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Abstract This research aims to find a non-recurring directed path that will enable all investment regions
to achieve the target revenues within the shortest period of time. We call this optimization problem the
centralized sequential investment problem (CSIP). “Regional characteristics effect (RC effect)” is assumed
to be the major factor that affects the expected time to achieve the target revenue for an investment region.
Using the RC effect definition, we introduce the concepts of path effectiveness and sequential effectiveness.
Furthermore, we define a completely memoryless property of the RC effect and consider the scenario that
the RC effect of a prior investment region on a subsequent investment region follows a linear fashion.
Accordingly, this paper explores CSIP’s structural properties and constructs a binary integer programming
model for transnational sequential investment. Also, a simple method of estimating model parameters and
a GA-based solution procedure are proposed for solving CSIP.

Keywords: Centralized sequential investment, regional characteristic effect, path effec-
tiveness, sequential effectiveness, genetic algorithms

1. The Centralized Sequential Investment Strategy

In today’s knowledge-based economy where competency plays a more critical role than ever
in corporate survival and growth, companies are all committed to ensuring their sustained
competitive advantages and globalising their operations. In this paper, we propose an al-
ternative model for transnational investment under the centralized sequential investment
strategy. We consider a company that plans to select N international regions for transna-
tional marketing and sales of some end products or services. We will suppose that the
firm wishes to use the market entry mode of foreign direct investment, such as sole owner-
ship and acquisition of whole ownership. (Related extensions based on international entry
models can be found in [2, 3, 5]). Based on the above assumptions, the optimization of a
centralized sequential investment problem (CSIP) aims to find a non-cyclic path minimizing
the expected time to achieve target revenue for every investment region. To construct the
CSIP, the centralized sequential investment strategy must be described first. Let P be the
non-cyclic directed path that starts at the parent company, P ∈ ΩN , where ΩN is the set of
all non-recurring directed paths in between N planned investment regions. Also, let Pi be
ith investment region of path P, ∀P ∈ ΩN and TPi|P be the time to achieve target revenue
RPi

for investment region Pi, i = 0, 1, 2, . . . , N (P0 ≡ 0 representing the parent company),
considering the influence of regional characteristics on path P with the limited amount of
capital C0 initially invested by the company. Based on the notations and definitions above,
the centralized sequential investment strategy is illustrated in Figure 1 as follows:
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Figure 1: Centralized sequential investment strategy (Number “0” represents parent company,
the dotted line represents the direction of capital flow, and the solid line represents the transna-
tional investment sequence.)

As shown in the above diagram, under the centralized sequential investment strategy,
the parent company concentrates its capital C0 (after the parent company achieves target
revenue R0) in one investment region and will not transfer the initial capital investment to
another region until the prior region achieves the target revenue. The investment continues
by such a sequence and gradually grows transnational until investment in all planned regions
is completed and has gained a return (the target revenue). When an investment region
achieves its target revenue, we say this investment region has gleaned the sufficient cash
flow to respond to any operational risk and thus can maintain its operation as stably as
possible.

2. The CSIP’s Initial Formulation

With the limited human, material, and financial resources available, considering the on-going
global recession, companies that intend to expand their initial operational scale usually
reduce risks involved in doing so by centralizing their resources through the centralized
sequential investment strategy. According to the definition of the centralized sequential
investment strategy proposed in Section 1, the CSIP refers to transnational corporations
pursuing an optimal non-recurring directed path that enables corporations to achieve the
target revenues for all investment regions within the shortest expected time period. In other
words, if we let P ∗ be the optimal sequential investment path, then

P ∗ = arg min
P∈ΩN

{E[TP1|P + TP2|P + · · ·+ TPN−1|P + TPN |P ]}. (1)

The expected time to achieve the target revenue for an investment region is extremely
hard to estimate since it also depends on the prior invested regions. It is both theoretically
and practically difficult to obtain P ∗ merely based on the above model. This study will
devote the following sections to first discussing the factors (regional characteristics) that
affect the expected time to achieve target revenues for all investment regions. Next we
introduce the concepts of path effectiveness and sequential effectiveness and convert the
original problem of “minimizing the expected time to achieve the target revenues for all
investment regions” into the problem of “maximizing the total of all regions’ weighted
sequential effectiveness”. By doing so, we can estimate the sequential effectiveness directly
instead of estimating the expected time to achieve target revenue for an investment region,
after which we can find the optimal sequential investment path.
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3. Related Terminology

3.1. Regional characteristics effect (RC effect)

Under centralized sequential investment strategy, if a prior investment region’s consumer
environment and consumer culture possesses a certain consumer fervor, this will have an
effect on the consumer behaviors regarding a certain commodity or service in subsequent
investment regions. When this happens, we say that the regional characteristics (RC) effect
arises within the investment sequence. For a specified prior investment region, the higher
demand for this commodity or service in this region implies that there has been a larger RC
effect on the subsequent investment regions.

3.2. Consumer fervor index (CFI)

Consider the influence of the regional characteristics effect on path P , P ∈ ΩN . Assume
region Pi’s regional characteristics effect on subsequent investment regions is in the form of
demand when the target revenue (RPi

) achieved can be quantified by an ordinal scale, λPi|P .
The variable λPi|P is called the “consumer fervor index (CFI)”. The larger value of λPi|P
reflects the higher RC effect (in terms of consumer fervor) that region Pi has on subsequent
investment regions. In addition, let λPi|P = λPi

+ ∆λPi|P , where λPi
is any positive real

number representing the CFI when region Pi achieves target revenue RPi
regardless of the

prior investment regions’ RC effect. Moreover, ∆λPi|P (∆λPi|P > 0) represents the increased
amount of CFI when region Pi achieves target revenue RPi

if the prior investment regions’
RC effect on region Pi is considered. Since the CFI, λPi|P , is defined as an ordinal scale, we
can assume that E[TPi|P ] → 0 when λPi|P = 2λPi

. Since the fact that E[TPi|P ] is extremely
short represents the extremely great demand in region Pi at that time that target revenue
RPi

is achieved. As a result, we can assume that Max
P∈ΩN

{λPi|P} ≤ 2λPi
. Due to the fact that

λPi|P = λPi
+ ∆λPi|P , we can obtain that 0 < ∆λPi|P ≤ λPi

for any path P, P ∈ ΩN .

3.3. Regional characteristics correlation index (RCCI)

Let λPi−k,Pi
be the CFI when region Pi, under the influence of the regional characteristics

of region Pi−k, achieves the target revenue and the CFI in region Pi−k achieves λPi−k
, k =

1, 2, . . . , i; i = 1, 2, . . . , N . Also, λu
Pi−k,Pi

denotes the CFI when region Pi, considering the
RC effect from region Pi−k, achieves the target revenue and the CFI in region Pi−k is 2λPi−k

.
λPi−k,Pi|P represents the CFI when region Pi, considering the RC effect from region Pi−k,
achieves the target revenue and the CFI in region Pi−k is λPi−k|P . In this paper we assume
that there exists a real number θPi−k,Pi

so that

λPi−k,Pi|P − λPi−k,Pi

λu
Pi−k,Pi

− λPi−k,Pi

≈
(

λPi−k|P − λPi−k

2λPi−k
− λPi−k

)θPi−k,Pi

. (2)

We call this “regional characteristics correlation index (RCCI)”.

If θPi−k,Pi
< 1, the consumers in region Pi that are affected by region Pi−k consumers will

fervently follow the behavior of the consumers in region Pi−k. The consumers in region Pi

that are affected by region Pi−k consumers will be disinclined to follow the behavior of the
consumers in region Pi−k, if θPi−k,Pi

> 1. If θPi−k,Pi
= 1, then the consumers in region Pi are

neither hot nor cool (fervent nor disinclined) about following the behavior of the consumers
in region Pi−k. (Note that θPi−k,Pi

may be not equal to θPi,Pi−k
). In this paper we use both

indices CFI and RCCI to measure the magnitude of RC effect that a prior investment region
has on a subsequent investment region.
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3.4. Path effectiveness

Path effectiveness refers to the percentage of reduction of the expected time to achieve the
target revenues for all investment regions that can be attributed to the consideration of RC
effect. In other words, consider an investment path P , P ∈ ΩN . Let U(P ) represent path
effectiveness, then

U(P ) =

E

[
N∑

i=1

TPi

]
− E

[
N∑

i=1

TPi|P

]

E

[
N∑

i=1

TPi

] . (3)

The random variable TPi
is the time to achieve the target revenue (RPi

) when we do not
take into account the RC effect on path P .

3.5. Sequential effectiveness

Sequential effectiveness refers to the percentage of reduction of the expected time to achieve
the target operation revenue for an investment region that results from RC effect on the prior
investment regions. In other words, if we let FPi|P be region Pi’s sequential effectiveness in
path, P , P ∈ ΩN , then

FPi|P =
E[TPi

]− E[TPi|P ]

E[TPi
]

. (4)

3.6. Pure and multi-dimension-based sequential effectiveness

If we suppose that λPi−1|P , λPi−2|P , . . . , λP0|P influence FPi|P independently and let f(Pi−k,Pi)|P
be λPi−k|P ’s strictly increasing function, then

FPi|P =
i∑

k=1

f(Pi−k,Pi)|P (λPi−k|P ). (5)

In addition, let f(Pi−k,Pi)|P = h(Pi−k,Pi)|P + g(Pi−k,Pi)|P , where h(Pi−k,Pi)|P is a function of
λPi−k

, and g(Pi−k,Pi)|P is a function of ∆λPi−k|P and λPi−k
. We say h(Pi−k,Pi)|P belongs to the

class of pure sequential effectiveness and g(Pi−k,Pi)|P belongs to the class of multi-dimension-
based sequential effectiveness. Since the value of ∆λPi−k|P depends on λPi−k−l|P , l =

1, 2, . . . , i− k − 1, hence, we further suppose g(Pi−k,Pi)|P ≈
i−k−1∑

j=1

gj
(Pi−k,Pi)|P where gj

(Pi−k,Pi)|P

is termed (j + 1)-dimension-based sequential effectiveness, because the value of gj
(Pi−k,Pi)|P

depends on (j + 1) number of simple CFIs (for convenience, we term λPi|P the complex
CFI and term λPi

the simple CFI). According to the definition of multi-dimension-based
sequential effectiveness, we suppose that gj

(Pi−k,Pi)|P is strictly decreasing in j.
An example will illustrate the difference between pure and multi-dimension-based se-

quential effectiveness. Assume a company plans to invest in the three regions A, B, and C.
The investment starts with region A, moves on to region B after region A achieves target
revenue, and ends with region C. Since the commodity or service is in great demand or
is popular (because target revenue has been achieved) in region A, an additional demand
can be created in region B as a result of region A’s regional characteristics effect on region
B. In other words, the consumer behavior in region B is prompted by the fact that this
commodity or service is in great demand or is popular in region A. The addition of this
demand reduces the time to achieve the target revenue for region B. The percentage of
reduction of the expected time is the sequential effectiveness produced by region A’s RC
effect on region B. Obviously this sequential effectiveness is only determined by region A’s
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simple CFI, thus it is called pure sequential effectiveness. By the same token, the consumer
behavior in region C is prompted by region B’s RC effect. Region A’s RC effect increases
the demand in region B when target revenue is achieved, which in turn increases sequential
effectiveness of region C attributed to region B. Since this increased sequential effectiveness
is related to both region A and region B’s simple CFIs, it is called two-dimension-based
sequential effectiveness.

4. Model Construction and Property Discussion

Theorem 1 Min
P∈ΩN

{
E

[
N∑

i=1

TPi|P

]}
∼= Max

P∈ΩN

{U(P )}.

Proof :

Min
P∈ΩN

{
E

[
N∑

i=1

TPi|P

]}
∼= Max

P∈ΩN

{
−E

[
N∑

i=1

TPi|P

]}
∼= Max

P∈ΩN

{
E

[
N∑

i=1

TPi

]
− E

[
N∑

i=1

TPi|P

]}

∼= Max
P∈ΩN





E

[
N∑

i=1

TPi

]
− E

[
N∑

i=1

TPi|P

]

E

[
N∑

i=1

TPi

]





= Max
P∈ΩN

{U(P )}.

2
(Note: For two optimization problems A and B, “Problem A ∼= Problem B” means the
optimal feasible solution of Problem A is the same as the solution of Problem B; on the
other hand, “Problem A = Problem B” means that not only the optimal feasible solution
to Problem A but also the optimal value of objective function of Problem A is the same as
Problem B.)

Remark 1: Theorem 1 shows that minimization of “the expected time to achieve the
target revenues for all investment regions” can be converted to maximization of “path ef-
fectiveness”. Since path effectiveness is the percentage of reduction of the expected time
for accomplishing the overall investment goal as a result of the effect that investment se-
quence has on investment performance, the conversion of path effectiveness helps explain
the differentials in investment performance among various feasible investment paths.

Since E[TPi
] may vary, let αPi

be the relative weight of E[TPi
], where there exists a

random variable T that makes E[TPi
] = αPi

E[T ] (Note that
N∑

i=1

αPi
= 1). The relative

weight of E[TPi
] can be estimated directly (for example, use AHP pair comparison, see

[12]).

Theorem 2 Max
P∈ΩN

U(P ) = Max
P∈ΩN

{
N∑

i=1

αPi
FPi|P

}
.

Proof : The result of Theorem 1 can be obtained by the inference below.

Max
P∈ΩN

U(P ) = Max
P∈ΩN





E

[
N∑

i=1

TPi

]
− E

[
N∑

i=1

TPi|P

]

E

[
N∑

i=1

TPi

]
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= Max
P∈ΩN





N∑

i=1

(αPi
E[T ]− E[TPi|P ])

N∑

i=1

αPi
E[T ]





= Max
P∈ΩN





N∑

i=1

(αPi
E[T ]− E[TPi|P ])

E[T ]





= Max
P∈ΩN

{
N∑

i=1

(
αPi

E[T ]− E[TPi|P ]

E[T ]

)}
= Max

P∈ΩN

{
N∑

i=1

(
αPi

αPi
E[T ]− E[TPi|P ]

αPi
E[T ]

)}

= Max
P∈ΩN

{
N∑

i=1

αPi

E[TPi
]− E[TPi|P ]

E[TPi
]

}
= Max

P∈ΩN

{
N∑

i=1

αPi
FPi|P}.

2

Remark 2: The result of Theorem 2 means that minimization of “the expected time
required for every investment region to glean the target revenue” can be converted to max-
imization of “the total of all regions’ weighted sequential effectiveness”.

For the sake of convenience, we use the numbers 1, 2, . . . , N to label the investment
regions, that is, S = {1, 2, . . . , N}, where S denotes the set of planned investment regions.
For further study of the model’s properties, the relevant symbols are defined as follows:

WR
ij = A greatest lower bound (infimum) of f(i,j)|P (λi|P ); j ∈ S∪{0}; j ∈ S∪{0}; j ∈

S; i 6= j. Since λi ≤ λi|P ≤ 2λi, WR
ij refers to region j’s (pure) sequential

effectiveness that can be attributed to region i’s consumer fervor characteristics
effect shown in index λi.

UR
ij = A least upper bound (supremum) of f(i,j)|P (λi|P ),∀i, j ∈ S; i 6= j. In other

words, UR
ij refers to region j’s sequential effectiveness that can be attributed

to region i’s consumer fervor shown in index 2λi.
WR

(ij)k = Region k’s two-dimension-based sequential effectiveness that can be attributed
to region i and j’s consumer fervors shown in index λi and λj. In other
words, region i’s consumer fervor shown in index λi increases the demand
when region j achieves the target revenue (Rj), which will in turn intensify
region j’s regional characteristics effect on region k. The intensified regional
characteristics effect that region j has on region k depends on two CFIs, λi

and λj, and it contributes to a two-dimension-based sequential effectiveness,
WR

(ij)k,∀i ∈ S ∪ {0}; j, k ∈ S; i 6= j 6= k.

The above notations related to sequential effectiveness can be illustrated by the following
investment path chart for the three investment regions i, j, and k (see Figure 2). That is,
Figure 2 shows that the different types of sequential effectiveness among regions i, j, and k.

R
ijW R

jkW

R
kijW )(

kji

R
ijW R

jkW

R
kijW )(

kji

Figure 2: Sequential effectiveness chart
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Since λj|P refers to the consumer fervor in region j when the target revenue (Rj) is
achieved, and λj|P is ranged on [λj, 2λj], we suppose there exists a real number φj ≤ 1 such
that

Fj|P =
E[Tj]− E[Tj|P ]

E[Tj]
≈

(
λj|P − λj

λj

)φj

, ∀j ∈ S. (6)

Here E[Tj|P ] is a strictly decreasing convex function of λj|P in the interval [λj, 2λj] in the
sense that the more agressive the consumer behavior in region j the smaller φj will be; i.e.,
the consumers will increase the demand rate significantly even if only some specified people
buy the product. When φj approaches the value 1, the consumption behavior in region j
is very conservative for the product and the demand rate only increases significantly when
a great deal of people buy the product. As this paper represents the introduction of a new
theory, for the sake of model simplicity we only initially consider the case that φj approaches
the value 1. This case (φj approaches the value 1) can be illustrated in Figure 3 as follows:

0 Consumer 
Fervor Index

The expected time to 
achieve the target 

revenue

][ jTE

][ PjTE

jλ
Pjλ jλ2

Figure 3: A negative linear relationship between the consumer fervor index and the expected
time

As a result, Equation (6) can be rewritten as follows:

Fj|P =
λj|P − λj

λj

, ∀j ∈ S. (7)

Since λPi−1|P , λPi−2|P , . . . , λP0|P influence FPi|P independently (see Section 3.6), we know
that

FPi|P =
∆λPi|P

λPi

=

i∑

k=1

(λPi−k,Pi|P − λPi
)

λPi

. (8)

According to Equations (5) and (7), we can obtain that

f(Pi−k,Pi)|P (λPi−k|P ) =
λPi−k,Pi|P − λPi

λPi

. (9)

According to Equation (9) and definition of WR
ij and UR

ij , we can obtain Equations (10) and
(11) as follows:

WR
ij = inf{f(i,j)|P (λi|P ) : λi ≤ λi|P ≤ 2λi}
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= f(i,j)|P (λi) =
λij − λj

λj

, ∀i ∈ S ∪ {0}; j ∈ S; i 6= j (10)

and

UR
ij = sup{f(i,j)|P (λi|P ) : λi ≤ λi|P ≤ 2λi}

= f(i,j)|P (2λi) =
λu

ij − λj

λj

, ∀i, j ∈ S; i 6= j. (11)

(Note: The implications of notations λij and λu
ij see Section 3.3.)

In order to construct the solvable model for CSIP, we introduce the “completely memo-
ryless property” as described below.

That the RC effect has a completely memoryless property means that the investment
region’s RC effect on subsequent regions is limited to the immediate subsequent region. In
other words, the completely memoryless property implies that most consumers will only
notice the most recent region where this commodity or service has been in great demand or
has been popular. According to the definitions of CFIs and sequential effectiveness, consider
path P, P ∈ ΩN , where region Pi’s sequential effectiveness FPi|P depends on λPi−1|P only.

In addition, in this paper we only initially consider the case that RCCI for any pair
(i, j), ∀i ∈ S ∪ {0}; j ∈ S; i 6= j, approaches the value 1 (for the sake of model simplicity).
That is, θij ≈ 1 and thus the consumers in region j are neither hot nor cool about following
the behavior of the consumers in region i.

Lemma 1 Consider that regional characteristics effect has a completely memoryless prop-
erty, then for any pair (Pi−1, Pi) in path P, P ∈ ΩN ,

FPi|P = WR
Pi−1,Pi

+
λPi−1|P − λPi−1

λPi−1

· (UR
Pi−1,Pi

−WR
Pi−1,Pi

).

Proof : Based on the definitions of the regional characteristics effect’s completely memo-
ryless property, it can be inferred that λPi|P = λPi−1,Pi|P , i = 1, 2, . . . , N . Hence, it follows

from Equation (6) that FPi|P =
λPi−k,Pi|P − λPi

λPi

. Moreover, since the consumer in any region

are neither fervent nor disinclined about following the behavior of the consumer in another
investment region, we can know that θPi−k,Pi

= 1, ∀k = 1, 2, . . . , i− 1; i = 1, 2, . . . , N .
According to Equations (7)-(8) and the above results, we can obtain that

WR
Pi−1,Pi

+
λPi−1|P − λPi−1

λPi−1

· (UR
Pi−1,Pi

−WR
Pi−1,Pi

)

=
λPi−1,Pi

− λPi

λPi

+
λPi−1,Pi|P − λPi−1,Pi

λu
Pi−1,Pi

− λPi−1,Pi

× λu
Pi−1,Pi

− λPi−1,Pi

λPi

(By the results in Equation (2))

=
λPi−1,Pi|P − λPi

λPi

= FPi|P .

Hence, the result of this theorem is obtained. 2

In Lemma 1, the linear sequential effectiveness function of the regional characteristics
effect can be illustrated by Figure 4 as shown below.

Remark 3: The implications of Lemma 2 include: (1) The consumption behavior in any
investment region is very conservative and the demand rate for the product only increases
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λ

Figure 4: Linear function of regional characteristics effect

significantly when a great deal of many people buy the product (i.e., φj ≈ 1,∀j ∈ S),
and (2) The consumers in any investment region are neither fervent nor disinclined about
following the behavior of the consumers in another investment region.

Lemma 2 Consider that regional characteristics effect has a completely memoryless prop-
erty and that three-dimension-based sequential effectiveness can be ignored, then for any
pair (Pi−1, Pi) in path P, P ∈ ΩN ,

(1) FPi|P ≈ WR
Pi−1,Pi

+ (WR
Pi−2,Pi−1

) · (UR
Pi−1,Pi

−WR
Pi−1,Pi

),

(2) WR
(Pi−2,Pi−1)Pi

= WR
Pi−2,Pi−1

· (UR
Pi−1,Pi

−WR
Pi−1,Pi

).

Proof : Since the RC effect has a completely memoryless property, we can find that
FPi|P = f(Pi−1,Pi)|P (λPi−1|P ). Recall that gj

(Pi−k,Pi)|P represents the (j + 1)-dimension-based

sequential effectiveness. Since gj
(Pi−k,Pi)|P is strictly decreasing in j (see Section 3.6), we can

further omit the values of
∑

j≥3

gj
(Pi−k,Pi)|P if we can omit the value of three-dimension-based

sequential effectiveness. Therefore, we can obtain that f(Pi−1,Pi)|P (λPi−1|P ) ≈ WR
Pi−1,Pi

+

WR
(Pi−2,Pi−1)Pi

. Based on the above results and Equation (6), we can further obtain that

λPi−1|P ≈ λPi−1
+ (WR

Pi−2,Pi−1
+ WR

(Pi−3,Pi−2)Pi−1
)λPi−1

. Hence, by Lemma 2, we can find

FPi|P = WR
Pi−1,Pi

+

(
λPi−1

+ (WR
Pi−2,Pi−1

+ WR
(Pi−3,Pi−2)Pi−1

)λPi−1
− λPi−1

λPi−1

)
· (UR

Pi−1,Pi
−WR

Pi−1,Pi
)

= WR
Pi−1,Pi

+ (WR
Pi−2,Pi−1

+ WR
(Pi−3,Pi−2)Pi−1

) · (UR
Pi−1,Pi

−WR
Pi−1,Pi

).

Since one element of FPi|P is WR
(Pi−3,Pi−2)Pi−1

(UR
Pi−1,Pi

−WR
Pi−1,Pi

), WR
(Pi−3,Pi−2)Pi−1

(UR
Pi−1,Pi

−
WR

Pi−1,Pi
) is an instance of three-dimension-based sequential effectiveness and can be ignored.

According above results, we know that FPi|P ≈ WR
Pi−1,Pi

+ WR
Pi−2,Pi−1

· (UR
Pi−1,Pi

−WR
Pi−1,Pi

).

Moreover, since FPi|P ≈ WR
Pi−1,Pi

+ WR
(Pi−2,Pi)Pi

, we can obtain that WR
(Pi−2,Pi−1)Pi

=

WR
Pi−2,Pi−1

· (UR
Pi−1,Pi

−WR
Pi−1,Pi

). The result of this theorem is obtained. 2

Let Xij, ∀i, j ∈ S ∪ {0}, i 6= j, be the indicator variable when investment region i
achieves the target revenue and moves on to region j. In other words, if Xij = 1, after
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region i achieves the target revenue, it moves on to region j ; otherwise, Xij = 0. All the
non-recurring directed paths of S ∪ {0} that starts at region 0 (the parent company) can
be represented by constraint set L. If we define Λ so that any vector X ∈ Λ represents a
non-recurring directed path that starts at region 0; i.e., Xi0 = 0,∀i ∈ S, then Λ refers to
L’s feasible solution space.
Constraint set L:
C1:

∑

i∈S∪{0};i6=j

Xij = 1, ∀j ∈ S

C2:
∑

j∈S;j 6=i

Xij ≤ 1, ∀i ∈ S

C3:
∑

j∈S

X0j = 1

C4:
∑

j∈S;j 6=i

∑

i∈S∪{0}
Xij = N

C5: Xi1,i2 + Xi2,i3 + · · ·+ Xim−1,im + Xim,i1 ≤ m− 1,
∀i1, i2, . . . , im ∈ S ∪ {0}; i1, i2, . . . , im are all distinct, m = 2, . . . , N .

Remark 4:

(i) C1 means that just one investment region achieves its target revenue at the beginning
of investment in region j, ∀j ∈ S.

(ii) C2 means that when an investment region i (expect for i is the final investment region)
achieves its target revenue, the company will continue transfer the initial investment
capital (C0) to another region.

(iii) C3 means that a feasible non-recurring directed path must start at region 0 (the parent
company).

(iv) C4 refers to that capital C0 is transferred N times among N planned investment regions.
(v) C5 means no recurrence is allowed in investment paths.

Theorem 3 Consider that the RC effect has a completely memoryless property and three-
dimension-based sequential effectiveness can be ignored, then CSIP can be formulated as:

Max
X∈Λ

Z =
∑

j∈S

αjW
R
0jX0j +

∑

k∈S,k 6=j

∑

j∈S

αkW
R
0j(U

R
jk −WR

jk)X0jXjk +
∑

i∈S,i6=j

∑

j∈S,j 6=i

αjW
R
ij Xij

+
∑

i∈S,i6=j 6=k

∑

j∈S,j 6=k

∑

k∈S

αkW
R
ij (UR

jk −WR
jk)XijXjk.

Proof : From Lemma 3, we can obtain that

Max
P∈ΩN

∑

Pi∈S

αPi
FPi|P

≈ Max
P∈ΩN





∑

Pi−1,Pi∈S∪{0}
αPi

WR
Pi−1,Pi

+
∑

Pi−2,Pi−1,Pi∈S∪{0}
αPi

WR
(Pi−2,Pi−1)Pi





= Max
P∈ΩN





∑

Pi−1,Pi∈S∪{0}
αPi

WR
Pi−1,Pi

+
∑

Pi−2,Pi−1,Pi∈S∪{0}
αPi

WR
Pi−2,Pi−1

· (UR
Pi−1,Pi

−WR
Pi−1,Pi

)





= Max
P∈ΩN



αP1W

R
0,P1

+ αP2W
R
0,P1

· (UR
P1,P2

−WR
P1,P2

) +
∑

Pi−1,Pi∈S

αPi
WR

Pi−1,Pi

+
∑

Pi−2,Pi−1,Pi∈S

αPi
WR

Pi−2,Pi−1
· (UR

Pi−1,Pi
−WR

Pi−1,Pi
)
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= Max
P∈ΩN



αP1W

R
0,P1

X0,P1 + αP2W
R
0,P1

· (UR
P1,P2

−WR
P1,P2

)X0,P1XP1,P2 +
∑

Pi−1,Pi∈S

αPi
WR

Pi−1,Pi
XPi−1,Pi

+
∑

Pi−2,Pi−1,Pi∈S

αPi
WR

Pi−2,Pi−1
· (UR

Pi−1,Pi
−WR

Pi−1,Pi
)XPi−2,Pi−1

XPi−1,Pi





= Max
X∈Λ

∑

j∈S

αjW
R
0jX0j +

∑

k∈S,k 6=j

∑

j∈S

(αkW
R
0j(U

R
jk −WR

jk))X0jXjk +
∑

i∈S,i6=j

∑

j∈S

αjW
R
ij Xij

+
∑

i∈S,i6=j 6=k

∑

j∈S,j 6=k

∑

k∈S

(αkW
R
ij (UR

jk −WR
jk))XijXjk.

Theorem 3 is derived as show above. 2

Remark 5:

(i) If a company plans to market a new product, then the parent company’s location can
be one of the planned investment regions. In this case, the values of WR

0j and UR
0j are set

to be zero for all j belonging to S.

(ii) Consider the special case that CSIP can formulated as Max
P∈ΩN

{
αP1W

R
0,P1

+
N∑

i=2

αPi
WR

Pi−1,Pi

}
.

We can easy to demonstrate that Max
P∈ΩN

N∑

i=1

αPi
WR

Pi′ ,Pi

∼= Min
P∈ΩN

N∑

i=1

(1− αPi
WR

Pi−1,Pi
). Con-

sider an asymmetric traveling salesman problem (ATSP) including L cities which labels
by number 1, 2, . . . , L. Also, define [dij] be the distance matrix (dij 6= 0). We call this
ATSP Y . Moreover, consider another ATSP case including 2L cities which labels by num-
ber 1, 1′, 2, 2′, . . . , L, L′. Also, define [dlm] be the distance matrix, where di′i = dii′ = 0,
and di′j = dij′ = di′j′ = dij. We call this ATSP Z. Obviously, ATSP Y is equivalent to
ATSP Z. For ATSP Z, if we choose two cities i and i′, and view city i′ as the parent
company and i as final investment region, then we can solve ATSP Z by finding a non-
recurring directed path (since dii′ = 0). That is, ATSP Z is transformed into the above
special case of CSIP. In other words, the ATSP reduces to the CSIP. Since any instance
of ATSP without the special structured distance matrix is NP-hard, thus any instance
of CSIP is also NP-hard.

5. Parameters Estimation

For further study of our model’s parameters, the relevant symbols are defined as follows:

M̃j(t) = A buyer’s average consumption level when he/she arrives to buy the commod-
ity at time t, ∀j ∈ S ∪ {0}.

β̃j(t) = The average arrival rate at time t for buyers, ∀j ∈ S ∪ {0}.
Ñj|P (t) = The expected consumer population up to time t when region j, under the

influence of the regional characteristics of prior invested regions, achieves the
target revenue (Rj), ∀j ∈ S ∪ {0}; P ∈ ΩN .

βj(y) = The average arrival rate at a time for buyers when total consumer population
up to that time is y, ∀j ∈ S ∪ {0}.

Mj(x) = The expected consumption level at a time when the arrival rate at that time
is x, ∀j ∈ S ∪ {0}.
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Nj|P = The expected consumer population when region j, under the influence of the
regional characteristics of prior invested regions, achieves the target revenue
(Rj), ∀j ∈ S ∪ {0}; P ∈ ΩN .

Nj = The expected consumer population when region j, uninfluenced by the previous
investment areas, achieves the target revenue (Rj), ∀j ∈ S ∪ {0}.

Nu
j = The expected consumer population that enables region j to achieve the tar-

get revenue (Rj) within time εj, where εj is a miniscule number relative to
E[Tj],∀j ∈ S

Nij = The expected consumer population when region j, under the influence of the
regional characteristics of region i, achieves the target revenue (Rj) and the
consumer population in region i reaches Ni,∀i ∈ S ∪ {0}; j ∈ S; i 6= j.

Nu
ij = The expected consumer population when the consumer population in region i

reaches Nu
i and region j, under the influence of the regional characteristics of

region i, achieves the target revenue (Rj),∀i ∈ S ∪ {0}; j ∈ S; i 6= j.

From the definition of CFI, we can intuitively obtain that both and M̃j(E[Tj|P ]) and

β̃j(E[Tj|P ]) are the major parameters to define λj|P . In this paper we initially suppose that

the consumption level at any time only depends on the arrival rate at that time, i.e., M̃j(t)

only depends on arrival rate β̃j(t). We also suppose that the arrival rate β̃j(t) only depends

on consumer population Ñj|P (t). Therefore, we obtain that

β̃j(E[Tj|P ]) = βj(Nj|P ) (12)

and
M̃j(E[Tj|P ]) = Mj(β̃j(E[Tj|P ])) = Mj(βj(Nj|P )). (13)

According to Equations (12) and (13), we can assume that all information related to
M̃j(E[Tj|P ]) and β̃j(E[Tj|P ]) for defining λj|P will be involved in Nj|P . As a result, in this
paper we use Nj|P to define λj|P . We can define λj|P as follows:

λj|P − λj

2λj − λj

=
Nj|P −Nj

Nu
j −Nj

, ∀j ∈ S ∪ {0}; P ∈ ΩN . (14)

Therefore, Equations (7) and (8) can be rewritten as follows:

WR
ij =

Nij −Nj

Nu
j −Nj

, ∀i ∈ S ∪ {0}; j ∈ S; i 6= j (15)

and

UR
ij =

Nu
ij −Nj

Nu
j −Nj

, ∀i, j ∈ S; i 6= j. (16)

We further define four types of consumers as described below.

Type 1: We say that a consumer is type 1 if he/she would became a buyer due to the
inherent attractiveness of the commodity.

Type 2: We say that a consumer is type 2 if he/she would not have bought the product but
became a buyer when they were influenced by an ingenious promotion scheme.

Type 3: We say that a consumer is type 3 if he/she would not have bought the product but
became a buyer due to the influence of the fervent buying of prior invested regions.

Type 4: Otherwise.

Supposing the consumers of the commodity for each investment region can be classified
into one of the four types above, we then further define extra notations as follows:
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Ñij|P (t) = The expected consumer population up to time t when we take into account
the RC effect that region i has on region j, ∀i ∈ S ∪ {0}; j ∈ S; P ∈ ΩN .

ãij|P (t) = The expected increase in consumer population up to time t that can be at-
tributed to the emergence of consumers who would not have bought the prod-
uct but became buyers when they were influenced by the fervent buying of
region i (i.e., type 3 consumers), ∀i ∈ S ∪ {0}; j ∈ S; P ∈ ΩN .

b̃j(t) = The expected consumer population of type 1 produced up to time t, ∀j ∈
S ∪ {0}.

c̃j(t) = The expected consumer population of type 2 produced up to time t, ∀j ∈
S ∪ {0}.

d̃j(t) = The expected consumer population of type 4 produced up to time t, ∀j ∈
S ∪ {0}.

According to the above notations, we further suppose that

Ñij|P (t) ≈ ãij|P (t) + b̃j(t) + c̃j(t) + d̃j(t)

≈ aij|P + bj + cj + dj if t ≥ tj. (17)

Recalling for any investment region j ∀j ∈ S∪{0}, that region j achieving its target revenue
(Rj) means that the corporation in region j has developed such an operational capacity that
it can maintain stable operation (see Section 1). Hence, we can intuitively consider the case
that E[Tj|P ] > tj (because target revenue Rj is usually several times of capital C0 and thus
E[Tj|P ] is usually very long), i.e., the consumer population buying behavior (for all types of
consumers) produced before the target revenue is achieved. Accordingly, we can find:

Nj ≈ bj + cj + dj (18)

Nij ≈ aij + bj + cj + dj (19)

and

Nu
ij ≈ au

ij + bj + cj + dj. (20)

Where aij and au
ij denote the expected consumer populations of type 3 when region j achieves

the target revenue (Rj), when the consumer populations in region i have already reached
Ni and Nu

i , respectively.
Moreover, let βu

j be average maximum arrival rate for buyers in region j, and let mu
j be

the average consumption level when βu
j is achieved. Consider the case that there exists a

consumer population zj,∀j ∈ S ∪ {0} so that

βj(y) = βu
j , if y ≥ zj. (21)

Hence,

Mj(x) = mu
j , if x ≥ zj. (22)

If we consider the case that
Rj

mu
j · βu

j

¿ E[Tj], ∀j ∈ S ∪ {0}, then by Equations (18) and

(19), we can set

Nu
j = zj, ∀j ∈ S. (23)

We can obtain the values of au
ij, zj, bj, cj, and dj via a careful survey and evaluation of

market, ∀i ∈ S; j ∈ S ∪ {0}; i 6= j.
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In the following we will introduce a simple method to obtain the values of aij, ∀i ∈
S∪{0}; j ∈ S; i 6= j. Let Nij|P be the expected consumer population when region j achieves
the target revenue (Rj) when consumer population in region i is Ni|P , ∀i ∈ S∪{0}; P ∈ ΩN .
According to Equations (17) through (20) we can find

Nij|P −Nij

Nu
ij −Nij

≈ (aij|P + bj + cj)− (aij + bj + cj)

(au
ij + bj + cj)− (aij + bj + cj)

=
aij|P − aij

au
ij − aij

. (24)

In addition, consider an ordered pair (i, j) in path P, P ∈ ΩN , since
Nij|P −Nij

Nu
ij −Nij

≈
(

Ni|P −Ni

Nu
i −Ni

)θij

(by Equations (2) and (14)), we can find:

aij|P − aij

au
ij − aij

≈
(

Ni|P −Ni

Nu
i −Ni

)θij

, ∀i ∈ S; j ∈ S ∪ {0}; i 6= j. (25)

Remark 6: When θij < 1, aij|P and Ni|P in the range [Ni, N
u
i ] approximate a nonlinear

concave function. When θij > 1, aij|P and Ni|P in the range [Ni, N
u
i ] approximate a nonlinear

convex function. When θij = 1, aij|P and Ni|P in the range [Ni, N
u
i ] approximate a linear

function. The implications of θij, ∀i ∈ S ∪ {0}; j ∈ S; i 6= j can be found in Section 3.3 in
this paper. The relationship between aij|P and Ni|P is illustrated in Figure 5 as follows:

�

Pija

u
ija

iN u
iN

PiN

1<ijθ

1=ijθ

1>ijθ

Figure 5: The relationship between aij|P and Ni|P

Since θij depends on Ni, we use the symbol θij(Ni) instead of θij, ∀i ∈ S; j ∈ S ∪ {0};
i 6= j, thus, Equation (25) can be rewritten as follows:

aij|P − aij

au
ij − aij

≈
(

Ni|P −Ni

Nu
i −Ni

)θij(Ni)

, ∀i ∈ S ∪ {0}; j ∈ S; i 6= j. (26)

If we believe that the consumers in investment region j are neither fervent nor disinclined
about following the behavior of consumers in region i (see Section 3.3), then we can obtain
that θij(Ni) = 1 for all Ni on the range [0, Nu

i ]. Therefore, we can easy obtain aij by using
the following formula:

aij

au
ij

≈ Ni

Nu
i

, ∀i ∈ S ∪ {0}; j ∈ S; i 6= j. (27)
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6. Genetic Algorithm-Based Procedure

The genetic algorithm was proposed by John Holland in 1975 [6]. It is a general search tech-
nique which has a parallel property and the ability to avoid falling into regional optimization.
This algorithm searches for the optimal solution using natural selection and natural inheri-
tance, control over the fittest for survival, and stochastic exchange of information. Hence,
every generation will produce a new solution set that suits the fitness of the problems of
its era better [4]. This is a popular heuristic algorithm of stochastic search and has been
used in solving many NP-Hard optimization problems [11]. Since there are well-developed
user-friendly softwares available which can effectively solve genetic algorithms (Evolver) and
which are also easy to use and achieve good performance [1, 7–10, 13, 14]. This research uses
genetic algorithms as the main problem-solving tool. The algorithm procedure developed
in this research by integrating genetic algorithms is described in Figure 6 as follows:
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Figure 6: Integrating genetic algorithm flowchart

Step 1. Construct the following objective function using Evolver software:

Z =
∑

j∈S

αjW
R
0jX0j +

∑

k∈S,k 6=j

∑

j∈S

(αkW
R
0j(U

R
jk −WR

jk))X0jXjk +
∑

i∈S,i6=j

∑

j∈S

αjW
R
ij Xij

+
∑

i∈S,i6=j 6=k

∑

j∈S,j 6=k

∑

k∈S

(αkW
R
ij (UR

jk −WR
jk))XijXjk.

Step 2. Define the following constraints in Evolver software:

Xij + Xij ≤ 1, ∀i, j ∈ S ∪ {0}; i 6= j∑

i∈S∪{0};i6=j

Xij = 1, ∀j ∈ S

∑

j∈S;j 6=i

Xij ≤ 1, ∀i ∈ S

∑

j∈S

X0j = 1
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∑

j∈S;j 6=i

∑

i∈S∪{0}
Xij = N.

Step 3. Execute Evolver to solve the problem.
Step 3.1. If no solution is obtained after running for a significant period of time, increase

the matching or mutation rate in order to expand the search space for solution.
Step 3.2. If no solution is obtained within the preset period of time after adjusting the

parameters (matching rate or mutation rate), then relax constraints. For example,
change constraint

∑

j∈S;j 6=i

∑

i∈S∪{0}
Xij = N to

∑

j∈S;i6=j

∑

i∈S∪{0}
Xij ≤ 2N .

Step 4. Act on the final solution obtained.
Step 4.1. If the final solution obtained is non-recurring, then end.
Step 4.2. If the final solution obtained is recurring, then execute Step 5.

Step 5. Based on the recurring solution obtained in Step 4.2, produce a feasible solution by
the following procedure and avoid producing the same recurring solution by controlling
the “adjustable variables” in Evolver.
Case 1: If there exists more than one recurrence then generate a new initial solution

as described below. If we let the original initial solution be X0,i1 = Xi1,i2 = · · · =
XiN−1,iN = 1, then generate a new initial solution by setting X0,iN = XiN ,i2 =
· · · = XiN−1,i1 = 1, i1, i2, . . . , iN are all distinct.

Case 2: If there exists only one recurrence then generate a new initial solution as
desribed below. Let G be the link set consisting of a recurring sub-path in the
current solution and G be the link set consisting of a non-recurring sub-path in
the current solution. If link (i, j) and (k, i) belong to G and link (m, l) belongs
to G, then set Xki = 0 and Xkm = 1.

For instance, in the problem involving six investment regions, assume the final solution
obtained from Step 1 to Step 2 is: 1 → 2 → 3 → 4 → 1 and 5 → 6. This solution can be
written by 0-1 variable as: X12 = 1, X23 = 1, X34 = 1, X41 = 1, X56 = 1, other variables
are zero. Based on above procedure, we can set X41 = 0 and X45 = 1 and then produce
a new initial feasible solution are as X12 = 1, X23 = 1, X34 = 1, X41 = 1, X56 = 1. We
can use this solution as the initial feasible solution, then consider X41 to be a variable
that is not adjustable (in the Evolver) so as to avoid repetition of the same recurring
solution.

Step 6. Repeat Step 3 to Step 5 until an approximately optimal feasible solution is obtained.

Step 3.1 shows that lower matching or mutation rates can be used in the early stage
of problem-solving and then can be gradually increased when no reasonable solution is
obtained. Mutation ratio needs micro adjustment and must be controlled within a certain
range; otherwise it may adversely affect results.

Step 3.2 shows that in solving the model in this research, the “Pause” function of Evolver
software can be used to monitor any change in problem-solving in a timely manner. The
reasonable solution is first obtained under relaxed conditions, and then recalculated as
adjustable variables decrease and constraints increase. The process continues until a set of
optimal reasonable solutions are finally found satisfying the constraints in Step 2.

Step 4.2 explains that the optimal solution satisfying constraints in Step 2 is not nec-
essarily a non-recurring directed path. Therefore, the method described in Step 5 is used
in this research to promptly adjust this reasonable solution in a micro manner in order to
obtain an optimal non-recurring directed path. This solution provides an initial reasonable
value for calculating the optimal solution by executing Evolver software.
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7. Illustrative Example

Assume a transnational corporation known worldwide realizes that the motorcycle industry
has great potential due to the trend of environmental protection. In order to take the first
move to obtain the leading position in international market, the company plans to adopt
different market entry modes such as wholly-owned venture and acquiring controlling interest
in nine investment regions around the world, with the “centralized sequential investment
strategy” defined in this research as its operational mode. These areas are coded by number
1 to 9, where

1 ≡ Tokyo, 2 ≡ Rome, 3 ≡ Shanghai, 4 ≡ Chicago, 5 ≡ Paris,

6 ≡ Vienna, 7 ≡ Milan, 8 ≡ Vancouver, 9 ≡ Osaka.

This is not an empirical example, so a set of stochastically simulated parameters are
used, without consideration of the parent company’s influence (i.e., set WR

0j = UR
0j = 0), to

illustrate the procedure of applying genetic algorithms to obtain the final solution as shown
below.

Table 1: Estimated values of WR
ij

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9)
0.091592 0.164548 0.288656 0.249722 0.083195 0.219354 0.037409 0.254038

(2,1) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9)
0.169832 0.285594 0.180317 0.058387 0.185664 0.065648 0.020352 0.142751

(3,1) (3,2) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9)
0.116184 0.206574 0.225958 0.101092 0.191607 0.236845 0.222294 0.11532

(4,1) (4,2) (4,3) (4,5) (4,6) (4,7) (4,8) (4,9)
0.125792 0.066441 0.083441 0.240664 0.223762 0.125494 0.141927 0.126546

(5,1) (5,2) (5,3) (5,4) (5,6) (5,7) (5,8) (5,9)
0.270119 0.003469 0.231704 0.132335 0.128313 0.221839 0.141389 0.240726

(6,1) (6,2) (6,3) (6,4) (6,5) (6,7) (6,8) (6,9)
0.238205 0.071674 0.17796 0.003658 0.288782 0.28972 0.200307 0.181218

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,8) (7,9)
0.205181 0.043608 0.239617 0.143476 0.045987 0.198969 0.241502 0.05321

(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,9)
0.041181 0.098797 0.15084 0.061509 0.245278 0.242806 0.260475 0.085657

(9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8)
0.10569 0.041852 0.09502 0.250967 0.007929 0.235224 0.201075 0.218389

Based on the parameters in Table 1, Table 2, and Table 3, apply genetic algorithms and
the problem-solving procedure proposed in this research. The program is executed a total
of 3180 times, among which 1578 feasible solutions are generated in 25 seconds. Finally, the
approximately optimal solution obtained is as follows:

X23 = X34 = X49 = X96 = X67 = X78 = X85 = X51 = 1.

All the other variables are zero; hence, the objective function Z = 0.3374, meaning if

E


 ∑

Pi∈S

TPi


 is the original estimated time for all the investment regions to achieve target

revenues, then the transnational investment that follows from this sequence will shorten the
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Table 2: Estimated values of UR
ij

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (1,9)
0.462129 0.598425 0.578272 0.451079 0.493609 0.579577 0.471788 0.4714

(2,1) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8) (2,9)
0.458665 0.586996 0.52873 0.501606 0.517722 0.590188 0.47382 0.427681

(3,1) (3,2) (3,4) (3,5) (3,6) (3,7) (3,8) (3,9)
0.500312 0.407765 0.504378 0.535963 0.532834 0.401478 0.561618 0.48929

(4,1) (4,2) (4,3) (4,5) (4,6) (4,7) (4,8) (4,9)
0.556993 0.465771 0.575273 0.598491 0.426582 0.504932 0.575527 0.49188

(5,1) (5,2) (5,3) (5,4) (5,6) (5,7) (5,8) (5,9)
0.599855 0.42202 0.498683 0.411704 0.58647 0.566878 0.555466 0.477124

(6,1) (6,2) (6,3) (6,4) (6,5) (6,7) (6,8) (6,9)
0.474218 0.538591 0.544646 0.408808 0.544951 0.407395 0.469426 0.473133

(7,1) (7,2) (7,3) (7,4) (7,5) (7,6) (7,8) (7,9)
0.482431 0.594149 0.577046 0.414869 0.47321 0.437799 0.470301 0.470255

(8,1) (8,2) (8,3) (8,4) (8,5) (8,6) (8,7) (8,9)
0.41783 0.555154 0.406307 0.580677 0.472282 0.524958 0.453541 0.468483
(9,1) (9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8)

0.415731 0.540708 0.538252 0.416077 0.537215 0.426103 0.598868 0.522658

Table 3: Estimated values of αi

α1 α2 α3 α4 α5 α6 α7 α8 α9

0.14 0.07 0.11 0.14 0.09 0.18 0.08 0.11 0.08

Figure 7: The converging chart of problem-solving procedure

original estimated time by 33.74%. The converging chart of the problem-solving procedure
in this example is shown in Figure 7. The investment sequence can be graphed by real
regions as show in Figure 8.
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Figure 8: Investment sequence chart Described by real regions

8. Conclusions

Based on the introduction of the centralized sequential investment strategy, this paper
proposed an optimization model for centralized sequential investment problems (CSIP), and
discovered the optimal sequential investment path leading to achievement of target revenues
for all investment regions within the shortest period of time. Furthermore, we assumed
regional characteristics were a significant factor that affected the timing of reaching the
target revenue in an investment region, and introduced the concepts of path effectiveness
and sequential effectiveness. The original problem of “minimizing the expected time to
achieve the target revenues for all investment regions” was then converted into the problem
of “maximizing the sum of all regions’ weighted sequential effectiveness”. As a result, further
properties of CSIP were demonstrated and thus formulated into a solvable form. We also
proposed a simple method to estimate the model parameters. Finally, a GA-based solution
procedure was proposed and a numerical example was illustrated. In this paper we supposed
that the RC effect had a completely memoryless property and only considered the linear
RC effect case; hence, further research should be focused on closing this gap. In addition,
the development of more effective and easier problem-solving procedures and the expansion
of this model’s applications should be studied in the near future.
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