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Abstract The simple method called ”2-cyclic design” is proposed to select pairs to be compared from the
whole set of pairs in AHP, which reduces the comparing number n(n − 1)/2 for n-object AHP to 2n. The
isomorphism of our designs is investigated, by which we can reduce the range of designs to be considered.
The standard errors of our designs are calculated for n = 5, . . . , 60, by which we know the best 2-cyclic
designs in this range. Developing the algebra on our designs we can clarify the characteristics of good
designs and further propose several conjectures which give a general method to produce the better or the
best designs. These conjectures are valid for n = 5, . . . , 60.
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1. Introduction

The essence of AHP is the paired comparison, but if the number ”n” of objects is large
the number of comparisons increases with square order of n, so it is often difficult for an
evaluator to treat such a large number of comparisons. To overcome this difficulty, short
cut methods without paired comparisons such as ”absolute method” [2] are proposed. But
to neglect paired comparisons is to miss the essence of AHP.

Wang and Takahashi [4] proposed the method to select specific subsets of pairs from the
whole set of pairs by graph theoretic considerations, which insists that the strongly regular
design based on strongly regular graph is the best selection method of the methods with the
same number ”m” of pairs to be compared. But the existing of strongly regular graphs is
very rare for various values of n (the number of objects) and m (the number of pairs to be
compared), and further the construction methods in general are too difficult for practical
use.

Here we propose a simple and effective method, which is called 2-cyclic design, to
select the subset S of pairs for the case with m = 2n, whose labour to compare is reasonably
allowable even if n is rather large.

When the set S of pairs to be compared is not the whole set, there are missing elements in
the comparison matrix, which we call incomplete case in contrast to the complete case
with all paired comparisons. There are various analyzing methods to estimate the weights
of objects for the incomplete case. We adopt the logarithmic least square method (LLS)
of them, which can evaluate the estimating error of designs based on various theorems of
least square method.

The main results of this paper are to give the standard errors of estimating weights of
objects of 2-cyclic designs, which show what is the best 2-cyclic design, for n = 5, . . . , 60, and
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to conjecture the general method to reveal what is the best 2-cyclic design. The conjectures
are valid for all cases n = 5, . . . , 60.

2. 1-cyclic Design

Let {0, 1, · · · , n− 1} be the set of n objects (alternatives or criteria) to be evaluated in AHP.
We call a set of pairs (i, j) a design, and

Qi = {(0, i), (1, i + 1), · · · , (n− 1, i + (n− 1))} , i = 1, 2, · · · , n− 1 (1)

be called 1-cyclic design (or simply cycle) with initial pair (0, i), where the numbers i, j
in pair symbol(i, j) are calculated in mod n.

For example for n = 6,

Q1 = {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0).}.

We can estimate weight ui(i = 0, 1, · · · , 5) based on the paired comparison data aij for
(i, j) ∈ Q1 by LLS method which is stated later. But if we take

Q3 = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)},

we cannot estimate weights of objects by this design.
Note that for pair (i, j) the order of i, j is indifferent, that is, (i, j) = (j, i).
It is clear that for cycle Qi in n-object AHP

Q1 = Qn−1, Q2 = Qn−2, · · · . (2)

So we have only to consider 1-cyclic designs

Q1, Q2, · · · , Qn/2 for even n
Q1, Q2, · · · , Q(n−1)/2 for odd n

}
(3)

Theorem 1 If n is prime then Q1, Q2, · · · , Q(n−1)/2 are all isomorphic, that is,

Q1 ≈ Q2 ≈ · · · ≈ Q(n−1)/2, (4)

and for general n if a and n are relatively prime, that is, a has not common divisors (except
1) with n, then Qi is isomorphic to Qai, that is,

Qi ≈ Qai, (5)

where ai is calculated in mod n like in formula (2). For two designs P and Q to be isomorphic
P ≈ Q means the existence of one to one correspondence ϕ on {0, 1, · · · , n− 1} such that

Q = {(ϕ(i), ϕ(j)) | (i, j) ∈ P}. (6)

Proof It is clear that formula (5) includes (4) , so we have only to prove (5).
If we take ϕ(j) = aj (j = 0, 1, · · · , n− 1), it is one to one correspondence because a and

n are relatively prime. Let

Qi = {(0, i), (1, i + 1), · · · , (j, i + j), · · · , (n− 1, i + n− 1)}, (7)

Qai = {(0, ai), (1, ai + 1), · · · , (j′, ai + j′), · · · , (n− 1, ai + n− 1)}. (8)
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As the result of transformation of each element in Qi by ϕ, we have

ϕ(Qi) = {(0, ai), (a, a(i + 1)), · · · , (aj, a(i + j), · · · , (a(n− 1), a(i + n− 1))}. (9)

There exists exactly one j′ for each j such that

aj = j′ (mod n), (10)

because of relative primality of a and n, and then

a(i + j) = ai + aj = ai + j′,

so (aj, a(i + j)) in ϕ(Qi) coincides with (j′, ai + j′) in Qai which means ϕ(Qi) = Qai or
Qi ≈ Qai. □

Example 1 For n = 10, a = 3, i = 2, we can show that Qi = Q2, Qai = Q6 and
ϕ(Qi) = 3Qi, whose elements are multiples by 3 of elements in Qi as shown in Table 1. And
Q2 and Q6 are shown graphically in Fig. 1.□

3. 2-cyclic Design

We call union of two cycles Qi and Qj as 2-cyclic design and denote it as Qi + Qj.
(Symbolically we should denote it as Qi ∪ Qj, but Qi + Qj is algebraically convenient
because later we claim for Qi to have the meaning of adjacency matrix. )

Our main object is to find the best 2-cyclic design. To this end, we have to investigate
Qi + Qj for all combinations of i, j = 1, . . . , n/2(for even n) or 1, . . . , (n− 1)/2 (for odd n).

But if n is prime we only need to investigate the types of Q1 + Qj(j = 1, . . . , (n− 1)/2),
because any Qi is isomorphic to Q1 by Theorem 1. For general n, there exists a Qi non-
isomorphic to Q1 if i has a common divisor with n. But for this case Qi is composed
of disconnected subgraphs as shown in Fig.1, which is worse than Q1 as a design, but
Qi +Qj can be better than Q1 +Qj. Treating such special cases in the Appendix 1, we only
investigate the type of Q1 + Qj for the time being.

Theorem 2 If
ij = ±1 (mod n), (11)

that is, ij = 1(mod n) or ij = −1(mod n), then we have

Q1 + Qi ≈ Q1 + Qj. (12)

Proof Formula (11) shows that i and j are relatively prime to n. So ϕ(k) = jk (mod n) (k =
0, . . . , n− 1) gives one to one correspondence on {0, 1, · · · , n− 1}, and we have

ϕ(Q1 + Qi) = j(Q1 + Qi) = Qj + Qij. (13)

If ij = 1 (mod n) then ϕ(Q1 + Qi) = Qj + Q1 which shows formula (12), and if ij =
−1 (mod n) then Qij = Q−1 = Q1 because of (2). This completes the proof.□
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In Table 4 for various values of n the isomorphic relations of 2-cyclic designs are shown.
Incidentally we can find j satisfying (11) for given i by Euclidian algorithm [3], which is
well known in the field of elementary algebra.

If i2 = ±1 (mod n), then it holds that

ϕ(Q1 + Qi) = Qi + Qi2 = Qi + Q1, (14)

where ϕ is the correspondence produced by iQj, that is, ϕ(Qj) = iQj.
This means Q1 + Qi is transformed to itself by ϕ, so Q1 + Qi is called self-isomorphic
design. If n is prime then self-isomorphic designs exist if and only if n− 1 is a multiple of 4.
Table 4 shows that almost all self isomorphic designs are the best cyclic designs (with the
lowest standard error).

4. Statistical Reliability Analysis of 2-cyclic Design

As for statistical reliability analysis of our design, we almost go to along that of [4]. Let
aij be the value of paired comparisons of object i to j in 2-cyclic design Q1 + Qk, then we
assume the following model;

aij = ui

uj
eij , i < j , (i, j) ∈ Q1 + Qk,

aii = 1,
(15)

where ui is weight of object i (i = 0, . . . , n − 1) and eij > 0 is the error. Taking logarithm
(the base can be arbitrary) we have

ȧij = u̇i − u̇j + ˙eij, i < j, (i, j) ∈ Q1 + Qk,
(ȧij = log aij, u̇i = log uj, · · ·). (16)

By minimizing the sum of squares of ˙eij, we have LLS estimate ûi of ui. We assume that
˙eij’s are independent random variables with zero-expectation and common variance σ2, that

is,
E[ ˙eij] = 0 , V [ ˙eij] = σ2. (17)

Since u0, · · · , un−1 are arbitrary by a constant multiple we can assume u0u1 · · ·un−1 = 1,
then

u̇0 + u̇1 + · · ·+ u̇n−1 = 0. (18)

So our LLS must be done under the condition of (18).

Example 2 For Q1 + Q2(n = 6), we write down (16) and (18) in Table 2 neglecting
the error term. This is often called data table.□

As for the general 2-cyclic design the format of data table is similar to Table 2. We
denote the coefficient matrix of the right hand side of data table by X, and column vector
of the left hand side by ȧ, and u̇T = [u̇0, u̇1, · · · , u̇n−1], then the normal equation of least
square method is

(XT X)u̇ = XT ȧ. (19)

And i-th element ˆ̇ui of the solution ˆ̇u of (19) gives the LLS estimate of u̇i (i = 0, . . . , n− 1).
The coefficient matrix XT X of the normal equation plays an important role and is called

information matrix M , that is,
M = XT X. (20)
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We have a graph corresponding to a design as shown in Fig.1. Let the point-to-point
adjacency matrix (whose (i, j) and (j, i) elements are 1 if edge (i, j) exists and zero
otherwise) of the graph be called matrix of the design. Let N be the matrix of a design,
and if the corresponding graph to the design is a regular graph whose points have the
common degree d (the number of edges connected with a point), then the information matrix
M of the design is represented as

M = dI + J −N, (21)

where I is unit matrix and J is all-1 matrix.The important formula (21) is stated and proved
in [1]. Also note that the values of the diagonal elements mii of the inverse of M in (21) are
independent of i [1]. Now the variance V [ ˆ̇ui] of the solution ˆ̇ui of (19), or its square root√

V [ˆ̇ui], is the measure of error of estimate ˆ̇ui. In our case V [ ˆ̇ui] is independent of i and is
represented by

V [ ˆ̇ui] = {m1,1 − (
n−1∑

j=0

m1,j)2}σ2, (22)

where mi,j = (M−1)ij((i, j) element of M−1). (22) shows that V [ ˆ̇ui] is independent of
data aij and only depends on M , that is, the design structure. Note that for the model
without constraint (18) we have simply V [ ˆ̇ui] = m1,1σ2 but we need the second term within
{m1,1 − (

∑n−1
j=0 m1,j)2} of (22) because of (18). The proof of (22) is shown in the Appendix

2. We have calculated these values =
√

V [ˆ̇ui]/σ for all 2-cyclic designs of the type of

Q1 + Qi for n = 5, . . . , 60 in Table 5. The value, standard error
√

V [ˆ̇ui] divided by σ, shows

the statistical reliability measure of the estimated weight ˆ̇ui. The best designs (with the

smallest value of
√

V [ ˆ̇ui]/σ) are marked by ∗. Further the standard error
√

V [ˆ̇ui] for the
complete case is

√
V [ˆ̇ui] =

√
n− 1

n
σ, (23)

which are added in Table 5. We can compare the standard error of the best 2-cyclic design
with that of complete case for each n. We have (23) by the following way; from (21) we
have M = nI and M−1 = 1

n
I, so from (22) we have V [ˆ̇ui] = ( 1

n
− ( 1

n
)2)σ2 which leads us to

(23).
We pick up several values of n and compare these two in Table 3.
Considering the overwhelming reduction of labors of 2-cyclic designs, we can say that

the standard errors of the best 2-cyclic designs are not so worse than those of the complete
cases for smaller values of n. For larger values of n, the difference becomes manifest, where
we are ready to propose 3-cyclic designs.

Note that isomorphic designs (shown in Table 4) naturally have the same value of the
standard error.

Table 5 certainly shows what is the best 2-cyclic design for n = 5, . . . , 60, but further
we would like to know what characteristics of the matrix Q1 + Qi give the good 2-cyclic
designs. In order to investigate these characteristics we study the algebraic structure in the
next section.

5. Algebra on Cyclic Designs

So far such symbols as Qi and Qi +Qj represent designs, that is, sets of pairs of objects, but
later on let us make these symbols to represent the (adjacent) matrices of the corresponding
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designs.
Then, Qi + Qj is the sum (as matrices) of Qi and Qj, and further we have

Qi = Pi + P−i, (24)

where Pi is cyclic matrix whose (j, i+j) element is 1 (j = 0, . . . , n−1) and other elements
are zeros, and P−i is defined by the same way in mod n−calculation. Further we have

PiPj = Pi+j. (25)

The following relations are easily proved by matrix calculations and relation (24) and
(25).

Qi = Q−i

Q2
i = 2I + Q2i

QiQj = QjQi = Qi+j + Qi−j

(26)

Further note that considering (2) and (3) we have

Ql = Qk if l = ±k (mod n). (27)

Note that we have

I + Q1 + Q2 + · · ·+ Q(n−1)/2 = J, for odd n,
I + Q1 + Q2 + · · ·+ 1

2
Qn/2 = J, for even n,

and incidentally Qn/2 = 2Pn/2. Note that for any 2-cyclic design N = Qi + Qj, any polyno-
mial of N is represented by a linear combination of I, Q1, Q2, . . . for the sake of (26). And N
has two terms with unity coefficients, so the sum of coefficients is two. Generally the sum of
coefficients of (a1Qj1 +a2Qj2 + . . .+akQjk

)(Qi +Qj) is clearly 4(a1 +a2 + . . .+ak), because
we have aαQjα(Qi + Qj) = aα(Qjα+i + Qjα−i + Qjα+j + Qjα−j) except jα = i. If jα = i, we
have Qjα+iQi = 2I + Q2i, but we can write 2I = Q0, so let us count the coefficient as unity.
Then without exception, the sum of coefficients of N2 = N(Qi + Qj) is 4 times of that of
N , that is 2× 4. Similarly the sum of coefficient of N3 is 2× 42, . . .. Let N be the matrix
of a graph then (i, j) element of N2 is the number of paths from point i to j with length 2,
that is, if (i, j) element of N2 has a positive value, then point i and j are connected with
2-steps. Of course (i, j) element of N itself represents the connection of 1-step. So we can
say that N + N2 have the more positive elements (the less zero elements), the connectivity
of the graph for N + N2 becomes the stronger. The same logic goes along

N + N2 + N3 and N + N2 + N3 + N4 · · · .

Along above discussions we introduce

Cr = I +
1

2
N +

1

2× 4
N2 +

1

2× 42
N3 + · · ·+ 1

2× 4r−1
N r, (28)

and let Cr be called as r-th order connectivity matrix, where the weight of each (28)
is the inverse of the sum of coefficients (of Q0, Q1, Q2, . . .) of its term and by this the
contribution of each term to Cr becomes even, and unit matrix I is included for consistence
of further calculation.
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Example 3 For n = 15, we have seven possible 1-cyclic designs

Q1, Q2, · · · , Q7(see formula (3)).

We consider two 2-cyclic designs Q1 + Q2 and Q1 + Q4.
We have

(Q1 + Q2)
2 = Q2

1 + 2Q1Q2 + Q2
2

= 2I + Q2 + 2(Q1 + Q3) + 2I + Q4

= 4I + 2Q1 + Q2 + 2Q3 + Q4,

(Q1 + Q4)
2 = Q2

1 + 2Q1Q4 + Q2
4

= 2I + Q2 + 2(Q3 + Q5) + 2I + Q7,

by formula (25) and (26).
Their 2-nd connectivity matrices are

C2 of (Q1 + Q2) = I +
(Q1 + Q2)

2
+

(Q1 + Q2)
2

8

=
3

2
I +

6Q1 + 5Q2 + 2Q3 + 8Q4

8
, (29)

C2 of (Q1 + Q4) = I +
(Q1 + Q4)

2
+

(Q1 + Q4)
2

8

=
3

2
I +

Q1

2
+

Q2

8
+

Q3

4
+

Q4

2
+

Q5

4
+

Q7

8
. (30)

Comparing (29) and (30), we can say that connectivity of Q1 + Q4 is stronger than that of
Q1 + Q2, by which we can say that Q1 + Q4 is better than Q1 + Q2. This is also certified
by the following values of standard errors,

The standard error of Q1 + Q2 = 0.5794,

The standard error of Q1 + Q4 = 0.5085,

shown in Table 5.
For the precise measurement of connectivity the variance of coefficient of Q0(= 2I), Q1, Q2, · · ·

is suitable which is denoted by |Cr|. As for (29) and (30) the coefficients and the variances
are as follows.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 variance|C2|
Q1 + Q2 3/4 6/8 5/8 1/4 1/8 0 0 0 1.496
Q1 + Q4 3/4 1/2 1/8 1/4 1/2 1/4 0 1/8 1.121

(31)

□
Example 4 For n = 17 the possible cycles are Q1, Q2, · · · , Q8. Let us compare

Q1 + Q4 and Q1 + Q5.
By the same way as Example 3, we have the following coefficients of 2-nd order connectivity
of both designs.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 variance|C2|
Q1 + Q4 3/4 1/2 1/8 2/8 1/2 2/8 0 0 1/8 1.142
Q1 + Q5 3/4 1/2 1/8 0 2/8 1/2 2/8 1/8 0 1.142

(32)
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Both have the same 2-nd order connectivity. But the slight difference of standard errors
(0.5210 of Q1 + Q4 and 0.5222 of Q1 + Q5) is revealed by the 3-rd order C3 as follows;

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 variance|C3|
Q1 + Q4 3/4 27/32 7/32 9/32 27/32 9/32 3/32 3/32 7/32 1.903
Q1 + Q5 3/4 25/32 5/32 4/32 8/32 25/32 11/32 7/32 3/32 2.111

(33)
□　

6. Characteristics of the Goodness of Designs

Already we have Tables 5 and 6 so we are able to know the best 2-cyclic design for n =
5, . . . , 60. But the characteristics of good designs is useful to know the best design for
n > 60, and to extend our 2-design theory to 3-cyclic, 4-cyclic design theories.

First we define strength r of a 2-cyclic design. A 2-cyclic design has strength r if there
are no duplications among terms Qk in Cr .For a general 2-cyclic design N = Qi + Qj we
have

2C1 = 2I + Qi + Qj,

2C2 = 2I + Qi + Qj + (Qi + Qj)
2/4

= 3I + Qi + Qj +
1

4
Q2i +

1

4
Q2j +

1

2
Qi+j +

1

2
Qi−j.

So we have terms

I , Qi , Qj , Q2i , Q2j , Qi+j , Qi−j (34)

in C2. If i , j , 2i , 2j , i + j , i − j are different from each other in the meaning of
(27), then no duplications occur among terms in (34). For n = 17, design Q1 + Q4 have
strength 2, because the set of terms becomes

I , Q1 , Q2 , Q4 , Q8 , Q5 , Q3, (35)

which has no duplications. But for Q1 + Q6 we have 2i = 1− i, so (34) becomes

I , Q1 , Q2 , Q6 , Q5 , Q7 , Q5, (36)

So Q1 + Q6 has not strength 2.
If 2-cyclic design N has strength r then it has also strength r−1, r−2, · · ·. And it is easily

seen that if 2-cyclic designs N and N ′ both have strength r then their coefficient patterns
in Cr (as seen in Examples 3 and 4) are the same, so they have same connectivity|Cr|(the
variance of coefficients).

Further we present the following Conjectures 1 through 3.

Conjecture 1 If for some r, N has strength r and N ′ has not, then N is better design
than N ′ (or the standard error of N is smaller than that of N ′).　□

For example as shown in (35) and (36), Q1 + Q4 has strength 2 and Q1 + Q6 has not,
and the standard error of Q1 + Q4 is 0.5210 and that of Q1 + Q6 is 0.5353.

The number of terms (except unit matrix I) in Cr is easily known to be r(r + 1). Let m
be the number of actual cycles Q1,Q2,· · ·,Qm (m = (n − 1)/2 for odd n and =n/2 − 1 for
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even n), then if m < r(r + 1) then some duplications must occur, so any 2-cyclic designs
have not strength r. So only in the case

m ≥ r(r + 1) (37)

they can have strength r.
Example 5 For n = 13, m = 6, r = 2, (37) is valid with equality and Q1 + Q5

generates the following terms in C2 of (34).

I , Q1 , Q2 , Q5 , Q3 , Q6 , Q4

□

Example 6 For n = 26,m = 12,r = 3, (37) is also valid with equality. Actually
Q1 + Q10 generates in the following terms C3.

I , Q1 , Qi , Q2 , Q2i , Q3 , Q3i , Q1+i , Q1−i , Q1+2i , Q1−2i , Q2+i , Q2−i

= I, Q1 , Q10 , Q2 , Q6 , Q3 , Q4 , Q11 , Q9 , Q5 , Q7 , Q12 , Q8

□

Conjecture 2 If (37) is valid with equality, and N has strength r then it is the best
2-cyclic design. □

So far we discuss the goodness of design through the strength which gives the simple
method only to check duplications. By this we can cover fairly large case to find better
designs, but to find the best design we must use the connectivity, that is, the variance |Cr|
of coefficients of terms in Cr ((31), (32)· · ·), except the rare case stated in Conjecture 2.

Conjecture 3 Except the case of holding equality of (37), the best 2-cyclic design
has strength r for the largest r with m > r(r + 1), and if there are several such 2-cyclic
designs, the best design has the least value of connectivity |Cr+1| among them. □

Example 7 For n = 15,m = 7, the largest r with 7 > r(r + 1) is r = 2. There are
two designs Q1 + Q4 and Q1 + Q6 with strength 2. The coefficients in C3 of both designs
and their variances |C3| are

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 variance|C3|
Q1 + Q4 3/4 25/32 7/32 10/32 25/32 8/32 6/32 7/32 1.883
Q1 + Q6 3/4 25/32 7/32 6/32 6/32 8/32 25/32 11/32 1.891

so Q1 +Q4 is the best by our Conjecture 3. Actually the standard error of Q1 +Q4 is 0.5085
and that of Q1 + Q6 is 0.5093. □

Through these conjectures we can efficiently find the better or the best 2-cyclic designs
for the given value of n (even if we have not Table 5 at hand).

For 6 ≤ m <12, first we find the set S2 whose designs have strength 2. N ∈ S2 is better
(than designs /∈ S2) designs (the best design for m = 6). Further calculate |C3| of N ∈ S2,
then N having the smallest |C3| is the best design.

For 12 ≤ m < 20, first find the set S3 whose designs have strength 3. N ∈ S3 is better
(than designs /∈ S3) or the best for m = 12. Further calculate |C4| of N ∈ S3 then N having
the smallest |C4| is the best.

The same way goes for 20 ≤ m < 30, 30 ≤ m < 42 · · ·.
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7. Conclusions and Further Researches

1. We proposed 2-cyclic designs which give the simple and efficient method to select pairs
from the whole set of pairs of n objects, which reduce the number n(n − 1)/2 of paired
comparisons to m = 2n.
2. The properties of isomorphism relations of 1-cyclic and 2-cyclic designs were investigated.
It contributes to reduce the possible range of 2-cyclic designs to be investigated. In Table 4
all possible isomorphism relations in 2-cyclic designs are shown.
3. The analyzing and error estimating methods of 2-cyclic designs are stated and the
standard errors of all possible 2-cyclic designs for n = 5, . . . , 60 are shown in Table 5 and
Table 6, by which we can find the best 2-cyclic design for each value of n = 5, . . . , 60.
4. Developing the algebra on cyclic design matrices we introduce the connectivity or strength
of designs which reveal characteristics of good designs. We propose several conjectures based
on these concepts, which give very simple way to find the better or the best 2-cyclic designs
for general values of n.
5. For larger n, the set of pairs to be investigated in 2-cyclic designs is too small compared
with the whole set. We would like to extend our methods and theories to 3-cyclic or 4-cyclic
designs. This is left to the future researches.
6. Mathematical proofs of 3 conjectures stated in §6 are also left to the future research.
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Appendix 1 Standard errors of Qi + Qj type for non-prime n
　Here we investigate standard errors of Qi +Qj for non-prime n. First if i or j is relatively
prime to n then Qi + Qj ≈ Q1 + Qk, so we have only to consider the case for the i and j
to have common divisor(6= 1) with n. Further if i and j have common divisor (6= 1) then
Qi + Qj is disconnected. Besides Qn/2 (for even n) is omitted, because it takes duplicate
pairs so it is clearly a bad design.
　 Considering above, we calculate the standard errors of the case for the i and j to have
common divisors (6= 1) and i and j are relatively prime, and omit Qn/2 (for even n), and
show them in Table 6. Note that for example for the case of n = 14 or 16 etc. There is no
Qi + Qj with above conditions; such n is omitted in Table 6.
　The cases where a standard error in Table 6 is better than that in Table 5 are only;

Q2 + Q3 (better than Q1 + Q3, n = 12)
Q3 + Q4 (better than Q1 + Q5, n = 24)
Q3 + Q5 (better than Q1 + Q5, n = 30)
Q4 + Q5 (better than Q1 + Q7, n = 40)

Our conjectures are still valid for these cases. For example we have the following coeffi-
cients of C2 for Q2 + Q3 and Q1 + Q3(n = 12)

I Q1 Q2 Q3 Q4 Q5 Q6

Q2 + Q3 3/2 1/4 1/2 1/2 1/8 1/4 1/8
Q1 + Q3 3/2 1/2 3/8 1/2 1/4 0 1/8

and it is clear that Q2 + Q3 has the smaller variance than that of Q1 + Q3.

Appendix 2
　 By the formula shown in [1] we have [V [ˆ̇ui, ˆ̇uj]]/σ

2 = M−1XT
0 X0M

−1 where V [ˆ̇ui, ˆ̇uj] is
the variance and covariance matrix of ˆ̇u0, ˆ̇u1, . . . , ˆ̇un−1. Let denote the original data table
matrix by X0, that is

X =

[
X0

eT

]

where e is all 1 column vector.
Let X0 = [xij] , M = [mij] , M−1 = [mij] , W = M−1XT

0 = [wij]
Then we have

V [ˆ̇ui] /σ2 =
∑

j wij
2 =

∑
j

∑
k mikxkj

∑
l m

ilxlj

=
∑

k
∑

l m
ikmil ∑

j xkjxlj =
∑

k
∑

l m
ikmil(mkl − 1)

=
∑

k
∑

l m
ikmilmkl − ∑

k
∑

l m
ikmil

=
∑

k δikm
ik − (

∑
k mik)2 (δik is Kronecker’s delta)

= mii − (
∑

k mik)
2

which proves (31).
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Table 1: Isomorphic design
Qi Qai ϕ(Qi)
‖ ‖ ‖

Q2 Q6 3Qi

02 06 06
13 17 39
24 28 62
35 39 95
46 40 28
57 51 51
68 62 84
79 73 17
80 84 40
91 95 73

Table 2: Data table
ȧ u̇0 u̇1 u̇2 u̇3 u̇4 u̇5

ȧ01 1 -1 0 0 0 0
ȧ12 0 1 -1 0 0 0
ȧ23 0 0 1 -1 0 0
ȧ34 0 0 0 1 -1 0
ȧ45 0 0 0 0 1 -1
ȧ05 1 0 0 0 0 -1
ȧ02 1 0 -1 0 0 0
ȧ13 0 1 0 -1 0 0
ȧ24 0 0 1 0 -1 0
ȧ35 0 0 0 1 0 -1
ȧ04 1 0 0 0 -1 0
ȧ15 0 1 0 0 0 -1
0 1 1 1 1 1 1

Table 3: Standard error
n the best 2-cyclic design the complete case
10 .4743 .3000
15 .5085 .2494
20 .5317 .2179
25 .5489 .1960
30 .5649 .1795
35 .5733 .1666
40 .5828 .1561
45 .5904 .1474
50 .5979 .1400
55 .6050 .1336
60 .6101 .1280
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Table 4: Isomorphic relations of 2-cyclic designs for various values of n
(i) prime n

n
i = 2 ∼ n−1

2

isomorphic
relations

7
i = 2 ∼ 3

2 ≈ 3∗

11
i = 2 ∼ 5

2 ≈ 5
3 ≈ 4∗

13

i = 2 ∼ 6
2 ≈ 6
3 ≈ 4
(5)∗

17

i = 2 ∼ 8
2 ≈ 8
3 ≈ 6
5 ≈ 7
(4)∗

19

i = 2 ∼ 9
2 ≈ 9
3 ≈ 6

4 ≈ 5∗
7 ≈ 8

23

i = 2 ∼ 11
2 ≈ 11
3 ≈ 8
4 ≈ 6

5 ≈ 9∗
7 ≈ 10

29

i = 2 ∼ 14
2 ≈ 14
3 ≈ 10
4 ≈ 7
5 ≈ 6

8 ≈ 11
9 ≈ 13
(12)∗

31

i = 2 ∼ 15
2 ≈ 15
3 ≈ 10
4 ≈ 8
5 ≈ 6
7 ≈ 9

11 ≈ 14
12 ≈ 13∗

37

i = 2 ∼ 18
2 ≈ 18
3 ≈ 12
4 ≈ 9

5 ≈ 15
7 ≈ 16

8 ≈ 14∗
10 ≈ 11
13 ≈ 17

(6)

41

i = 2 ∼ 20
2 ≈ 20
3 ≈ 14
4 ≈ 10
5 ≈ 8
6 ≈ 7

11 ≈ 15
12 ≈ 17
13 ≈ 19
16 ≈ 18

(9)∗

43

i = 2 ∼ 21
2 ≈ 21
3 ≈ 14
4 ≈ 11
5 ≈ 17
6 ≈ 7

8 ≈ 16
9 ≈ 19

10 ≈ 13
12 ≈ 18∗
15 ≈ 20

47

i = 2 ∼ 23
2 ≈ 23
3 ≈ 16
4 ≈ 12
5 ≈ 19
6 ≈ 8

7 ≈ 20∗
9 ≈ 21

10 ≈ 14
11 ≈ 17
13 ≈ 18
15 ≈ 22

53

i = 2 ∼ 26
2 ≈ 26
3 ≈ 18
4 ≈ 13
5 ≈ 21
6 ≈ 9

7 ≈ 15
8 ≈ 20∗
10 ≈ 16
11 ≈ 24
12 ≈ 22
14 ≈ 19
17 ≈ 25
21 ≈ 23

59

i = 2 ∼ 29
2 ≈ 29
3 ≈ 20
4 ≈ 15
5 ≈ 12
6 ≈ 10
7 ≈ 17
8 ≈ 22

9 ≈ 13∗
11 ≈ 16
14 ≈ 21
18 ≈ 23
19 ≈ 28
24 ≈ 27
25 ≈ 26
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Table 4: (continued)
(ii) odd n (not prime)

n
i = 2 ∼ n−1

2

isomorphic
relations

9
i = 2 ∼ 4

2 ≈ 4
3∗

15
i = 2 ∼ 7

2 ≈ 7
(4)∗

21

i = 2 ∼ 10
2 ≈ 10
4 ≈ 5
(8)∗

25

i = 2 ∼ 12
2 ≈ 12
3 ≈ 8
4 ≈ 6

9 ≈ 11
(7)∗

27

i = 2 ∼ 13
2 ≈ 13
4 ≈ 7

5 ≈ 11
8 ≈ 10

6∗

33

i = 2 ∼ 16
2 ≈ 16
4 ≈ 8

5 ≈ 13
7 ≈ 14

(10)
6∗

35

i = 2 ∼ 17
2 ≈ 17
3 ≈ 12
4 ≈ 9

8 ≈ 13
11 ≈ 16

(6)
10∗

39

i = 2 ∼ 19
2 ≈ 19
4 ≈ 10
5 ≈ 8

7 ≈ 11∗
(14)

16 ≈ 17

45

i = 2 ∼ 22
2 ≈ 22
4 ≈ 11
7 ≈ 13
8 ≈ 17

14 ≈ 16
(19)∗

49

i = 2 ∼ 24
2 ≈ 24
3 ≈ 16
4 ≈ 12
5 ≈ 10
6 ≈ 8

9 ≈ 11
13 ≈ 15
17 ≈ 23
18 ≈ 19
20 ≈ 22

14∗

51

i = 2 ∼ 25
2 ≈ 25
4 ≈ 13
5 ≈ 10
7 ≈ 22
8 ≈ 19

11 ≈ 14
20 ≈ 23

(16)
9∗

55

i = 2 ∼ 27
2 ≈ 27
3 ≈ 18
4 ≈ 14
6 ≈ 9
7 ≈ 8

11 ≈ 22
12 ≈ 23
13 ≈ 17
16 ≈ 24
19 ≈ 26

(21)∗

57

i = 2 ∼ 28
2 ≈ 28
4 ≈ 14
5 ≈ 23
7 ≈ 8

10 ≈ 17
11 ≈ 26
13 ≈ 22
16 ≈ 25

24∗
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Table 4: (continued)
(iii) even n

n
i = 2 ∼ n−2

2

isomorphic
relations

8
i = 2 ∼ 3

(3)∗

10
i = 2 ∼ 4

(3)
4∗

12
i = 2 ∼ 5

(5)
3∗

14
i = 2 ∼ 6

3 ≈ 5
4∗

16

i = 2 ∼ 7
3 ≈ 5

(7)
6∗

18
i = 2 ∼ 8

5 ≈ 7∗

20

i = 2 ∼ 9
3 ≈ 7

(9)
8∗

22

i = 2 ∼ 10
3 ≈ 7
5 ≈ 9

6∗

24

i = 2 ∼ 11
7 ≈ 9
(5)∗
(11)

26

i = 2 ∼ 12
3 ≈ 9

7 ≈ 11
(5)
10∗

28

i = 2 ∼ 13
3 ≈ 9

5 ≈ 11
(13)

6∗

30

i = 2 ∼ 14
7 ≈ 13

(11)
5∗

32

i = 2 ∼ 15
3 ≈ 11
5 ≈ 13
7 ≈ 9∗

(15)

34

i = 2 ∼ 16
3 ≈ 11
5 ≈ 7

9 ≈ 15
(13)

6∗

36

i = 2 ∼ 17
5 ≈ 7

11 ≈ 13
(17)
15∗

38

i = 2 ∼ 17
5 ≈ 7

11 ≈ 13
(17)
15∗

40

i = 2 ∼ 19
3 ≈ 13
7 ≈ 17

(9)
(11)

42

i = 2 ∼ 20
5 ≈ 17

11 ≈ 19
(13)
12∗

44

i = 2 ∼ 21
3 ≈ 15
5 ≈ 9

7 ≈ 19
13 ≈ 17

8∗

46

i = 2 ∼ 22
3 ≈ 15
5 ≈ 9

7 ≈ 13∗
11 ≈ 21
17 ≈ 19

48

i = 2 ∼ 23
5 ≈ 19

11 ≈ 13
(17)
18∗

50

i = 2 ∼ 24
3 ≈ 17
9 ≈ 11

19 ≈ 21∗
(7)

52

i = 2 ∼ 25
3 ≈ 17
5 ≈ 21
7 ≈ 15
9 ≈ 23

11 ≈ 19
8∗

54

i = 2 ∼ 26
5 ≈ 11
7 ≈ 23

17 ≈ 19
12∗

56

i = 2 ∼ 27
3 ≈ 19
5 ≈ 11
9 ≈ 25

17 ≈ 23
(13)
(15)
21∗

58

i = 2 ∼ 28
3 ≈ 19
5 ≈ 23
7 ≈ 25
9 ≈ 13

11 ≈ 21
15 ≈ 27

(17)
22∗

60

i = 2 ∼ 29
7 ≈ 17

13 ≈ 23
(11)
(19)

8∗
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Table 6: Standard Error of Qi + Qj type
n = 10

Q2 + Q5 0.48713
n = 12

Q2 + Q3 *0.48897
Q3 + Q4 0.50020

n = 15
Q3 + Q5 0.52814

n = 18
Q2 + Q3 0.52841
Q3 + Q4 0.52841
Q3 + Q8 0.52841

n = 20
Q2 + Q5 0.53679
Q4 + Q5 0.53754
Q5 + Q6 0.53679
Q5 + Q8 0.53754

n = 24
Q2 + Q3 0.56424
Q2 + Q9 0.56424
Q3 + Q4 *0.54531
Q3 + Q8 0.60351
Q3 + Q10 0.56424
Q4 + Q9 0.54531
Q9 + Q10 0.56424

n = 28
Q2 + Q7 0.57564
Q4 + Q7 0.57569
Q6 + Q7 0.57564
Q7 + Q8 0.57569
Q7 + Q10 0.57564
Q4 + Q12 0.57569

n = 30
Q2 + Q3 0.59768
Q2 + Q5 0.56276
Q2 + Q9 0.56391
Q3 + Q4 0.56391
Q3 + Q5 *0.56177
Q3 + Q8 0.59768
Q3 + Q10 0.64844

Q3 + Q14 0.56391
Q4 + Q5 0.56276
Q4 + Q9 0.59768
Q5 + Q6 0.56608
Q5 + Q8 0.56276
Q5 + Q9 0.56177
Q5 + Q12 0.56608
Q5 + Q14 0.56276
Q8 + Q9 0.56391
Q9 + Q10 0.64844
Q9 + Q14 0.59768

n = 35
Q5 + Q7 0.58075
Q5 + Q14 0.58075
Q7 + Q10 0.58075
Q7 + Q15 0.58075

n = 36
Q2 + Q3 0.62925
Q2 + Q9 0.61132
Q2 + Q15 0.62925
Q3 + Q4 0.58161
Q3 + Q8 0.58161
Q3 + Q10 0.62925
Q3 + Q14 0.62925
Q3 + Q16 0.58161
Q4 + Q9 0.61133
Q4 + Q15 0.58161
Q8 + Q9 0.61133
Q8 + Q15 0.58161
Q9 + Q10 0.61132
Q9 + Q14 0.61132
Q9 + Q16 0.61133

n = 40
Q2 + Q5 0.58832
Q2 + Q15 0.58832
Q4 + Q5 *0.58274
Q4 + Q15 0.58274
Q5 + Q6 0.58832
Q5 + Q8 0.59510

Q5 + Q12 0.58274
Q5 + Q14 0.58832
Q5 + Q16 0.59510
Q5 + Q18 0.58832
Q8 + Q15 0.59510
Q14 + Q15 0.58832
Q15 + Q16 0.59510

n = 42
Q2 + Q3 0.65925
Q2 + Q7 0.58850
Q2 + Q9 0.59870
Q2 + Q15 0.58707
Q3 + Q4 0.59870
Q3 + Q7 0.58835
Q3 + Q8 0.58707
Q3 + Q10 0.59870
Q3 + Q14 0.72965
Q3 + Q16 0.65925
Q3 + Q20 0.58707
Q4 + Q7 0.58850
Q4 + Q9 0.58707
Q4 + Q15 0.65925
Q6 + Q7 0.58896
Q7 + Q8 0.58850
Q7 + Q9 0.58835
Q7 + Q10 0.58850
Q7 + Q12 0.58896
Q7 + Q15 0.58835
Q7 + Q16 0.58850
Q7 + Q18 0.58896
Q7 + Q20 0.58850
Q8 + Q9 0.65925
Q8 + Q15 0.59870
Q9 + Q10 0.58707
Q9 + Q14 0.72965
Q9 + Q16 0.59870
Q9 + Q20 0.65925
Q14 + Q15 0.72965
Q15 + Q16 0.58707

n = 44
Q2 + Q11 0.64483
Q4 + Q11 0.64483
Q6 + Q11 0.64483
Q8 + Q11 0.64483
Q10 + Q11 0.64483
Q11 + Q12 0.64483
Q11 + Q14 0.64483
Q11 + Q16 0.64483
Q11 + Q18 0.64483
Q11 + Q20 0.64483

n = 45
Q5 + Q9 0.60912
Q5 + Q18 0.60912
Q9 + Q10 0.60912
Q9 + Q20 0.60912

n = 48
Q2 + Q3 0.68790
Q3 + Q4 0.61528
Q3 + Q8 0.60043
Q3 + Q10 0.59606
Q3 + Q14 0.68790
Q3 + Q16 0.76693
Q3 + Q20 0.61528
Q3 + Q22 0.59606

n = 50
Q2 + Q5 0.61256
Q2 + Q15 0.60019

n = 51
Q3 + Q17 0.78490
Q6 + Q17 0.78490
Q9 + Q17 0.78490
Q12 + Q17 0.78490
Q15 + Q17 0.78490
Q17 + Q18 0.78490
Q17 + Q21 0.78490
Q17 + Q24 0.78490

n = 52
Q2 + Q13 0.67658
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Q2 + Q13 0.67658
Q4 + Q13 0.67658
Q6 + Q13 0.67658
Q8 + Q13 0.67658
Q10 + Q13 0.67658
Q12 + Q13 0.67658
Q13 + Q14 0.67658
Q13 + Q16 0.67658
Q13 + Q18 0.67658
Q13 + Q20 0.67658
Q13 + Q22 0.67658
Q13 + Q24 0.67658

n = 54
Q2 + Q3 0.71539
Q2 + Q9 0.61213
Q2 + Q15 0.63141
Q2 + Q21 0.60825
Q3 + Q4 0.63141
Q3 + Q8 0.60825
Q3 + Q10 0.60825
Q3 + Q14 0.63141
Q3 + Q16 0.71539
Q3 + Q20 0.71539
Q3 + Q22 0.63141
Q3 + Q26 0.60825
Q4 + Q9 0.61213
Q4 + Q15 0.60825
Q4 + Q21 0.71539
Q8 + Q9 0.61213
Q8 + Q15 0.71539
Q8 + Q21 0.63141
Q9 + Q10 0.61213
Q9 + Q14 0.61213
Q9 + Q16 0.61213
Q9 + Q20 0.61213
Q9 + Q22 0.61213
Q9 + Q26 0.61213
Q10 + Q21 0.63141

Q14 + Q15 0.60825
Q14 + Q21 0.71539
Q15 + Q16 0.63141
Q15 + Q22 0.60825
Q15 + Q26 0.71539
Q16 + Q21 0.60825
Q20 + Q21 0.60825

n = 57
Q3 + Q19 0.81963
Q6 + Q19 0.81963
Q9 + Q19 0.81963
Q12 + Q19 0.81963
Q15 + Q19 0.81963
Q18 + Q19 0.81963
Q19 + Q21 0.81963
Q19 + Q24 0.81963
Q19 + Q27 0.81963

n = 60
Q2 + Q3 0.74184
Q2 + Q5 0.63575
Q2 + Q9 0.61452
Q2 + Q15 0.70685
Q2 + Q21 0.61452
Q2 + Q25 0.63575
Q2 + Q27 0.74184
Q3 + Q4 0.64712
Q3 + Q5 0.62525
Q3 + Q10 0.62350
Q3 + Q14 0.61452
Q3 + Q20 0.83645
Q3 + Q22 0.74184
Q3 + Q25 0.62525
Q3 + Q26 0.61452
Q3 + Q28 0.61160
Q4 + Q5 0.61695
Q4 + Q9 0.61160
Q4 + Q15 0.70685
Q4 + Q21 0.61160

Q4 + Q25 0.61695
Q4 + Q27 0.64712
Q5 + Q6 0.61050
Q5 + Q8 0.61695
Q5 + Q9 0.62525
Q5 + Q12 0.64921
Q5 + Q14 0.63575
Q5 + Q16 0.61695
Q5 + Q18 0.61050
Q5 + Q21 0.62525
Q5 + Q22 0.63575
Q5 + Q24 0.64921
Q5 + Q26 0.63575
Q5 + Q27 0.62525
Q5 + Q28 0.61695
Q6 + Q25 0.61050
Q8 + Q9 0.64712
Q8 + Q15 0.70685
Q8 + Q21 0.64712
Q8 + Q25 0.61695
Q8 + Q27 0.61160
Q9 + Q10 0.62350
Q9 + Q14 0.74184
Q9 + Q16 0.61160
Q9 + Q20 0.62525
Q9 + Q22 0.74184
Q9 + Q26 0.64712
Q10 + Q21 0.62350
Q10 + Q27 0.62350
Q12 + Q25 0.64921
Q14 + Q15 0.70685
Q14 + Q25 0.63575
Q14 + Q27 0.61452
Q15 + Q16 0.70685
Q15 + Q22 0.70685
Q15 + Q26 0.70685
Q15 + Q28 0.70685
Q16 + Q21 0.61160

Q16 + Q25 0.61695
Q16 + Q27 0.64712
Q18 + Q25 0.61050
Q20 + Q21 0.83645
Q20 + Q27 0.83645
Q21 + Q22 0.61452
Q21 + Q26 0.74184
Q21 + Q28 0.64712
Q22 + Q25 0.63575
Q22 + Q27 0.74180
Q24 + Q25 0.64921
Q25 + Q26 0.63575
Q25 + Q27 0.62525
Q25 + Q28 0.61695
Q26 + Q27 0.61452
Q26 + Q28 0.61160
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Figure 1: Isomorphic design
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