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Abstract In an accumulation game, a hider places objects at locations, and a seeker examines these
locations. If the seeker discovers an object then he/she confiscates it. The goal of the hider is to accumulate
a certain number of objects before a given time, and the goal of the seeker is to prevent this. In this paper
we discuss the quiet accumulation game in which the hider is informed of the location searched on a turn
only if the seeker finds an object there. We solve the case where the number of steps is 3 and the goal of
the hider is to accumulate 2 objects, and the case where the number of steps is equal to the hider’s goal.
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1. Definitions and Notation

The type of search game that we analyze models the following types of situations: (1) An
illicit organization, such as a terrorist gang, attempts to accumulate a certain minimum
amount of material and a law enforcement agency attempts to prevent this by means of a
limited number of inspections. (2) A polluter attempts to illegally conceal a quantity of
waste, and an enforcement agency tries to uncover this attempt. This leads to a two-person
zero sum game between the organization and the law enforcement agency for which the
payoff to the organization is 1 (it wins), if it accumulates m units of the material by time
K, and is 0 (it loses), otherwise.

In an accumulation game a hider (called H) tries to accumulate a certain number of ob-
jects within a certain time by hiding them at a fixed number of locations, and a seeker (called
S) attempts to prevent this. In general, H can place the objects at locations 1, 2, . . . , n, and
the game is played in discrete time.

The followings are parameters and assumptions. The letter n indicates the total number
of locations at which objects can be hidden. I = {1, 2, . . . , n} is the set of all locations.
At each turn H acquires an object and can place it at any empty location. S can examine
only one location at each turn. S will find an object with certainty if it is at the location
searched.

In this paper we investigate quiet search where H knows the location searched on a
turn only if S finds an object there. H can use this information to choose a location in
subsequent turns. H has complete knowledge of the empty locations at each turn. H can
place an object at a location where : (1) H has not placed an object yet and S has not
searched yet, (2) H has not placed an object yet and S has already searched, or (3) H has
placed another object but S has already searched and found the object. Note that after S
examines an empty location, the location will return to its initial state. This means that H
can not distinguish whether or not that location has been examined.
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488 W.H. Ruckle & K. Kikuta

N is the number of objects that H wants to accumulate. The maximum number of steps
is k. If H can hide N objects at the end of the t-th turn for some t (N ≤ t ≤ k), the game
terminates and H wins (payoff 1) . Otherwise, if H cannot hide N objects within k turns,
H loses (payoff 0).

We express this game as (n,N, k) (i.e. a game with n locations, N objects, and k steps).
In Section 2 of this paper we analyze the case N = 2 and k = 3. Our results suggest that

it is difficult to extend the analysis even to games in the special case where k = N +1. Some
variations of the case k = N + 1 will be analyzed somewhere. We analyze the case where
N = k in Section 3. This case is closely related to what we call the very quiet accumulation
game (See [5]).

In [2], we analyzed noisy search in which H knows the location searched on each turn.
We presented the solution for that game for all but some marginal cases. In [3], we analyzed
the noisy case where H can place a continuous material at discrete locations and the game
is played in discrete time. We shall usually assume that the game begins in an initial state
where H has no objects. However, most of our analysis also applies to situations where
the game begins with a number of objects already hidden, but S knows only the number of
objects hidden and has no information about their location. The reader can find a general
theory of search games in [1], and information on geometric search games (with notes on
open problems) in [4]. Although accumulation games form a new kind of search game,
there are many related two-person tactical games including search games. References 1-23
in [2] describe a variety of two-person zero-sum search games. Table 1 in [2] describes some
variations on accumulation games.

2. Quiet Accumulation Game for (n, 2, 3)

Since the total number of turns (the third coordinate) is greater than the number of objects
by 1, H will definitely lose if all objects are found within two turns. We define the outcomes
as follows.

N : S fails to find an object on the indicated turn.
F : S finds an object on the indicated turn.

We often use the following notation to indicate the outcome from H’s viewpoint, keeping in
mind the information obtained by H.

Fi: On the second step, S finds an object hidden at the ith step, i = 1, 2.

Since the game ends when H succeeds in the first two steps, or when H fails in the first two
steps, the following sequences of outcomes can occur.

NN ,NFN ,FNN ,NFF ,FNF ,FF
H wins in the first three sequences out of six, i.e., NN ,NFN ,FNN .

A pure strategy for H, denoted as h̄ ≡ (h1, h̄N , h̄F ), is defined as follows, where h̄N ≡
(hN

2 , hF1
3 , hF2

3 ) and h̄F ≡ (hF
2 , hN

3 ) are the choices at the second and the third steps, assuming
the outcomes of the first step are N and F respectively. Each subscript indicates the step
at which the choice is made.

h1:the choice at the first step
hN

i , i = 2, 3:the choice at the ith step, assuming the outcome of the (i− 1)−th step is N
hF

2 :the choice at the second step, assuming the outcome of the first step is F
hFi

3 , i = 1, 2:the choice at the third step, assuming the outcome of the second step is Fi

c© Operations Research Society of JapanJORSJ (2003) 46-4



Accumulation Game 489

A pure strategy for S, denoted as s̄ ≡ (s1, s̄N , s̄F ), is defined as follows, where s̄N ≡
(sN

2 , sF
3 ) and s̄F ≡ (sF

2 , sN
3 ). Each subscript indicates the step at which the choice is made.

s1:the choice at the first step
sN

i , i = 2, 3:the choice at the ith step, assuming the outcome of the (i− 1)-th step is N
sF

i , i = 2, 3:the choice at the ith step, assuming the outcome of the (i− 1)-th step is F
Since the game is sequential, we use behavioral strategies rather than mixed strategies.

So, at each decision point a player determines a probability distribution on all alternatives.
For S, a behavioral strategy is given by

q̄ ≡ (q(·), q(·|s1,N ), q(·|s1,N , sN
2 ,F), q(·|s1,F), q(·|s1,F , sF

2 ,N )),

where each component is a probability distribution at each decision point. We let q̄N ≡
(q(·|s1,N ), q(·|s1,N , sN

2 ,F)) and q̄F ≡ (q(·|s1,F), q(·|s1,F , sF
2 ,N )). For H, a behavioral

strategy is given by

p̄ ≡ (p(·), p(·|h1,N ), p(·|h1,N , hN
2 ,F1), p(·|h1,N , hN

2 ,F2), p(·|h1,F), p(·|h1,F , hF
2 ,N )).

We let p̄N ≡ (p(·|h1,N ), p(·|h1,N , hN
2 ,F1), p(·|h1,N , hN

2 ,F2)) and p̄F ≡ (p(·|h1,F),
p(·|h1,F , hF

2 ,N )). f(p̄, q̄) is the probability of H’s winning when H and S use behavioral
strategies p̄ and q̄ respectively.

2.1. An optimal strategy for the seeker

In this subsection we give the minimax value of the game and a behavioral strategy for S
corresponding to the minimax value. The following diagram in Figure 1 is not a game tree,
but is helpful for calculating the expected payoff to H when S uses a specified behavioral
strategy and H uses a pure strategy.

h1





N
s1 6=h1

hN
2





N
sN
2 6=h1,hN

2
1

F
sN
2 =hN

2
hF2

3
N

sF
3 6=h1,hF2

3
1

F
sN
2 =h1

hF1
3

N
sF
3 6=hN

2 ,hF1
3

1

F
s1=h1

hF
2

N
sF
2 6=hF

2
hN

3
N

sN
3 6=hF

2 ,hN
3

1

Figure 1: A diagram for calculating the payoff to the hider.

S’s problem is to minimize the probability of H’s winning, i.e., to choose a behavioral
strategy q̄ so that

max{f(h̄, q̄) : h̄ = (h1, h̄N , h̄F )}
is minimized. In the first turn, S cannot distinguish any locations, and so S will choose each
location with equal probability under any optimal strategy. This means q(s1) = 1

n
for all s1 ∈

I. So S will find an object with probability 1
n
. If S finds an object, S and H will use strategies

q̄F and h̄F respectively: otherwise, S and H will use strategies q̄N and h̄N respectively. The
expected payoff to H is calculated separately as f(h̄, q̄) = n−1

n
f(h̄N , q̄N)+ 1

n
f(h̄F , q̄F ), where

q̄ = (( 1
n
, . . . , 1

n
), q̄N , q̄F ) and h̄ = (h1, h̄N , h̄F ). By separating in this way, we see that we

can analyze the cases NN and NFN and the case FNN separately. So in the following
subsections we give the minimax or maximin strategies of both players separately for the
above cases. Note that the argument above applies when we consider H’s strategy. So, for
example, in subsection 2.1.1, we give a minimax strategy for S in the cases NN and NFN .
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2.1.1. Seeker’s strategy in the cases NN and NFN
First we define S’s strategy in the case NN and NFN . Assuming s1 6= h1, let

q(sN
2 |s1,N ) =

{
1

n−1
, for sN

2 ∈ I \ {s1};
0, for sN

2 = s1.
(1)

Assuming s1 6= h1 and sN
2 ∈ {hN

2 , h1}, define

q(sF
3 |s1,N , sN

2 ,F) =





0, for sF
3 = s1;

1
n
, for sF

3 = sN
2 ;

n−1
n(n−2)

, for sF
3 ∈ I \ {s1, s

N
2 }.

(2)

Note that sN
2 6= s1 by (1). (1) and (2) mean that S examines each box except the location

which S examined where no object was found. Then calculating the expected payoff to H,
case by case, for NN or NFN and any pure strategy h̄ of H, we see that the maximum of

the expected payoff is (n−2)2

nP2
+ 1

nP2
{n− 2 + (n−1)(n−3)2

n(n−2)
} (See Part 1 of the Appendix below).

2.1.2. Seeker’s strategy in the case FNN
Next define S’s strategy in the case FNN . Assuming s1 = h1, define

q(sF
2 |s1,F) =

1

n
for all sF

2 ∈ I.

q(sN
3 |s1,F , sF

2 ,N ) =

{
0, for sN

3 = sF
2 ;

1
n−1

, for sN
3 ∈ I \ {sF

2 }. (3)

Then calculating the expected payoff to H, case by case, for FNN and any pure strategy h̄

of H, we see that the maximum of the expected payoff is (n−2)2

n2(n−1)
(See Part 2 of the Appendix

below). Hence if S uses the above strategies, the expected payoff to H is at most

P ∗
H ≡ 1

n

(n− 2)2

nP2

+
(n− 2)2

nP2

+
1

nP2

{n− 2 +
(n− 1)(n− 3)2

n(n− 2)
}.

2.2. An optimal strategy for the hider

In this subsection we give the maximin value of the game and a behavioral strategy for H
corresponding to the maximin value. The next diagram in Figure 2 is not a game tree,
but is helpful for calculating the expected payoff of S when H uses a specified behavioral
strategy and S uses a pure strategy.
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2
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2 ,sN
3
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3
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2
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3
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3 6=h2,sF

3
1

N
h1=sN

3
sN
2

N
hN
2 6=h1,sN

2
1

Figure 2 : A diagram for calculating the payoff to the seeker.
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H’s problem is to maximize the probability of winning, i.e., to choose a behavioral strategy
p̄ so that

min{f(p̄, s̄) : s̄ = (s1, s̄N , s̄F )}
is maximized.

2.2.1. Hider’s strategy in the cases NN and NFN
Next define H’s strategy in the cases NN and NFN . Let

p(hN
2 |h1,N ) =

{
1

n−1
, for hN

2 ∈ I \ {h1};
0, for hN

2 = h1,

p(hF1
3 |h1,N , hN

2 ,F1) =





0, for hF1
3 = hN

2 ;
4n−9

n(n−2)
, for hF1

3 = h1;
(n−3)2

n(n−2)2
, for hF1

3 ∈ I \ {h1, h
N
2 },

(4)

p(hF2
3 |h1,N , hN

2 ,F2) =

{
1

n−2
, for hF2

3 ∈ I \ {h1, h
N
2 };

0, for hF2
3 ∈ {h1, h

N
2 }.

Then calculating the expected payoff to H, case by case, for NN or NFN and any pure

strategy s̄ of S, we see that the minimum expected payoff is (n−2)2

nP2
+ 1

nP2
{n−2+ (n−1)(n−3)2

n(n−2)
}.

2.2.2. Hider’s strategy in the case FNN
First we define H’s strategy in the case FNN . Let p(h1) = 1

n
for all h1 ∈ I. Let

p(hF
2 |h1,F) =

1

n
for all hF

2 ∈ I.

p(hN
3 |h1,F , hF

2 ,N ) =

{
0, for hN

3 = hF
2 ;

1
n−1

, for hN
3 ∈ I \ {hF

2 }. (5)

Then calculating the expected payoff to H, case by case, for FNN and any pure strategy

s̄ of S, we see that the minimum expected payoff is (n−2)2

n2(n−1)
(See Part 3 of the Appendix

below).
Hence if H uses the above strategies, the expected payoff to H is at least P ∗

H . Conse-
quently we have the following theorem. Interpretations of optimal strategies will be given
in Section 4.

Theorem 1. The value of the quiet (n, 2, 3) game is P ∗
H . Optimal strategies for both players

are given by (1)-(5) with uniform distributions in the first step.

Proof: By the analysis in the subsections 2.1.1 and 2.1.2 including Parts 1 and 2 in the
Appendix, we have

max{f(h̄, q̄) : h̄ = (h1, h̄N , h̄F )} ≤ P ∗
H . (6)

By the analysis in the subsections 2.2.1 and 2.2.2 including Parts 3 and 4 in the Appendix,
we have

min{f(p̄, s̄) : s̄ = (s1, s̄N , s̄F )} ≥ P ∗
H . (7)

By the basic theory of extensive games (noting that we are treating a game with perfect
recall), there are mixed strategies x̄ and ȳ of H and S respectively such that f(x̄, s̄) = f(p̄, s̄)
for all pure strategies s̄ and f(h̄, ȳ) = f(h̄, q̄) and for all pure strategies h̄. From these and
from (6) and (7), we have

f(x̄, s̄) ≥ P ∗
H ≥ f(h̄, ȳ) for all h̄ and s̄. (8)
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Next suppose p̄′ and q̄′ are behavioral strategies of H and S respectively. There are mixed
strategies x̄′ and ȳ′ of H and S respectively such that f(p̄, q̄′) = f(x̄, ȳ′) and f(p̄′, q̄) =
f(x̄′, ȳ). From these and (8), we have

f(p̄, q̄′) ≥ P ∗
H ≥ f(p̄′, q̄)

for all p̄′ and q̄′. Hence (p̄, q̄) is an equilibrium point. Hence (1)-(5) are optimal (behavioral)
strategies and P ∗

H is the value of the game.

Remark. The game tree for (4, 2, 3), i.e., for n = 4 is very complicated, but can be drawn.
It shows that the roots of the subgames are at the points reached by the outcome of F in the
first turn (By symmetry, there are 4 subgames). Indeed both players know they are at those
points when the outcome of the first step is F . We see (3) and (5) are optimal (behavioral)
strategies for the subgames, by checking Parts 2 and 3 in Appendix, and by applying the

same argument as in the proof of Theorem 1. The value of any subgame is (n−2)2

n(n−1)
. Since

strategies given by (3) and (5) are parts of the whole strategies, we conclude that the pair
of optimal (behavioral) strategies in Theorem 1 is a subgame perfect equilibrium.

3. Quiet Accumulation Game for (n, k, k)

In Section 2 we solved the quiet case where N = 2 and k = 3. In this section we solve
the case where N = k, i.e., we solve the game for (n, k, k). Since the number of steps is
equal to the number of locations, S will win (i.e., payoff 0) as soon as S finds an object
at any step. Then, assuming H and S chose h1, . . . , ht and s1, . . . , st at the previous t
steps, we let Ht ≡ (h1, . . . , ht) and St ≡ (s1, . . . , st) respectively. Without confusion and for
convenience, we very often regard Ht and St as the sets whose elements are h1, . . . , ht and
s1, . . . , st respectively. p(i|h1, . . . , ht) ≡ p(i|Ht) is the probability that H chooses i ∈ I\Ht.
q(i|s1, . . . , st) ≡ q(i|St) is the probability that S chooses i ∈ I.

Theorem 2. The value of the game for (n, k, k) is v ≡ v(n, k) = (n−k)k

nPk
. There are optimal

strategies which are symmetric for both players such that p(hi|Hi−1) = 1
n−i+1

for hi /∈ Hi−1

and q(si|Si−1) = 1
n−i+1

for si /∈ Si−1.

The following identities in the lemmas are elementary but important in solving the game.

Lemma 1. For a fixed sequence h1, . . . , hk such that hi 6= hj for all i 6= j,
∑

s1 /∈H1

∑

s2 /∈H2∪S1

· · · ∑

sk /∈Hk∪Sk−1

1 = (n− k)k.

On the other hand, for a fixed sequence s1, . . . , sk such that si 6= sj for all i 6= j,
∑

h1 /∈Sk

∑

h2 /∈H1∪{s2,...,sk}
· · · ∑

hk /∈Hk−1∪{sk}
1 = (n− k)k.

Proof of Lemma 1: Without loss of generality, we assume hi = i for i = 1, . . . , k. Then the
left hand side becomes:

∑

s1≥2

∑

s2≥3
s2 /∈S1

· · · ∑

sk≥k+1
sk /∈Sk−1

1 =
∑

s2≥3

∑

s1≥2
s1 /∈{s2}

∑

s3≥4
s3 /∈S2

· · · ∑

sk≥k+1
sk /∈Sk−1

1

=
∑

s2≥3

∑

s3≥4
s3 /∈{s2}

· · · ∑

sk≥k+1
sk /∈{s2,...,sk−1}

∑

s1≥2
s1 /∈{s2,...,sk}

1
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= (n− k)
∑

s2≥3

∑

s3≥4
s3 /∈{s2}

· · · ∑

sk≥k+1
sk /∈{s2,...,sk−1}

1

= (n− k)
∑

s3≥4

∑

s4≥5
s4 /∈{s3}

· · · ∑

sk≥k+1
sk /∈{s3,...,sk−1}

∑

s2≥3
s2 /∈{s3,...,sk}

1

= · · · = (n− k)k.

In the left hand side of the second identity,
∑

hi /∈Hi−1∪{si,si+1,...,sk}
1 = n− k

for i = k, k − 1, . . . , 1. So we have the second half.

Lemma 2.

n∑

h1=1

∑

s1 /∈H1

∑

h2 /∈H1

∑

s2 /∈H2∪S1

∑

h3 /∈H2

∑

s3 /∈H3∪S2

· · · ∑

hk /∈Hk−1

∑

sk /∈Hk∪Sk−1

1

=
n∑

h1=1

∑

h2 /∈H1

· · · ∑

hk /∈Hk−1

∑

s1 /∈H1

∑

s2 /∈H2∪S1

∑

s3 /∈H3∪S2

∑

s4 /∈H4∪S3

· · · ∑

sk /∈Hk∪Sk−1

1.

Lemma 3.

n∑

s1=1

∑

h1 6=s1

∑

s2 /∈H1

∑

h2 /∈H1∪{s2}
· · · ∑

sk /∈Hk−1

∑

hk /∈Hk−1∪{sk}
1

=
n∑

s1=1

n∑

s2=1

· · ·
n∑

sk=1

∑

h1 /∈Sk

∑

h2 /∈H1∪{s2,...,sk}

∑

h3 /∈H2∪{s3,...,Sk}

∑

h4 /∈H3∪{s4,...,sk}
· · · ∑

hk /∈Hk−1∪{sk}
1.

Proof of Lemma 2 and Lemma 3: By considering the changes of orderings of summations
carefully, we have Lemmas 2 and 3.

Proof of Theorem 2: Denote the expected payoff to H by f(p, q) when H and S use the
mixed strategies p and q respectively. Denote p∗ and q∗ as follows, noting that the payoff is
0 once si ∈ Hi occurs at any step i.

p∗(hi|Hi−1) =

{
1

n−i+1
, for hi /∈ Hi−1;

0, for hi ∈ Hi−1.

q∗(si|Si−1) =

{
1

n−i+1
, for si /∈ Si−1;

0, for si ∈ Si−1.

f(p∗, q) =
n∑

s1=1

q(s1)
∑

h1 6=s1

1

n
· · · ∑

sk /∈Hk−1

q(sk|Hk−1)
∑

hk /∈Hk−1∪{sk}

1

n− k + 1

=
1

nPk

n∑

s1=1

q(s1)
n∑

s2=1

q(s2|S1) · · ·
n∑

sk=1

q(sk|Sk−1)
∑

h1 /∈Sk

∑

h2 /∈H1∪{s2,...,sk}
· · · ∑

hk /∈Hk−1∪{sk}
1

≥ (n− k)k

nPk

n∑

s1=1

q(s1)
n∑

s2=1

q(s2|S1) · · ·
n∑

sk=1

q(sk|Sk−1)

=
(n− k)k

nPk
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by Lemma 3 and since |{h1|h1 /∈ Sk}| ≥ n − k, |{h2|h2 /∈ H1 ∪ {s2, . . . , sk}}| ≥ n − k, . . . ,
and |{hk|hk /∈ Hk−1 ∪ {sk}}| ≥ n− k. Next,

f(p, q∗) =
n∑

h1=1

p(h1)
∑

s1 /∈H1

1

n

∑

h2 /∈H1

p(h2|h1)

∑

s2 /∈H2∪S1

1

n− 1
· · · ∑

hk /∈Hk−1

p(hk|Hk−1)
∑

sk /∈Hk∪Sk−1

1

n− k + 1

=
1

nPk

n∑

h1=1

p(h1)
∑

h2 /∈H1

p(h2|h1) · · ·
∑

hk /∈Hk−1

p(hk|Hk−1)
∑

s1 /∈H1

∑

s2 /∈H2∪S1

· · · ∑

sk /∈Hk∪Sk−1

1

=
(n− k)k

nPk

,

by Lemmas 2 and 1.

Remark. In the noisy case corresponding to (n, k, k), the game value becomes nPk+1

nk+1 which

is derived from Equation (10) of [2] and it is greater than or equal to v(n, k) = (n−k)k

nPk
. This

is reasonable because H has more information in the noisy case than in the quiet case.

We conclude by sketching an alternative derivation of Theorem 2 that applies in any
situation in which H loses if even one object is located. We leave the details to the reader.
Consider an accumulation game with n locations in which at each turn H hides at h, S
searches s, there are k turns and H must retain all objects hidden, N = kh. We assume H
does not know the locations where S searches. We shall say that a location is safe at turn
i if S will not examine that location at turn i or thereafter. If H places an object at a safe
location then it will not be found. A location is called open if there is no object at that
location. At turn i the largest number of locations that cannot be safe is (k − i + 1)s. The
maximal number is attained if S never searches a location more than once. This is possible
if ks < n. Thus the smallest possible number of safe locations on turn i is n− (k − i + 1)s.
If H has previously placed objects only at safe locations on previous turns then the number
of locations that are free and safe is n − (k − i + 1)s − (i − 1)h. The probability that H
places h objects at locations that are safe during turn i is

n−(k−i+1)s−(i−1)h
n−(i−1)h

· n−(k−i+1)s−(i−1)h−1
n−(i−1)h−1

· · · n−(k−i+1)s−(i−1)h−h+1
n−(i−1)h−h+1

.

The probability that H will win is the product of these numbers as i ranges from 1 to k. If
h = s then the probabilities become

n− ks

n− (i− 1)s
· n− ks− 1

n− (i− 1)s− 1
· · · n− (k + 1)s + 1

n− is + 1
.

If h = s = 1 then the probabilities become

n− k

n− i + 1

so that the probability of H winning is

k∏

i=1

n− k

n− i + 1
=

(n− k)k

n · (n− 1) · · · (n− k + 1)
.
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4. Conclusion and Comments

We have formulated a quiet accumulation game and solved two special cases: (1) Where the
number of steps is 3 and the number of objects to be hidden is 2, (n, 2, 3); (2) Where the
number of steps equals the number of objects to be hidden.

In the game for (n, 2, 3) each player should, in principle, choose locations with equal
probability if he has the same information on each of those locations. Then, as play proceeds,
both players must consider minimax and maximin as in the Appendix. In some cases,
optimal strategies for both players are interpreted as follows.

Suppose the outcome of the first step is F . Each player knows the choice of the oppsite
player in the first step. Strategies (3) and (5) say that both players should choose strategies
as if they were playing the game for (n, 2, 2) in the following two steps. This is because both
players must consider that the opposite player may make the same choice as in the first
step. They calculate maximin and minimax respectively, and consequently must choose all
locations at random.

Suppose the outcome of the first step is N . In the second step, H should choose each
location h2(6= h1) at random, since he does not know s1 (The first expression in (4)). S
should not choose s1 since, with probability 1, S would fail to catch an object at h1, if S
chooses s1. So S should choose s2(6= s1) at random (The expression (1)).

Suppose the outcomes of the two steps are N and F . S would not be able to distinguish
NF1 and NF2. In the third step S should not choose s1 since, in the case where s2 = h2,
and in the case where s2 = h1 and s1 6= h2, S would fail to catch an object at h1, with a
probability of 1. Keeping in mind H’s strategy, the probability that s2 = h1 and s1 = h2

occur simultaneously is relatively small. On the other hand S may choose sN
2 in the third

step since H may choose it, too (The expression (2)).
For H, the difference between NF1 and NF2 is that there is a possibility that h2 = s1

in NF1 and there is no possibility that h2 = s1 or s1 = h1 in NF2. This difference may
affect H’s strategy in the third step (The second and third expressions in (4)).

In the game for (n, k, k), H’s strategy is clearly understood. In the ith (i ≥ 2) step S
should not repeat his previous choices since, with probability of 1, S would fail to catch an
object in h1, . . . , hi−1 if S chooses one of s1, . . . , si−1. The reader can easily verify this in
the case for (n, 2, 2).

It seems to be difficult to solve the quiet accumulation game in general, i.e., in the case
where the number of steps and the goal of H are not specified. On the other hand, it does
not appear to be difficult to get a recursive relation of the value function on the number of
steps, etc. But the relation will be very complicated, including many state variables.
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Appendix

The quantity in brackets on each edge in all of the figures in the Appendix is the condi-
tional probability that the edge is reached under the behavioral strategy. Furthermore, the
probability of each path is attached in brackets at each leaf.

Part 1. First we check S’s strategy in the cases NN and NFN . Define q(s1) = 1
n

for all
s1 ∈ I. To simplify the notation, let s2 = sN

2 and s3 = sF
3 . Assuming s1 6= h1, define for

0 ≤ a ≤ 1
n−1

,

q(s2|s1,N ) =
{

a, for s2 ∈ I \ {s1};
1− (n− 1)a, for s2 = s1.

Assuming s1 6= h1 and s2 ∈ {hN
2 , h1} and s2 6= s1, define

q(s3|s1,N , s2,F) =





x, for s3 = s1;
y, for s3 = s2;
z, for s3 ∈ I \ {s1, s2},

where x + y + (n − 2)z = 1 and x, y, z ≥ 0. Assuming s1 = hN
2 and s2 = hN

2 , define for
0 ≤ d ≤ 1

n−1
,

q(s3|s1,N , s1,F) =
{

1− (n− 1)d, for s3 = s1;
d, for s3 ∈ I \ {s1}.

To simplify the notation, let h2 = hN
2 , h31 = hF1

3 and h32 = hF2
3 .

Case 1: h1, h2, h31 and h32 are all different.

h1





N,[n−4
n

]

s1 6=h1,h2,h31,h32
h2





N,[1−2a]
s2 6=h1,h2

[ (n−4)(1−2a)
n

]

F,[a]
s2=h2

h32
N,[1−2z]
s3 6=h32,h1

[ (n−4)a(1−2z)
n

]

F,[a]
s2=h1

h31
N,[1−2z]
s3 6=h31,h2

[ (n−4)a(1−2z)
n

]

N,[ 1
n

]

s1=h2
h2





N,[(n−2)a]
s2 6=h1,h2

[ (n−2)a
n

]

F,[1−(n−1)a]
s2=h2

h32
N,[1−2d]
s3 6=h32,h1

[ (1−(n−1)a)(1−2d)
n

]

F,[a]
s2=h1

h31
N,[1−x−z]
s3 6=h31,h2

[a(1−x−z)
n

]

N,[ 1
n

]

s1=h32
h2





N,[1−2a]
s2 6=h1,h2

[1−2a
n

]

F,[a]
s2=h2

h32
N,[1−x−z]
s3 6= h32,h1

[a(1−x−z)
n

]

F,[a]
s2=h1

h31
N,[1−2z]
s3 6=h31,h2

[a(1−2z)
n

]

N,[ 1
n

]

s1=h31
h2





N,[1−2a]
s2 6=h1,h2

[1−2a
n

]

F,[a]
s2=h2

h32
N,[1−2z]
s3 6=h32,h1

[a(1−2z)
n

]

F,[a]
s2=h1

h31
N,[1−x−z]
s3 6=h31,h2

[a(1−x−z)
n

]

Figure 3 : Seeker’s strategy in NN and NFN : Case 1.
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We denote by P 1
1 (a, x, y, d) the expected payoff to H : From Figure 3,

P 1
1 (a, x, y, d) ≡ 1

n
{(n−2)(1−a)+2(n−3)a(1−2z)+3a(1−x−z)+ [1− (n−1)a](1−2d)}.

Case 2: Assume h31 = h1. h1, h2 and h32 are different.

h1





N,[n−3
n

]

s1 6=h1,h2,h32
h2





N,[1−2a]
s2 6=h1,h2

[ (n−3)(1−2a)
n

]

F,[a]
s2=h2

h32
N,[1−2z]
s3 6=h32,h1

[ (n−3)a(1−2z)
n

]

F,[a]
s2=h1

h1
N,[1−y−z]
s3 6=h1,h2

[ (n−3)a(1−y−z)
n

]

N,[ 1
n

]

s1=h2
h2





N,[(n−2)a]
s2 6=h1,h2

[ (n−2)a
n

]

F,[1−(n−1)a]
s2=h2

h32
N,[1−2d]
s3 6=h32,h1

[ (1−(n−1)a)(1−2d)
n

]

F,[a]
s2=h1

h1
N,[(n−2)z]
s3 6=h1,h2

[a(n−2)z
n

]

N,[ 1
n

]

s1=h32
h2





N,[1−2a]
s2 6=h1,h2

[1−2a
n

]

F,[a]
s2=h2

h32
N,[1−x−z]
s3 6=h32,h1

[a(1−x−z)
n

]

F,[a]
s2=h1

h1
N,[1−y−z]
s3 6=h1,h2

[a(1−y−z)
n

]

Figure 4 : Seeker’s strategy in NN and NFN : Case 2.

We denote by P 1
2 (a, x, y, d) the expected payoff to H : From Figure 4,

P 1
2 (a, x, y, d) ≡ 1

n
{(n− 2)(1− a) + (n− 2)a(1− y − z)

+a(1− x− z) + [1− (n− 1)a](1− 2d) + a[n− 3− (n− 4)z]}.

Case 3: Assume h32 = h2. h1, h2 and h31 are different.

c© Operations Research Society of JapanJORSJ (2003) 46-4



498 W.H. Ruckle & K. Kikuta

h1





N,[n−3
n

]

s1 6=h1,h2,h31
h2





N,[1−2a]
s2 6=h1,h2

[ (n−3)(1−2a)
n

]

F,[a]
s2=h2

h2
N,[1−y−z]
s3 6=h1,h2

[ (n−3)a(1−y−z)
n

]

F,[a]
s2=h1

h31
N,[1−2z]
s3 6=h31,h2

[ (n−3)a(1−2z)
n

]

N,[ 1
n

]

s1=h2
h2





N,[(n−2)a]
s2 6=h1,h2

[ (n−2)a
n

]

F,[1−(n−1)a]
s2=h2

h2
N,[(n−2)d]
s3 6=h1,h2

[ (1−(n−1)a)(n−2)d
n

]

F,[a]
s2=h1

h31
N,[1−x−z]
s3 6=h31,h2

[a(1−x−z)
n

]

N,[ 1
n

]

s1=h31
h2





N,[1−2a]
s2 6=h1,h2

[1−2a
n

]

F,[a]
s2=h2

h2
N,[1−y−z]
s3 6=h1,h2

[a(1−y−z)
n

]

F,[a]
s2=h1

h31
N,[1−x−z]
s3 6=h31,h2

[a(1−x−z)
n

]

Figure 5 : Seeker’s strategy in NN and NFN : Case 3.

We denote by P 1
3 (a, x, y, d) the expected payoff to H : From Figure 5,

P 1
3 (a, x, y, d) ≡ 1

n
{(n− 2)(1− a) + (n− 2)a(1− y − z)

+2a(1− x− z) + [1− (n− 1)a](1− 2d) + a(n− 3)(1− 2z)}.

Case 4: Assume h32 = h2 and h31 = h1 and h1 6= h2.

h1





N,[n−2
n

]

s1 6=h1,h2
h2





N,[1−2a]
s2 6=h1,h2

[ (n−2)(1−2a)
n

]

F,[a]
s2=h2

h2
N,[1−y−z]
s3 6=h1,h2

[ (n−2)a(1−y−z)
n

]

F,[a]
s2=h1

h1
N,[1−y−z]
s3 6=h1,h2

[ (n−2)a(1−y−z)
n

]

N,[ 1
n

]

s1=h2
h2





N,[(n−2)a]
s2 6=h1,h2

[ (n−2)a
n

]

F,[1−(n−1)a]
s2=h2

h2
N,[(n−2)d]
s3 6=h1,h2

[ (1−(n−1)a)(n−2)d
n

]

F,[a]
s2=h1

h1
N,[1−x−y]
s3 6=h1,h2

[a(1−x−y)
n

]

Figure 6 : Seeker’s strategy in NN and NFN : Case 4.

We denote by P 1
4 (a, x, y, d) the expected payoff to H : From Figure 6,

P 1
4 (a, x, y, d) ≡ 1

n
{(n− 2)(1− a) + (n− 2)a(1− y− z) + a(n− 2)z + [1− (n− 1)a](1− 2d)}.

Let a = 1
n−1

, x = 0, y = 1
n
, z = n−1

n(n−2)
and let d be number. Then we have
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P 1
2 (

1

n− 1
, 0,

1

n
, d) ≤ P 1

1 (
1

n− 1
, 0,

1

n
, d) =

(n− 2)2

nP2

+
1

nP2

{n− 2 +
(n− 1)(n− 3)2

n(n− 2)
},

P 1
4 (

1

n− 1
, 0,

1

n
, d) ≤ P 1

3 (
1

n− 1
, 0,

1

n
, d) <

(n− 2)2

nP2

+
1

nP2

{n− 2 +
(n− 1)(n− 3)2

n(n− 2)
}.

Part 2. Next we check S’s strategy in the case FNN . Define q(s1) = 1
n

for all s1 ∈ I. To
simplify the notation, let s2 = sF

2 and s3 = sN
3 . Define

q(s2|s1,F) =
{

1− (n− 1)b, for s2 = s1;
b, for s2 ∈ I \ {s1},

and

q(s3|s1,F , s2,N ) =





e, for s3 = s1;
1− (n− 2)f − e, for s3 = s2;
f, for s3 ∈ I \ {s1, s2},

where 0 ≤ b ≤ 1
n−1

and 0 ≤ (n− 2)f + e ≤ 1, f, e ≥ 0. To simplify the notation, let h2 = hF
2

and h3 = hF1
3 .

Case 1: h1, h2 and h3 are different.

h1

F, [ 1
n
]

s1 = h1

h2





N,[1−2b]
s2 6=h2,h3

h3
N,[1−2f ]
s3 6=h3,h2

[ (1−2b)(1−2f)
n

]

N,[b]
s2=h3

h3
N,[(n−3)f+e]

s3 6=h3,h2
[ b((n−3)f+e)

n
]

Figure 7 : Seeker’s strategy in FNN : Case 1.

We denote by P 2
1 (b, e) the expected payoff to H : From Figure 7,

P 2
1 (b, e) ≡ 1

n
{b[(n− 3)f + e] + (1− 2b)(1− 2f)}.

Case 2: Assume h3 = h1 and h1 6= h2.

h1

F, [ 1
n
]

s1 = h1

h2
N, [1− b]

s2 6= h2

h1
N, [1− f − e]

s3 6= h1, h2

[
(1− b)(1− f − e)

n
]

Figure 8 : Seeker’s strategy in FNN : Case 2.

We denote by P 2
2 (b, e) the expected payoff to H : From Figure 8, P 2

2 (b, e) ≡ 1
n
(1−b)(1−f−e).

Case 3: Assume h2 = h1 and h1 6= h3.

h1

F, [ 1
n
]

s1 = h1

h1





N,[(n−2)b]
s2 6=h1,h3

h3
N,[1−e−f ]
s3 6=h1,h3

[ (n−2)b(1−e−f)
n

]

N,[b]
s2=h3

h3
N,[(n−2)f ]
s3 6=h1,h3

[ b(n−2)f
n

]

Figure 9 : Seeker’s strategy in FNN : Case 3.

We denote by P 2
3 (b, e) the expected payoff to H : From Figure 9, P 2

3 (b, e) ≡ 1
n
(n− 2)b(1−

e).Let b = 1
n

and e = f = 1
n−1

. Then P 2
1 ( 1

n
, 1

n−1
) = P 2

3 ( 1
n
, 1

n−1
) = (n−2)2

n2(n−1)
is the maximum.

Note that P 2
2 ( 1

n
, 1

n−1
) = (n−1)(n−3)

n2(n−1)
≤ P 2

3 ( 1
n
, 1

n−1
).
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Part 3. Next we check H’s strategy in the case FNN . To simplify the notation, we let
h2 = hF

2 and h3 = hN
3 . Define p(h1) = 1

n
for all h1 ∈ I. And for 0 ≤ a ≤ 1

n−1
and

0 ≤ b ≤ 1
n−2

,

p(h2|h1,F) =
{

1− (n− 1)a, for h2 = h1(= s1);
a, for h2 ∈ I \ {h1},

p(h3|h1,F , h2,N ) =
{

1− (n− 2)b, for h3 = h1(= s1);
b, for h3 ∈ I \ {h1, h2}.

To simplify the notation, let s2 = sF
2 and s3 = sN

3 .
Case 1: s1 6= s2, s2 6= s3 and s3 6= s1.

s1

F, [ 1
n
]

h1 = s1

s2





N,[1−(n−1)a]
h2=s1

s3
N,[1−b]

h3 6=h2,s3
[ (1−(n−1)a)(1−b)

n
]

N,[(n−3)a]
h2 6=s1,s2,s3

s3
N,[1−b]

h3 6=s3,h2
[ (n−3)a(1−b)

n
]

Figure 10 : Hider’s strategy in FNN : Case 1.

We denote by P 3
1 (a, b) the expected payoff to H: From Figure 10, P 3

1 (a, b) ≡ 1
n
{(n−3)a(1−

b) + [1− (n− 1)a]n−2
n−1

}.
Case 2: Assume s3 = s2 and s1 6= s2.

s1

F, [ 1
n
]

h1 = s1

s2





N,[1−(n−1)a]
h2=s1

s2
N,[1−b]

h3 6=h2,s2
[ (1−(n−1)a)(1−b)

n
]

N,[(n−2)a]
h2 6=s1,s2

s2
N,[1−b]

h3 6=h2,s2
[ (n−2)a(1−b)

n
]

Figure 11 : Hider’s strategy in FNN : Case 2.

We denote by P 3
2 (a, b) the expected payoff to H: From Figure 11, P 3

2 (a, b) ≡ 1
n
{(n−2)a(1−

b) + [1− (n− 1)a]n−2
n−1

}.
Case 3: Assume s3 = s1 and s1 6= s2.

s1

F, [ 1
n
]

h1 = s1

s2
N, [(n− 2)a]

h2 6= s2, s1

s1
N, [(n− 2)b]

h3 6= h2, s1

[
(n− 2)2ab

n
]

Figure 12 : Hider’s strategy in FNN : Case 3.

We denote by P 3
3 (a, b) the expected payoff to H: From Figure 12, P 3

3 (a, b) ≡ 1
n
(n− 2)2ab.

Case 4: Assume s2 = s1 and s3 6= s2.

s1

F, [ 1
n
]

h1 = s1

s1
N, [(n− 2)a]

h2 6= s3, s1

s3
N, [1− b]

h3 6= h2, s3

[
(n− 2)a(1− b)

n
]

Figure 13 : Hider’s strategy in FNN : Case 4.

We denote by P 3
4 (a, b) the expected payoff to H: From Figure 13, P 3

4 (a, b) ≡ 1
n
(n−2)a(1−b).

Case 5: Assume s2 = s1 and s3 = s1.

s1

F, [ 1
n
]

h1 = s1

s2
N, [(n− 1)a]

h2 6= s1

s1
N, [(n− 2)b]

h3 6= s1, h2

[
(n− 1)(n− 2)ab

n
]

Figure 14 : Hider’s strategy in FNN : Case 5.
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We denote by P 3
5 (a, b) the expected payoff to H: From Figure 14, P 3

5 (a, b) ≡ 1
n
(n−2)(n−1)ab.

Let a = 1
n

and b = 1
n−1

. Then the minimum value is (n−2)2

n2(n−1)
.

Part 4. Next we check H’s strategy in the cases NFN and NN . To simplify the notation,
we let h2 = hN

2 and h32 = hF2
3 and h31 = hF1

3 . Define

p(h2|h1,N ) =

{
1

n−1
, for h2 ∈ I \ {h1};

0, for h2 = h1,

p(h31|h1,N , h2,F1) =





0, for h31 = h2;
1− (n− 2)d, for h31 = h1;
d, for h31 ∈ I \ {h1, h2},

p(h32|h1,N , h2,F2) =





0, for h32 = h1;
1− (n− 2)c, for h32 = h2;
c, for h32 ∈ I \ {h1, h2},

where 0 ≤ c, d ≤ 1
n−2

. To simplify the notation, let s2 = sN
2 and s3 = sF

3 .
Case 1: Assume s1, s2 and s3 are different.

s1





N,[n−3
n

]

h1 6=s1,s2,s3
s2





N,[n−2
n−1

]

h2 6=h1,s2
[ (n−3)(n−2)

n(n−1)
]

F,[ 1
n−1

]

h2=s2
s3

N,[1−c]
h32 6=h1,s3

[ (n−3)(1−c)
n(n−1)

]

N,[ 1
n

]

h1=s2
s2

F,[n−2
n−1

]

h2 6=h1,s3
s3

N,[1−d]
h31 6=h2,s3

[ (n−2)(1−d)
n(n−1)

]

N,[ 1
n

]

h1=s3
s2

N,[n−2
n−1

]

h2 6=h1,s2
[ n−2
n(n−1)

]

Figure 15 : Hider’s strategy in NN and NFN : Case 1.

We denote by P 4
1 (c, d) the expected payoff to H: From Figure 15, P 4

1 (c, d) ≡ 1
n(n−1)

{(n −
3)(1− c) + (n− 2)(1− d) + (n− 2)2}.
Case 2: Assume s3 = s2 and s2 6= s1.

s1





N,[n−2
n

]

h1 6=s1,s2
s2





N,[n−2
n−1

]

h2 6=h1,s2
[ (n−2)2

n(n−1)
]

F,[ 1
n−1

]

h2=s2
s2

N,[(n−2)c]
h32 6=h1,s2

[ (n−2)2c
n(n−1)

]

N,[ 1
n

]

h1=s2
s2

F,[1]
h2 6=h1

s2
N,[(n−2)d]
h31 6=h2,s2

[ (n−2)d
n

]

Figure 16 : Hider’s strategy in NN and NFN : Case 2.

We denote by P 4
2 (c, d) the expected payoff to H: From Figure 16, P 4

2 (c, d) ≡ 1
n(n−1)

{(n −
2)2c + (n− 1)(n− 2)d + (n− 2)2}.
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Case 3: Assume s1 = s2 and s3 6= s1.

s1





N,[n−2
n

]

h1 6=s1,s3
s1





N,[n−2
n−1

]

h2 6=s1,h1
[ (n−2)2

n(n−1)
]

F,[ 1
n−1

]

h2=s1
s3

N,[1−c]
h32 6=s3,h1

[ (n−2)(1−c)
n(n−1)

]

N,[ 1
n

]

h1=s3
s1

N,[n−2
n−1

]

h2 6=s1,h1
[ n−2
n(n−1)

]

Figure 17 : Hider’s strategy in NN and NFN : Case 3.

We denote by P 4
3 (c, d) the expected payoff to H: From Figure 17, P 4

3 (c, d) ≡ 1
n(n−1)

{(n −
2)(1− c) + (n− 1)(n− 2)}.
Case 4: Assume s1 = s3 and s2 6= s1.

s1





N,[n−2
n

]

h1 6=s1,s2
s2





N,[n−2
n−1

]

h2 6=h1,s2
[ (n−2)2

n(n−1)
]

F,[ 1
n−1

]

h2=s2
s1

N,[1−c]
h32 6=h1,s1

[ (n−2)(1−c)
n(n−1)

]

N,[ 1
n

]

h1=s2
s2

F,[n−2
n−1

]

h2 6=s2,s1
s1

N,[1−d]
h31 6=h2,s1

[ (n−2)(1−d)
n(n−1)

]

Figure 18 : Hider’s strategy in NN and NFN : Case 4.

We denote by P 4
4 (c, d) the expected payoff to H: From Figure 18, P 4

4 (c, d) ≡ 1
n(n−1)

{(n −
2)(1− c) + (n− 2)(1− d) + (n− 2)2}.
Case 5: Assume s1 = s2 = s3.

s1

N, [n−1
n

]

h1 6= s1

s1





N,[n−2
n−1

]

h2 6=s1,h1
[ (n−1)(n−2)

n(n−1)
]

F,[ 1
n−1

]

h2=s1
s1

N,[(n−2)c]
h32 6=h1,s1

[ (n−1)(n−2)c
n(n−1)

]

Figure 19 : Hider’s strategy in NN and NFN : Case 5.

We denote by P 4
5 (c, d) the expected payoff to H: From Figure 19, P 4

5 (c, d) ≡ 1
n(n−1)

{(n −
2)(n − 1)c + (n − 2)(n − 1)}. Let c = 1

n−2
and d = (n−3)2

n(n−2)2
. The minimum value is

(n−2)2

nP2
+ 1

nP2
{n− 2 + (n−1)(n−3)2

n(n−2)
}.
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