χvi − χui) ∈ B(f+). (4.2)

A similar fact holds for arcs in A(Q)∩A−
ϕ . Hence, for k = max{1, |A(Q)∩A+

ϕ |, |A(Q)∩A−
ϕ |}

the flow ϕ′ obtained by changing ϕ by circuit (1/k)ψ satisfies

∂+ϕ′ ∈ B(f+), ∂−ϕ′ ∈ B(f−). (4.3)

Because of the changing of ϕ by circuit (1/k)ψ in Nϕ the capacity constraints and the flow
conservation law are satisfied by the new ϕ′. Hence ϕ′ is a feasible flow in NGI . �

Based on this lemma, we carefully choose a circuit for changing a current flow to make
our algorithm efficient. For a circuit ψ in Nϕ we define ratio µϕ(ψ) as

µϕ(ψ) =
∑
a∈Aϕ

γϕ(a)ψ(a)

/ ∑
a∈Aϕ

tϕ(a)ψ(a), (4.4)

where tϕ : Aϕ → R+ is defined as tϕ(a) = 1/cϕ(a) for each a ∈ Aϕ and we write
tϕ(ψ) =

∑
a∈Aϕ

tϕ(a)ψ(a) in the sequel. Such a ratio was first introduced by Wallacher and

Zimmermann [11] for submodular flows and adapted to generalized minimum-cost flows by
Wayne [12].

Our scaling approximation algorithm is given as follows.

Algorithm Approximation
Input: NGI and ε (> 0).
Output: An ε-optimal flow ϕ in NG.
Step 1: Put ϕ← 0, µ̂∗ = −B2, and µ̂← µ̂∗/2.
Step 2: If µ̂ ≥ −ε/2(m+ n2), then ϕ is ε-optimal and return ϕ.
Step 3: While there is a circuit ψ such that µϕ(ψ) < µ̂, find such a circuit ψ, let Q be its

underlying unit-gain cycle or bicycle, put k ← max{1, |A(Q) ∩ A+
ϕ |, |A(Q) ∩ A−

ϕ |}, and
change current ϕ by circuit (1/k)ψ.

Step 4: Put µ̂← µ̂/2 and go to Step 2.
End

Step 3 with current µ̂ is called a µ̂-scaling phase.
We will describe how to perform Step 3 efficiently and show the correctness of our

algorithm.
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Lemma 4.2: Let ϕ be a feasible flow in NGI and ψ be a circuit in Nϕ such that ψ(a) = cϕ(a)
for at least one arc a ∈ Aϕ. Suppose that ψ is of negative-cost. If for a positive integer k
we can change ϕ by circuit (1/k)ψ to obtain a new feasible flow ϕ′, then we have

γ(ϕ′)− γ(ϕ) ≤ µϕ(ψ)/k. (4.5)

Here, we can choose a positive integer k as in Step 3 of Algorithm Approximation and k is
at most 2n.
(Proof) From the assumption,

γ(ϕ′)− γ(ϕ) = γϕ((1/k)ψ) = µϕ((1/k)ψ)tϕ((1/k)ψ)

= µϕ(ψ)tϕ((1/k)ψ) ≤ µϕ(ψ)/k, (4.6)

where note that µϕ((1/k)ψ) = µϕ(ψ), µϕ(ψ) < 0, and tϕ((1/k)ψ) ≥ 1/k.
Moreover, from Lemma 4.1 we can choose a positive integer k such that k ≤ |{a | a ∈

A+
ϕ ∪A−

ϕ , ψ(a) > 0}|. Hence k ≤ 2n. �

Lemma 4.3: Let ϕ be a feasible flow in NGI, γ
∗ be the cost of an optimal flow in NGI and

µ∗
ϕ be the minimum ratio value in Nϕ. Then we have

µ∗
ϕ ≤

γ∗ − γ(ϕ)

m+ n2
. (4.7)

(Proof) Let ϕ∗ be an optimal flow in NGI . Also let ψ : Aϕ → R+ be a circulation in Nϕ

appearing in Theorem 3.1 where ϕ′ should be replaced by ϕ∗. As in Lemma 2.3, decompose
ψ into circuits ψi (i ∈ I) in Nϕ such that ψ =

∑
i∈I ψi. Then we have

µ∗
ϕ ≤ min{µϕ(ψi) | i ∈ I} ≤ γϕ(ψ)

tϕ(ψ)
≤ γϕ(ψ)

m+ n2
=
γ∗ − γ(ϕ)

m+ n2
, (4.8)

where note that tϕ(ψ) ≤ |Aϕ| ≤ m+ n2. �

Lemma 4.4: There are at most 4n(m + n2) changings by circuits in each µ̂-scaling phase
of Algorithm Approximation.
(Proof) When 2µ̂ = µ̂∗(= −B2), at the beginning of the µ̂-scaling phase, the minimum ratio
value µ∗

0 in N0 satisfies

µ∗
0 = µ0(ψ) ≥

∑
a∈A0

(−B)ψ(a)∑
a∈A0

t0(a)ψ(a)
≥

∑
a∈A0

(−B)ψ(a)∑
a∈A0

(1/B)ψ(a)
= −B2 = µ̂∗, (4.9)

where ψ is a circuit in N0 that attains the minimum ratio value µ∗
0. It follows that there

is no circuit whose ratio is less than 2µ̂ for the initial value of µ̂. This also holds true after
µ̂ is cut in half in Step 4, due to Step 3. Hence 2µ̂ ≤ µ∗

ϕ holds for any current flow ϕ. It
follows from Lemma 4.3 that

2µ̂(m + n2) ≤ γ∗ − γ(ϕ) ≤ 0. (4.10)

In a µ̂-scaling phase we repeatedly change a current flow by a circuit of ratio less than
µ̂. Lemma 4.2 implies that this improves the objective function value by at least µ̂/2n. It
follows from (4.10) that the number of changings by circuits in the µ̂-scaling phase is at
most 4n(m + n2). �
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10 A. Eguchi, S. Fujishige, & T. Takabatake

We assume that an exchange capacity in an arbitrary base polyhedron can be computed
in η time. We also use Õ(f) to denote O(f logO(1)(m+ n)).

Lemma 4.5: We can compute an ε-optimal flow in Õ(n5(η + n2)(log(1/ε) + logB)) time
by Algorithm Approximation.
(Proof) Since µ̂ = −B2/2 in Step 1 and µ̂ is cut in half at the end of each scaling phase, our
approximation algorithm carries out Õ(log(1/ε)+ logB) scaling phases until µ̂ ≥ −ε/2(m+
n2). Moreover, from Lemma 4.3, at the end of Algorithm Approximation we have

−ε ≤ 2µ̂(m+ n2) ≤ µ∗
ϕ(m+ n2) ≤ γ∗ − γ(ϕ) (4.11)

for a finally obtained flow ϕ. Hence, ϕ is ε-optimal.
As shown in Lemma 4.4, we repeat changing of a current flow by a circuit at most

4n(m+ n2) times in each scaling phase.
We can discern whether there exists a circuit whose ratio is less than µ̂ and if any exists,

we can find such a circuit by checking feasibility of TVPI (two variables per inequality)
systems as proposed by Wayne in [12]. Define a reduced cost γµ̂(a) = γ(a) − µ̂t(a) for
a ∈ Aϕ. It is easy to see that a circuit has a ratio less than µ̂ if and only if there is
a negative-cost circuit with respect to cost function γµ̂. Existence of such a circuit is
equivalent to infeasibility of the following TVPI system:

∀a ∈ Aϕ : γµ̂(a) + π(∂+a)− α(a)π(∂−a) ≥ 0 (4.12)

due to the linear programming duality. This feasibility test can be done in Õ((m + n2)n2)
[1, 8], and when the system is infeasible, as its by-product we obtain a unit-gain cycle or
bicycle that gives a circuit of ratio smaller than µ̂.

Since it takes O(n2η+m) time to construct each residual network, the total complexity
of Algorithm Approximation is Õ((log(1/ε)+logB)4n(m+n2)(n2η+m+(m+n2)n2)), i.e.,
Õ(n5(η + n2)(log(1/ε) + logB)). �

4.2. An algorithm for purification

Given a feasible flow ϕ, we transform ϕ to another feasible flow ϕ′ such that ϕ′ is an
extreme-point flow of cost no more than γ(ϕ). This transformation is called purification in
linear programming. Our purification algorithm uses flow-type techniques instead of matrix
computation. We will use this purification algorithm later to obtain an optimal flow from a
1/(B8m + 1)-optimal flow in NGI .

First, we give further definitions to describe our purification algorithm. Let ϕ be a
feasible flow in NGI and consider the residual network Nϕ = (Gϕ = (V,Aϕ), cϕ, γϕ, αϕ)

associated with ϕ. We define Âϕ to be the set of arcs in Aϕ that have (positive) residual
capacities in both directions, i.e.,

Âϕ = {a | a ∈ Aϕ, cϕ(a) > 0, cϕ(ā) > 0}, (4.13)

where ā is a reorientation of a. Define a network N̂ϕ = (Ĝϕ = (V, Âϕ), ĉϕ, γ̂ϕ, α̂ϕ), where

ĉϕ, γ̂ϕ, and α̂ϕ are restrictions of cϕ, γϕ, and αϕ to Âϕ.
We have partitions Π(D+(∂+ϕ)) of S+ and Π(D−(∂−ϕ)) of S−, where see (2.4) and

(2.15) for the notation. Here, it should be noted that components of Π(D+(∂+ϕ)) are exactly
strongly connected components (regarding as subsets of S+) of the subgraph (S+, A+

ϕ ) of

Gϕ, and similarly for Π(D−(∂−ϕ)). Let Ĝ′
ϕ = (V ′, Â′

ϕ) be the graph obtained from Ĝ by
shrinking each component of Π(D+(∂+ϕ)) and Π(D−(∂−ϕ)) into a single vertex. We then
define an ordinary generalized network N̂ ′

ϕ = (Ĝ′
ϕ = (V ′, Â′

ϕ), ĉ′ϕ, γ̂
′
ϕ, α̂

′
ϕ), where ĉ′ϕ, γ̂′ϕ, and

α̂′
ϕ are restrictions of ĉϕ, γ̂ϕ, and α̂ϕ to Â′

ϕ.
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The Generalized Independent-Flow Problem 11

Lemma 4.6: Given a unit-gain cycle or bicycle in N̂ ′
ϕ, we can construct a unit-gain cycle

or bicycle Q in Nϕ and cancel a circuit on Q after O(n) calls of an exchange capacity oracle.

(Proof) Let Q′ be a unit-gain cycle or bicycle in N̂ ′
ϕ. Denote by Â(Q′) the set of arcs in Q′.

Then consider Â(Q′) as a subset of Âϕ before the shrinking, and let Ŵ be the end-vertices

of arcs in Â(Q′) with respect to Ĝϕ. Denote by Ĝϕ(Ŵ ) the subgraph of Ĝϕ induced by Ŵ .
For any pair of vertices u and v in a single component of partition Π(D+(∂+ϕ)) or

Π(D−(∂−ϕ)) there exist both arcs (u, v) and (v, u) in Gϕ. Hence for any pair of vertices in

Ĝϕ(Ŵ ) that belong to a single component of Π(D+(∂+ϕ)) or Π(D−(∂−ϕ)) there exist both
arcs (u, v) and (v, u) in Gϕ.

Note that since every vertex v in a cycle has exactly two arcs incident to v in the cycle,
at most four vertices in Ŵ are shrunk to a single vertex in Q′ of Ĝ′

ϕ.

We first construct a unit-gain cycle or bicycle Q contained in Ĝϕ(Ŵ ). We keep a set AQ

of arcs which will form a desired unit-gain cycle or bicycle Q. Initially we set AQ = {a | a ∈
Q′} ⊆ Âϕ and then add some arcs in Ĝϕ(Ŵ ) that are missing in Ĝ′

ϕ after shrinking.

If a vertex v ∈ Q′ corresponds, by shrinking, to two vertices v1 and v2 in Ŵ , we assume
without loss of generality that there are an arc of Q′ entering v1 and another arc of Q′

leaving v2. Then we add arc (v1, v2) to AQ.

(a) (b) (c) (d)

v v

v v

v

v

v

v

1 3

2 4

1

2

4

3

v v

v

2 1

3

v

vv2

1

3

Figure 1: Examples of vertex sets expanded for bicycles.

If v corresponds to three vertices v1, v2, and v3 (see Figure 1 (a) and (b)), then let us
first assume that two vertices v1 and v2 are terminal end-vertices of two arcs of Q′ and v3

is an initial end-vertex of another arc of Q′. We then add arcs (v1, v3) and (v2, v3) to AQ.
When two of these three vertices are initial end-vertices of some two arcs of Q′ and one is
a terminal end-vertex of another arc of Q′, we add to AQ two arcs from the latter vertex to
the former two vertices in a similar way.

If v corresponds to four vertices v1, v2, v3, and v4 (see Figure 1 (c) and (d)), then without
loss of generality we assume the following (i) and (ii).
(i) There are an arc entering v1 and another arc leaving v3, and these two arcs belong to

the flow-generating cycle in Q′.
(ii) There are an arc entering v2 and another arc leaving v4, and these two arcs belong to

the flow-absorbing cycle in Q′.
We add arcs (v1, v3) and (v2, v4) to AQ. If v is a specified degenerate path connecting
the flow-generating cycle and the flow-absorbing cycle (Figure 1 (c)), then we also add arc
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12 A. Eguchi, S. Fujishige, & T. Takabatake

(v1, v2) to AQ. Here, we assume that such a degenerate path is uniquely specified to each
bicycle.

After adding arcs to AQ for each vertex in Q′ that corresponds to at least two vertices

in Ŵ , the arcs in AQ form a unit-gain cycle or bicycle Q in Nϕ.
Now we consider a circuit ψ that takes on positive values only on Q. Such a circuit ψ is

uniquely determined up to a positive multiple factor. We compute a maximum β > 0 such
that changing the current ϕ by circuit βψ yields a feasible flow in NGI . We next show that
we can compute such a maximum β > 0 by O(n) calls of an exchange capacity oracle.

Denote by ϕβ the new flow obtained by changing current ϕ by circuit βψ. Flow ϕβ is
feasible in NGI if and only if the following (I) and (II) hold.
(I) For each a ∈ A∗

ϕ ∪B∗
ϕ we have

βψ(a) ≤ cϕ(a). (4.14)

(II) For the entrance vertex set S+ and the exit vertex set S−,

∂+ϕβ ∈ B(f+), ∂−ϕβ ∈ B(f−), (4.15)

where ∂± is with respect to the original network NGI .
Condition (I) implies that ϕβ satisfies the capacity constraints. Since βψ is a circuit, ϕβ

satisfies the flow conservation law. Condition (II) is exactly (3.4) and (3.5).
The maximum β satisfying Condition (I) is easily computed. Therefore, let us consider

a problem of determining the maximum β that satisfies Condition (II). It should be noted
that there is no arc in A(Q)∩ (A+

ϕ ∪A−
ϕ ) that connects distinct two components of partition

Π(D+(∂+ϕ)) or Π(D−(∂−ϕ)). Hence, if Condition (II) holds, we have

D+(∂+ϕ) ⊆ D+(∂+ϕβ), D−(∂−ϕ) ⊆ D−(∂−ϕβ). (4.16)

This means that we can determine the maximum β that satisfies Condition (II) by consider-
ing separate subproblems; each corresponds to a component of Π(D+(∂+ϕ)) or Π(D−(∂−ϕ)),
as follows.

Let U+
i (i ∈ I+) be components of Π(D+(∂+ϕ)) such that ∂+ϕβ(u) �= ∂+ϕ(u) for some

u ∈ U+
i . Then ∂+ϕβ is expressed as

∂+ϕβ = ∂+ϕ+ β
∑
i∈I+

b+i , (4.17)

where for each i ∈ I+, b+i is a nonzero vector such that the size of its support supp(b+i ) is
at most four and b+i (U+

i ) = 0 due to the definition of Q.
Now, for each i ∈ I+ consider

(II+i )
∂+ϕ+ βb+i ∈ B(f+). (4.18)

We can easily see from (4.16) and (4.17) that ∂+ϕβ ∈ B(f+) if and only if (4.18) holds for
all i ∈ I+. Similarly, we consider Condition (II+i ) (i ∈ I−) for the exit vertex set S−.

For each i ∈ I+ the maximum β that satisfies (4.18) is computed as follows. Divide
supp(b+i ) into two sets W1 and W2 such that b+i (W1) > 0 and b+i (W2) < 0. Let (∂+ϕ)′ and
(f+)′ be those obtained by the aggregation of ∂+ϕ and f+ by W1 and W2, and let vW1 and
vW2 be new vertices corresponding to W1 and W2. Define

β+
i (W1,W2) = c̃((∂+ϕ)′, vW1, vW2)/b

+
i (W1), (4.19)
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where c̃ is the exchange capacity associated with the aggregation. Denote by β̂+
i the mini-

mum of values β+
i (W1,W2) for all such divisions (W1,W2). Similarly define β̂−

i (i ∈ I−) for

the exit S−. Hence the required minimum β, denoted by β̂, is given by

β̂ = min{min{cϕ(a)/ψ(a) | ψ(a) > 0, a ∈ A∗
ϕ ∪B∗

ϕ},
min{β̂+

i | i ∈ I+},min{β̂−
i | i ∈ I−}}. (4.20)

Since |supp(b±i )| ≤ 4 for each i ∈ I±, the number of possible such divisions (W1,W2) is

at most seven, so that determining β̂ requires O(n) calls of an exchange capacity oracle.
Moreover, after changing current ϕ by circuit β̂ψ we get a new flow ϕβ̂ and new residual

network Nϕ
β̂

in which Q is neither a unit-gain cycle nor a bicycle, i.e., circuit ψ is canceled,

due to (4.20). �

It should be noted that if β̂ = min{cϕ(a)/ψ(a) | ψ(a) > 0, a ∈ A∗
ϕ ∪ B∗

ϕ} and the
minimum is attained by arc â, then arc â disappears in new residual network Nϕ

β̂
and its

corresponding N̂ϕ
β̂
. If β̂ = min{β̂+

i | i ∈ I+} and the minimum is attained by i0 ∈ I+, then

let X+ ∈ D be a new tight set for ∂+ϕβ̂ that separates W1 and W2 given as above for U+
i0

.

Because of this tight set, arcs between W1 and W2 disappear in N̂ϕ
β̂
. Furthermore, the size

of partition Π(D+(∂+ϕβ̂)) is larger than that of previous Π(D+(∂+ϕ)), and similarly for the

exit if β̂ = min{β̂−
i | i ∈ I−}. Hence,

Lemma 4.7: Canceling a circuit as in Lemma 4.6 can be made O(n +m) times.

The following lemma characterizes extreme points of the feasible flow polyhedron.

Lemma 4.8: A feasible flow ϕ in NGI is an extreme point of the feasible flow polyhedron
for NGI if and only if there does not exist a unit-gain cycle or a bicycle in network N̂ ′

ϕ

defined above.
(Proof) We first prove the ‘only if’ part. Assume that there exists a unit-gain cycle or
bicycle Q′ in N̂ ′

ϕ. Let ψ be a circuit in N̂ϕ constructed from Q′ as in Lemma 4.6. It follows

from the definition of N̂ ′
ϕ that for a sufficiently small β > 0 changings of ϕ by circuit βψ

and by −βψ both yield feasible flows and hence ϕ is not an extreme point.
Next, we show the ‘if’ part. Suppose that there does not exist a unit-gain cycle or a

bicycle in network N̂ ′
ϕ. Then consider a new cost function γ̄ : A→ R such that its associated

γ̄′ϕ : A′
ϕ → R instead of original γϕ is a nonnegative function and satisfies

a ∈ A′
ϕ, ā /∈ A′

ϕ =⇒ γ̄′ϕ(a) > 0, (4.21)

where ā is a reorientation of a. Note that if a, ā ∈ A′
ϕ, then γ̄′ϕ(a) = γ̄′ϕ(ā) = 0. Now, for

any feasible flow ϕ′ in NGI we have inequality (3.19) with γ replaced by γ̄ and in particular
(3.19) with γ replaced by γ̄ holds with strict inequality since every unit-gain cycle or bicycle
contains an arc a such that γ̄′ϕ(a) > 0. It follows that ϕ is an extreme point of the feasible
flow polyhedron for NGI . �

Now we describe an algorithm for purification.

Algorithm Purification
Input: NGI and a feasible flow ϕ in NGI .

Output: A feasible flow ϕ̂ that is an extreme point of the feasible flow polyhedron and has
a cost not more than γ(ϕ).

Step 1: Construct N̂ ′
ϕ.
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14 A. Eguchi, S. Fujishige, & T. Takabatake

Step 2: While there is a unit-gain cycle or a bicycle in N̂ ′
ϕ, cancel a circuit in Nϕ associated

with a unit-gain cycle or a bicycle in N̂ ′
ϕ of nonpositive cost with respect to cost function

γ̂′ϕ.
Put ϕ̂← ϕ and return ϕ̂.

End

We examine the complexity of Algorithm Purification.

Lemma 4.9: Algorithm Purification runs in O(mn(nη +m)) time.
(Proof) Because of Lemma 4.7 we repeat canceling a circuit in Step 2 of Algorithm Purification
O(n + m) times. Constructing a residual network and its shrunken network N̂ ′

ϕ requires

O(n2η+m) time, finding a unit-gain cycle or bicycle in N̂ ′
ϕ O(mn) time, rescaling a circuit

in Nϕ O(n+nη) times, and canceling a unit-gain cycle or bicycle inNϕ O(m+n) time. Here,

note that finding a unit-gain cycle or a bicycle is done in a network N̂ ′
ϕ with O(m) arcs,

which requires O(mn) time by the Bellman-Ford shortest-path algorithm (see Appendix B).
Also note that any cycle or bicycle has O(n) arcs. Hence Algorithm Purification runs in
O(mn(nη +m)) time. �

The following lemma shows a value of ε such that we find an optimal flow in NGI in
polynomial time by combining Algorithm Approximation and Algorithm Purification.

Lemma 4.10: Suppose ε = 1/(B8m + 1) and let ϕ0 be any feasible flow in NGI that is
an extreme point of the feasible flow polyhedron and has a cost not more than that of an
ε-optimal flow. Then ϕ0 is an optimal flow in NGI.
(Proof) For a 1/(B8m + 1)-optimal flow ϕ we have γ(ϕ) < γ∗ + B−8m. By Cramer’s rule,
a cost of any extreme-point flow is a rational number. We will show that costs of two
extreme-point flows have a common denominator not greater than B8m. It then follows
that an extreme-point flow of cost not more than that of a 1/(B8m + 1)-optimal flow is an
optimal flow.

Now, let ϕ0 be an extreme-point flow. Define Ā = {a | a ∈ A, ϕ0(a) = c(a)} and
A = {a | a ∈ A, ϕ0(a) = 0}. Then ϕ0 is a unique solution of the following system of linear
equations for ϕ:

ϕ(a) = c(a) (a ∈ Ā), (4.22)

ϕ(a) = 0 (a ∈ A), (4.23)

∂ϕ(v) = 0 (v ∈ V \ (S+ ∪ S−)), (4.24)

∂+ϕ(X) = f+(X) (X ∈ D+(∂+ϕ0)), (4.25)

∂−ϕ(X) = f−(X) (X ∈ D−(∂−ϕ0)), (4.26)

where D±(∂±ϕ0) are defined as in (2.4). We can easily see that choosing maximal chains
C± of D±(∂±ϕ0), the system of equations (4.25) and (4.26) is equivalent to the following

∂+ϕ(X) = f+(X) (X ∈ C+), (4.27)

∂−ϕ(X) = f−(X) (X ∈ C−). (4.28)

Letting C+ = (S+
0 = ∅, S+

1 , · · · , S+
k+ = S+) and C− = (S−

0 = ∅, S−
1 , · · · , S−

k− = S−), it is
further equivalent to

∂+ϕ(S+
i \ S+

i−1) = f+(S+
i )− f+(S+

i−1) (i = 1, 2, · · · , k+), (4.29)

∂−ϕ(S−
i \ S−

i−1) = f−(S−
i )− f−(S−

i−1) (i = 1, 2, · · · , k−). (4.30)
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Let Mϕ = b be the system of linear equations formed by (4.22)∼(4.24), (4.29), and (4.30).
Note that the number of rows of M is at most m + n. Let N be a nonsingular m × m
submatrix of M , so that ϕ0 = N−1bN where bN is a restriction of b on the components
corresponding to rows of N .

For each a ∈ A denote by ∆a the determinant of a matrix obtained by replacing the
column corresponding to a of N by bN . By Cramer’s rule ϕ0(a) is given as ϕ0(a) = ∆a/|N |,
where |N | is the determinant of N . Recall that we have

|N | =
∑

σ∈Pm

sgn(σ) N(1, σ(1))N(2, σ(2)) · · ·N(m, σ(m)), (4.31)

where Pm is the set of all permutations of {1, 2, · · · , m} and sgn(σ) = 1 or −1 according
as σ is an even permutation or an odd permutation. Since each element of N is equal to
zero, one, or −α(a) (a ∈ A), the absolute value of each summand in (4.31) is equal to zero
or product of some gain factors. It follows from (4.22)∼(4.24), (4.29), and (4.30) that there
are at most three nonzero elements in each column. Hence the number of nonzero terms in
(4.31) is at most 3m. Denoting the denominator of α(a) by αd(a) for each arc a ∈ A, we
can assume that the denominator of |N | is ∏m

j=1 αd(aj) and that the numerator is less than

3mBm, which is further less than B2mBm = B3m when B ≥ 2. Similarly, we can see that the
denominator of ∆a is at most

∏m
j=1 αd(aj). Since the denominator of ϕ0(a) is given by the

product of the denominator of ∆a and the numerator of |N |, the denominator of ϕ0(a) is at
most B4m. It follows that the denominator of the cost of any extreme-point flow is at most
B4m and that a common denominator of the difference of costs of any two extreme-point
flows can be at most B8m. This completes the proof of the present lemma. �

From the above argument we have the following theorem.

Theorem 4.11: Combining Algorithm Approximation with ε = 1/(B8m + 1) and Algo-
rithm Purification, we can find an optimal flow in Õ(n5(n2 + η)m logB) time.
(Proof) We first use Algorithm Approximation to obtain a 1/(B8m+1)-optimal flow and then
find an optimal flow by Algorithm Purification. The former requires Õ(n5(n2 + η)m logB)
time and the latter Õ(mn(nη +m)) time. �

5. Concluding Remarks

We have proposed the model of generalized independent-flow problem and a weakly polynomial-
time algorithm for solving it. There is possibility of improving the complexity of our al-
gorithm by incorporating recent development in algorithms for submodular flows (see, e.g.,
[5]), which is left for future research.
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Appendix A

We describe an algorithm for finding an initial feasible flow in original network NGI .
First, we find extreme bases b+ ∈ B(f+) and b− ∈ B(f−) by the so-called greedy

algorithm for base polyhedra.
Next, to each vertex v ∈ S+ ∪ S− we add a selfloop av and define a flow value ϕ(av)

and a gain value α(av) as follows: if v ∈ S+ and b+(av) > 0 (or if v ∈ S− and b−(av) < 0),
then put ϕ(av) = 2b+(av) and α(av) = 1/2 (or ϕ(av) = −2b−(av) and α(av) = 1/2), and
if v ∈ S+ and b+(av) < 0 (or if v ∈ S− and b−(av) > 0), then put ϕ(av) = −b+(av) and
α(av) = 2 (or ϕ(av) = b−(av) and α(av) = 2). Moreover, we assume that capacities of the
added selfloops are sufficiently large and that their costs are equal to a positive constant.
We put ϕ(a) = 0 for each original arc a ∈ A.

Then ϕ is a feasible flow in the extended network, so that we can apply our proposed
algorithm to find an optimal flow ϕ̂. Note that ϕ̂(av) = 0 for each added selfloop av if and
only if there exists a feasible flow in the original network NGI , and that restricting ϕ̂ on the
original arc set A gives a feasible flow in the original network (if it is feasible).

Appendix B

A method for finding a unit-gain cycle or a bicycle was presented by Wayne [12]. We describe
it here in detail for completeness.

Recall that a bicycle consists of a flow-generating cycle, a flow-absorbing cycle, and a
path connecting the first cycle to the second. It is easy to see that the set of flow-absorbing
cycles in Nϕ is in one-to-one correspondence with that of negative length cycles with respect
to length function + log αϕ defined by (+ logαϕ)(a) = log αϕ(a) (a ∈ Aϕ), and similarly,
that the set of flow-generating cycles is in one-to-one correspondence with that of negative
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length cycles with respect to length function − logαϕ defined by (− logαϕ)(a) = − logαϕ(a)
(a ∈ Aϕ). The basic approach is to first try to find a bicycle if one exists and otherwise to
try to find a unit-gain cycle.

Algorithm Circuit
Input: A residual network Nϕ.
Output: A unit-gain cycle or bicycle Q in Nϕ if one exists, or NONE if none exists.
Step 1: Put G′ ← Gϕ. Find a flow-generating cycle (a cycle of negative length) by using

the Bellman-Ford shortest-path algorithm for G′ with length function − log αϕ, where
we add new vertex s and new arcs (s, v) of zero length for every vertex v in G′. If none
exists, then put G′

2 ← G′, let G′
1 be an empty graph, and go to Step 3. Otherwise find

a set W of vertices that participate in cycles of negative length (flow-generating cycles)
or can be reached from a flow-generating cycle along a (directed) path, which can be
done by adapting the previous Bellman-Ford shortest-path computation. Let G′′ be the
subgraph of Gϕ induced by W .

Step 2: If a Bellman-Ford computation for G′′ with length function + log αϕ restricted on
the arc set of G′′ finds a flow-absorbing cycle in G′′, then find a bicycle Q and return Q.
Otherwise put G′

1 ← G′′ and G′
2 be the subgraph of Gϕ induced by V \W . Let G′ be

the direct sum of G′
1 and G′

2, and go to Step 3.
Step 3: Construct a subgraph H of current graph G′ that consists of arcs a satisfying

lπ(a) = l(a) + π(∂+a) − π(∂−a) = 0, where l(a) = (+ logαϕ)(a) for arc a in G′
1 and

l(a) = (− logαϕ)(a) for arc a in G′
2, and the vertex label π : V → R+ is the distance

label already computed by the last Bellman-Ford computation in Steps 1 and 2. Detect
a cycle by using the depth-first search or the breadth-first search in H. If we find a cycle
Q, it is a unit-gain cycle in Nϕ and return Q; otherwise return NONE.

End

It should be noted that Algorithm Circuit invokes the Bellman-Ford
shortest-path algorithm twice.
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