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Abstract  This paper considers a FIFO single-server queue with service interruptions and multiple batch
Markovian arrival streams. The server state (on and off), the type of arriving customers and their batch
size are assumed to be governed by a continuous-time Markov chain with finite states. To put it more
concretely, the marginal process of the server state is a phase-type alternating Markov renewal process,
the marginal arrival process is a batch marked Markovian arrival process, and they may be correlated.
Further, service times of arriving customers are allowed to depend on both their arrival stream and the
server state on arrival. For such a queue, we derive the vector joint generating function of the numbers of
customers from respective arrival streams. Further assuming discrete phase-type batch size distributions,
we establish a numerical algorithm to compute the joint queue length distribution at a random point in
time. Finally, we show some numerical examples and examine the impact of system parameters on the
queue length distribution.
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1. Introduction

This paper considers a FIFO single-server queue with service interruptions. In such a queue,
the state of the server changes on and off alternately. While in on-state, the server is available
for service. On the other hand, while in off-state, the server dose not work even if customers
are present in the system. Hereafter periods during which the server is in on-state (resp.
off-state) are called on-periods (resp. off-periods).

Queues with service interruptions have many applications in the fields of manufacturing,
computer and telecommunications systems, and many studies on those queues have been
done for a few decades. A detailed survey on queues with service interruptions can be
found in the introduction of the paper by Federgruen and Green [1]. They mainly discussed
approximation methods for an M/G/1 queue with service interruptions, where on- and off-
periods are generally distributed [1]. Further, assuming a phase-type on-period distribution,
they established an exact algorithm to compute the steady-state queue length distribution
2].

Recently, more general queues with service interruptions have been studied. Sengupta
[9] considered the model where on- and off-period distributions are general, customers arrive
according to a Poisson process whose arrival rate depends on the server state, and service
times are generally distributed, depending on the server state upon arrival. He showed that
the amount of unfinished work in such a queue is closely related to the waiting time in a
special GI/G/1 queue. Also, Takine and Sengupta [12] considered a single-server queue with
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service interruptions, where both the server state and arrival processes are governed by a
finite-state Markov chain. Namely, the marginal processes of the server state and customer
arrivals form an alternating phase-type Markov renewal process and a MAP (Markovian
arrival process) [5], respectively, and they may be dependent. For this queue, they obtained
the steady-state queue length distribution. The crucial assumption posed in [12] was i.i.d.
(independent and identically distributed) service times.

This paper considers an extension of the results in [12] to allowing multiple batch Marko-
vian arrival streams. Thus, the marginal arrival process follows a batch marked MAP (3, 4, 6].
Further, service times of customers can depends on both their arrival stream and the server
state on arrival. As stated in [12], such a queue cannot be analyzed by the conventional
M/G/1 paradigm [8]. To analyze the extended model, therefore, we use a new approach
developed in [7,13-15], which is based on the invariant relationship of the joint queue length
distributions at random points in time and at departures [14]. We then derive the vector joint
generating function of the numbers of customers from respective arrival streams. Further
assuming discrete phase-type batch size distributions as in [7], we provide a computational
algorithm for the steady-state joint queue length distribution. We also show some numerical
examples and examine the impact of system parameters on the queue length distribution.

The rest of this paper is divided into four sections. In section 2, the mathematical
model is described. Section 3 briefly discusses the sojourn time distribution. In section
4, we first derive a general formula for the joint queue length distribution, and assuming
discrete phase-type batch size distributions, we show recursive formulas to compute the
joint queue length distribution. Finally, in section 5, we show some numerical examples.
Throughout the paper, matrices and vectors are denoted by bold capital letters and bold
small letters, respectively, and the empty sum is defined as zero.

2. Model

We consider a FIFO single-server queue with service interruptions. The state of the server
changes on and off alternately, and while the server is being on, customers are served suc-
cessively. On the other hand, services of customers stop temporally while the server is being
off, and interrupted services are restarted in a preemptive-resume manner when the server
becomes on again. In what follows, we call the process of the server state the on-off process.

We assume that both the on-off and arrival processes are governed by an underlying
finite-state Markov chain that is assumed to be irreducible. Let M = {1,..., M} denote
the state space of the underlying Markov chain, where M > 2. It stays in state i (i € M)
for an exponential interval of time with mean sx; ', and when the sojourn time in state
has elapsed, the underlying Markov chain changes its state to state j with probability o; ;

(j € M), where

Z oi; = 1.

jeM

The on-off process of the server is defined in the following way. The state space M is

divided into two disjoint sub-spaces, Mo, = {1,..., Mo} and Mg = {Mon +1,..., Mo, +
Mg}, where My, > 1, Mog > 1 and My, + Mog = M. The server is assumed to be on (resp.
off) while the underlying Markov chain is being in state i € Mg, (resp. i € Myg). Thus
the on-off process forms a phase-type alternating Markov renewal process.

Next we describe the arrival process of customers. We assume that there are K (K > 1)
arrival streams. Let IC denote a set of class indices, i.e., K = {1,..., K'}. Customers arriving
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A FIFO Queue with Service Interruptions 321

from the kth (k € K) arrival stream are called class k customers. Given a state transition of
the underlying Markov chain from state i to state j (i,7 € M), n (n = 1,2,...) customers
of class k (k € K) arrive in batch with probability oy ; ;(n)/0; ;, where

o0
> okij(n) <oy,

ke n=1

for all 7,7 € M. Note that customers in the same batch belong to the same class. For later
use, we define o, ;(0) (4,5 € M) as

0:;(0) =0i; =Y i Okig(10).

ke n=1

Note that o, ;(0)/0; ; represents the conditional probability of no arrivals given that a state
transition from state i to state j happens. Without loss of generality, we assume o;;(0) = 0
for all i (1 € M).

In terms of service times, class k customers are further classified into two sub-classes
based on the server state on arrival. We call class k£ customers arriving in on-periods
(resp. off-periods) class k-on (resp. k-off) customers. Service times of class k-on (resp. k-
off) customers are assumed to be i.i.d. according to a distribution function Hy o, () (resp.
Hy ot(z)) with finite mean hg on (vesp. Ay off).-

In the rest of this paper, we impose two assumptions on oy, j(n). For each k (k € K),
there exists at least one triad (i, 7,n) (¢,j € M, n=1,2,...) such that oy, ;(n) > 0. Thus
arrivals of class k customers are certain. Further o, ;(n) = 0 (k € K) if i € M,, and
j € Mg orifie Myg and j € M,,. Thus arrivals of customers and changes of the server
state never happen simultaneously.

We now introduce some notations. Let C' denote an M x M matrix whose (i,7)th
(i,7 € M) element C;; is given by

Z’] 0;j(0)p;, otherwise.

For each k € K, let Di(n) (n =1,2,...) denote an M x M matrix whose (4, j)th (i,7 € M)
element Dy, ; ;(n) is given by

Dy i(n) = Okij(n)pi, 14,5 € Moy 014, § € Mo,
Foed N 0, otherwise.

Then the on-off and arrival processes are characterized by C' and Dy(n) (kK € K,n =
1,2,...). Note here that C and Dy (n) have the following structure:

_ Con Eon,off _
C= [ Eoff,on Coff 1 ’ Dk(n) N

where C,, and Dy, o, () are Mo, X M, matrices, Cog and Dy, ox(n) are Myg X Mg matrices,
and E, o and Eogon are Mo, X Mog and Myg X M, matrices, respectively.
We define Dy ¢ (k € K, £ = on,off) and D¢ (£ = on, off) as

l kan(n) O
O kaﬁ(n)

D¢ =) Die(n), De¢=) Dy,

n=1 kek
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respectively. We also define D as

D,, O
D—[() Dﬁl'

Note that the infinitesimal generator of the underlying Markov chain is given by C + D.
Note also that (C'+ D)e = 0, where e denotes a column vector whose elements are all equal
to one. We denote the stationary probability vector of the underlying Markov chain by 7.
Because of the finite state space M and the irreducibility of the underlying Markov chain,
7 is uniquely determined so as to satisfy w(C + D) = 0 and we = 1. Let m,, (resp. mos)
denote a 1 x M, (resp. 1 x Myg) vector representing the conditional stationary probability
vector of the underlying Markov chain given that the server is on (resp. off). Note that 7,
and 7r.g satisfy

— — —1
Ton [Con + Don + Eon,off [_Coff - Doff] Eoff,on:| = 07 Ton€ = 17

Toft |:Coff + Eoﬁf + Eoﬁ,on [_Con - ﬁon] Eon,off:| = 07 Tof€ = 1a

respectively. Let r,, and rog denote fractions of time being in on- and off-periods, respec-
tively. We then have
T Ta
o Ton+ Log’

7/.Ol"l—*

Ion _I'Toff’

where I,, and I, denote the mean lengths of on- and off-periods, respectively, and they
are given by

- 7Tofflgoff,on =Y -1 - 71-onlaon,oﬁ" E=Y -1
= _Coy — Do| €, g = — 2 [—Cop — Dost| €.

Trofonff,one ﬂ'onEon,offe

Note here that 7, ,, and 7. are related by
™ = (’ronﬂ'om Toﬂ”ﬂ-off)-

We denote the mean arrival rate of class k (k € K) customers during on- (resp. off-) periods
by /\k,on (resp. /\k:,off):

)\1@5 = 71'5 Z nDké(n)e, 5 = on, Off.
n=1

Let Ak = TonAkon + Toidkoff (K € K) denote the mean arrival rate of class k customers. We
define p as the offered load, i.e.,

P = Ton Z )\k,onhk,on + Toff Z )\k,offhk,off'
kel kel

Further, we define p,, as the conditional utilization factor given that the server is on, which
is given by
Pon = Ton P-

In the remainder of this paper, we assume that p,, < 1, and the system is in steady state.
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A FIFO Queue with Service Interruptions 323

3. Sojourn Time

This section considers sojourn time. Because sojourn time is closely related to the amount
of unfinished work in the system, we first discuss the latter.

Let V and S denote generic random variables representing the amount of unfinished
work and the state of the underlying Markov chain, respectively, in steady state. With
these, we define v(x) as a 1 x M vector whose jth element represents Pr[V < z,5 = j].
Further we define v¢(x) (£ = on, off) as a 1 x M, vector whose jth element represents
Pr[V <z,5=j|S € M]. Note here that v(z) is given in terms of vo,(x) and veg(z):

’U(l’) = (ronvon(m)7 roff’voff(x))'

Thus, we consider v,,(z) and vog(x) below.

Let Jof on(x) denote an Myg X Mo, matrix whose (4, j)th element represents the proba-
bility that the amount of work arriving during an off-period is not greater than x and the
underlying Markov chain is in state j € M,, at the beginning of the next on-period, given
that the off-period starts in state i € Mog. We define D¢(z) (£ = on, off) as

De(r) = 3 3 Die(n)HY(x),
ke n=1
where H,glg(x) = Hj¢(x) and H,gt? () (n =2,3,...) denotes the n-fold convolution of Hy ¢(z)
with itself. According to [10], we define an M,, x M,, matrix @, as an infinitesimal

generator of the irreducible Markov chain obtained by observing the underlying Markov
chain only when the system is idle in on-periods. Note that @, satisfies

Q.,,=Con+ /0 dﬁon(x) exp(Qon) + Eon,oﬁf/0 dJoﬁ“,on(a:) exp(Q,, ).

Because pon, < 1, Q,, is uniquely determined by the above equation [10]. Let k,, denote a
probability vector satisfying Ko, Q,, = 0. Then, v,,(0) is given by [10]

’Uon(O) == (1 - pon)’q'on'
Further, the LST v} (s) of vo,(x) satisfies [10]

*

— — 1
v:.(s) |sI + Con+ D, (S) + Eonoft [—Coff — Doﬂp(s)} Eoﬁ,on} = $(1 = pon)Kon, (3.1)

where D¢(s) (¢ = on, off) denotes the LST of D¢(x) and I(m) denotes an m X m identity
matrix. We suppress the size m when it is clear from the context. As for the LST v};(s) of
vo (), using the same approach as in [12], we readily obtain

v} (3>E0n,0ff [_Coff - E:ff(‘s)]_l

* on
v (5) = —
off
ﬂ-onEon,offe Ioff

(3.2)

Next we analyze sojourn time. To do so, we first consider completion time, which is a time
interval from the beginning of a service to its completion, including service interruptions.
Let T.(u) denote a generic random variable representing the completion time of a service
of u units. Note that the completion time T.(u) depends on the state of the underlying
Markov chain at the beginning of the service, as well as the amount of the service. We
assume that a service commences at time 0, and let S; denote the state of the underlying
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324 H. Masuyama & T. Takine

Markov chain at time ¢. We denote the number of class k (k € K) customers arriving in
interval (0,t] by Lg(t). We then define P**(z,s | u) as an M,, x M,, matrix whose (i, j)th
element represents

IT 2" exp(—sTo(w) {Sr, = j € Man} | So =i € Mon |,
kel

where z denotes a 1 x K complex vector (z1, ..., zx) and 1{x} denotes an indicator function
of event . Further, we define D} ((2;) (k € K, £ = on, off) as

ke(Zn) Z 2 Dy¢e(n (3.3)

Following an approach similar to [12], we obtain
P (z,s|u) =exp[K(z,s)ul,

where

-1

K(Z, S) = Con -+ Z Dzjon(zk) —sI -+ Eon,off sI — Coﬁ' — Z DZ,OH(Z]C) Eoﬁ“yon.
ke kel

We are now ready to discuss sojourn time.

Let Wi, (k € K) (resp. Wye (K € K, £ = on,off)) denote a generic random variable
representing the sojourn time of a class k (resp. k-§) customer. Also let Wy ¢(n;m) (k € K,
¢ =on,off, n =1,2,..., m =1,...,n) denote a generic random variable representing the
sojourn time of a randomly chosen class k-£ customer who is a member of a batch of size
n and the mth served customer among members in the same batch. For convenience, we
assume that if A\ = 0, Wy = 0, and if Dy ¢(n) = O for some n (n > 1), Wye(n;m) =0
for all m (m = 1,...,n). Further, let wi(s), wi(s) and wy (s | n;m) denote the LSTs
of the distributions of Wy, Wy ¢ and W ¢(n;m), respectively. Because a randomly chosen
departing customer of class k (k € K) belongs to class k-§ (£ = on,off) with probability
Tege/ Ak, We obtain

Ton)\k’,on % roff)\k,off *

U)Z(S) - )\k wk,on(s) + ka,oﬂ(‘g)‘
Note here that
D 1 &
Wy ¢(8) = Z n7r§>\:§e - > wy re(s | nym), ke, £ =on, off, (3.4)
n=1 m=1

if Ape > 0, and otherwise wy ((s) = 1. Thus, in what follows, we consider wj (s | n;m)
(keK,&=on,off, n=1,2,....m=1,...,n).

Let Hye(n;m) (ke K, =on,off, n=1,2,..., m=1,...,n) denote a generic random
variable representing the service time of a randomly chosen class k- customer who is a
member of a batch of size n and the mth served customer among members of the same
batch. Because Wy ¢(n;m) = Wye(n; 1) + Y2 Te(Hie(ns 1)) for € = on,off, n = 1,2,...
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A FIFO Queue with Service Interruptions 325
and m=1,...,n, we obtain forn=1,2,...and m=1,...,n,
1 00
T N d on D on Q
D Jy 0on(e)Daon() exp[9s)1]
| [T dtmw e 9] e 35

/ d’voff )Dkoff< ) [SI — Cog _ﬁoff}i

Wron(s | n;m) =

1
ot Dy ot (1

Eogonexp[ Uw dH o (y) exp [s )y]}me, (3.6)

respectively, where (s) = K(1,...,1,s). Note here that the (i, j)th (7,5 € M,,) element
of exp[€2(s)x] represents Elexp(—sT(x))1{S7,x) = j} | a service of x units starts at time 0
and Sy = i]. Thus from (3.4) and (3.5), we obtain for k € K,

/ dVon () Dy on(n) exp [ i:[/oodﬂkon ) exp [£2(s)y]

if Agon > 0, and otherwise wy ,(s) = 1. Similarly, from (3.4) and (3.6), we obtain for k € I,

wl:,off(s ’ n; TTL)

m
e?

w;:) 01’1(8>

)\konn 1

W ot (8) = / dvof (1) Dy ot (0) [SI —Cot — ﬁoﬁrl E o on exp [Q(s)7]

)\koff n=1
m
€,

i{/ dHy o (y) exp [2(s)y]

m=1

if Arot > 0, and otherwise wj ¢(s) = 1.

4. Joint Queue Length Distribution

This section considers the joint queue length distribution. Let Ny (k € K) denote a generic
random variable representing the number of class k£ customers in the stationary system. We
then define p(n) (n € Z) as a 1 x M vector whose jth element represents Pr[N; = nq, ...,
Nk = ng,S = j], where n denotes a 1 x K nonnegative integer vector (ni,...,ng) and
Z={(ny,...,ng);ne = 0,1,... forall k € K}. Further, let NP (k,v € IC) and S(®x)
(k € K) denote generic random variables that represent the number of class v customers in
the system and the state of the underlying Markov chain, respectively, immediately after
departures of class k customers in steady state. We then define g,(n) (k € K, n € Z) as
a 1 x M vector whose jth element represents Pr[Nl(D’“) =n,... ,NKD’“) = ng, SO = 4].
Applying Theorem 1 in [14] to our model, we have the following theorem.

Theorem 4.1 ([14]) The p(n) (n € Z) is recursively determined by

0) = > Mg (0)(—C) ",

p(m) = 3 M)~ aun = e) + 3 pln—mie)Dy(m)| (<€)7, me 2

where ZT = Z — {0}, q,(n) =0 forn & Z and ey, (k € K) denotes the kth unit vector:

er=(0,...,0,1,0,...,0).
kth
Thus the p(n) is given in terms of the q,(n). We then consider the g, (n) in section
4.1. Further, in section 4.2, assuming discrete phase-type batch size distributions, we derive
numerically feasible recursions for some quantities required in computing the g, (n).
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326 H. Masuyama & T. Takine

4.1. Joint queue length distribution immediately after departures

We define g;(z) (k € K) as the vector generating function of the joint queue length distri-
bution immediately after departures of class k customers.

z) =Y 2z g (n), |zi| <1 forall k € K.
nez

Let NSP5¢) and §(Pr.e) (k,v € K, £ = on, off) denote generic random variables that represent
the number of class v customers in the system and the state of the underlying Markov
chain, respectively, immediately after departures of class k-£ customers in steady state.
We define g, g(n) (k € K, £ = on, off) as a 1 x M,, vector whose jth element represents

Pr[N{Pre) = NP o = ng, SPr) = j]. We also define qj, ¢(2) (k € K, £ = on, off)
as
ng Z 2t 'Z%K%,g(n)'
nez

We then have

* r0n>\k,0n % Toﬁ">\k,off *
i) = (" () + g (2,0, 0). (4.1)
k k

because all departures always occur in on-periods.

In the rest of this subsection, we derive q; ,,(2) and gj, ,¢(2). We call a randomly chosen
class k-§ (k € K, £ = on, off) customer who is a member of a batch of size n and the mth
served customer among members in the same batch the tagged customer. Further we call
the batch to which the tagged customer belongs the tagged batch. Let N,EDk’E)(n;m) and
SPre)(n;m) (k,v € K, € = on,off, n = 1,2..., m = 1,...,n) denote generic random
variables that represent the number of class v customers in the system and the state of
the underlying Markov chain, respectively, immediately after the departure of the tagged
customer. We then define q; (2 [ n;m) (k€ K, { =on,off, n=1,2...,m=1,...,n) as a

Ore), ,
1 X M,y vector whose jth element represents E[HVE,C 2N o (mim) 1 {SPre) (n;m) = j}} It
is easy to see that gj ((2) can be written in terms of gj ((z | n;m):

. X nmweDye(n)el N,
Qk,g(z) = Z g)\k:> Z Qk,g(z | n;m), ke, §=on,off, (4.2)
if Ape > 0, and otherwise gj, ((z) = 0.
Note here that customers who contribute to q; ,,(2 | n;m) can be divided into three
types: (i) customers arriving during the completion time of the total unfinished work im-
mediately before the arrival of the tagged batch, (ii) customers arriving during an interval
from the beginning of the first service of a member in the tagged batch to the completion
of the service of the tagged customer, and (iii) n — m customers who belong to the tagged
batch and receive their services after the tagged customer. It then follows that for k € IC,
n=12,...andm=1,...,n,
X im) =z, " dHy on(y) N™ } , (4.3
Gon(z i) = 7 [ Rl el kn N (2 9)|, (43)
where N*(z | x) = P™(z,0 | x), i.e

n=1 m=1

-1
N*(z|x):exp 0n+sz0n Zk +Eonoff off_ZDkoff Zk Eoff,on x
kel kel

(4.4)
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A FIFO Queue with Service Interruptions 327

Note that N*(z | z) denotes the matrix joint generating function for the numbers of arrivals
in respective classes during the completion time of a service of x units. Similarly, we have
forke C,n=1,2,...andm=1,...,n,

n—m

@ onr(2 | M5M) = 24 /0

WoﬁDk,oﬁ(n)e

co d’UOff (x)Dk’Off(n) B
ke

—1
COH - Z Dz,off(zk)] Eoﬁ,onN*(z | .%)

| [Ttz )| @)
Thus, from (4.2), (4.3) and (4.5), we obtain the following theorem.
Theorem 4.2 qj ., (z) (k € K) is given by

Zsz/ dvon () Dgon(m + 1) N*(z | x)

[ i) N 1)

if Akon > 0, and otherwise q ,,(2) = 0. On the other hand, q; .4(2) (k € K) is given by

ZZ@/ dvost (v) Dy ot (M +1) | —

qkoff
/\koffm 11=0

-1
off - Z DZ,OH(Zk) Eoﬁ,on
ke

NGz |0 [ [~ dtan)N* (= 1 9)]

if Akot > 0, and otherwise qj, g(2) = 0.
4.2. Recursions for models with discrete phase-type batch sizes

In this subsection, we develop recursive formulas to compute the joint queue length distribu-
tion g, (n) immediately after departures of class k customers under the following assumption.

Assumption 4.1 Batch sizes of class k-§ (k € K, & = on, off) are independent of the state
of the underlying Markov chain and i.i.d. according to a discrete phase-type distribution
with representation (og¢, Pre), where oy e denotes a 1 X My ¢ probability vector and Py ¢
denotes an My ¢ X My ¢ substochastic matriz.

Under Assumption 4.1, Dy¢(n) (k € IC, £ = on, off) is given by
Dy ¢(n) = gre(n)Dypg, n=12,...,
where gy ¢(n) denotes the probability mass function of the batch size of class k-£:
Gre(n) = akngZ?(I — Pj.¢)e, n=12....
Thus, Theorem 4.2 is reduced to:

Corollary 4.1 Under Assumption 4.1, qj, ,,(2) (k € K) is given by

Gian(2) = 5 | Ao (D) DN (2 | )
, (am ® /0 " dHy o0 (y) N* (= | y)) [I — Pion ® /0 " dHyon(y) N (2 | y)] h
I = aPia) I - Prael © I0M,)], (46)
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if Akon > 0, and otherwise q; ,,(2) = 0. Similarly, q;, ,(2) (k € KC) is given by

-1
Ghon(2) = 7— [ dvon()Dion [—Coﬁ—ZDz,oﬁ<zk>] BN (2 | 2)

Akoft 0 kek

o0 %) -1
: <ak,0ﬂ" ®/0 dHy o (y)IN" (2 | ?/)) {I — Ppop ®/0 dHy, o (y)N*(2 | y)]
. [{(I — ZkPk’Oﬁ‘)_l (I — Pkpﬁ)e} X I(Mon)} s (47)
if Mot > 0, and otherwise qj, ,¢(z) = 0.

This corollary can be obtained in the same way as Lemma IV.1 in [7], and therefore we omit
the proof.
We define vy on(n) and vgox(n) (K € K,n € Z) as 1 x M,, vectors satisfying

> A S k() = [ dvon(2) DionN* (2 | ) (4.8)
nez 0

-1
St v o(n / Ao (2) Dioi | =Cot — Y Dy op(21)| EogonN (2 | 2),
nez ke

(4.9)

respectively. We also define Ay ¢(n) and I'y¢(n) (k € K, £ = on, off, n € Z) as My, X Moy,
and My, ¢ Mo, X My, ¢ M, matrices satisfying

S a2 Ave(n) = [ dHLe ()N (= | ) (4.10)
nez
00 —1
S 2 KT () = {I— Pre® | dHie(y)N*(z|y)|
nez

respectively. Then gj ((2) (k € K,{ = on, off) in (4.6) and (4.7) are rewritten to be

1 o Tk
qre(z) = o A YooY ke(m)one ® Ape(no)|The(ns)
k& nez m=0 ni,ny,nN3EZ
n1+nz+ns
=n—mey
PRI = Pre)e} @ (M), (4.11)

if A\r¢ > 0, and otherwise g ((z) = 0. Comparing coefficient vectors of z; - -- zx on both
sides of (4.1) and (4.11), respectively, we obtain the following result.

Theorem 4.3 Under Assumption 4.1, the q,(n) is given by

on)\ on o A o
qlc(n) = (T )\:’ qk,on(”) + : ff/\:7 qu,off<n)707 ce 70> ) k€ ]Ca nc Z;

where the q,.c(n) (k € K, § = on, off, n € Z) is given by

q¢(n Z Yo vke(n)oge ® Agg(ng)Tre(ns)

k‘§ m=0 ni,ne,n3eZ
ni+nz2+mnsg
=n—meg

PRI = Pre)e} @ T(M,y)]
if Mg > 0, and otherwise q; ¢(n) = 0 for allm € Z.
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Theorem 4.3 implies that the computation of the g, (n) is reduced to those of the 'y ¢(n),
Ay ¢(n) and vi¢(n) (€ = on, off). Note here that the I'y ¢(n) is given in terms of the Ay ¢(n).

Lemma 4.1 ([7]) The Tye(n) (k€ K, £ = on, off, n € Z) is determined by the following
TECUTSION!

ka(o) = [I — Pre® Ape(0)] 7'

Fk:{ ’I’L Z Fk:{ —l [Pk§®Ak§(l)] F]C,g(()), nczZt.

0<I<n
1#£0
The rest of this subsection therefore discusses the computations of the Ajy¢(n) and the

Vie(M).
We first consider the Ag¢(n). Let F,(n) (m=0,1,..., n € Z) denote an M, X Mo,

matrix that satisfies

> et F () =

I+‘90_n1{COH+ZDkon )

nez kel
—1 m
+Eon,off _Coff - Z D;OH(Zk) Eoff,on ) (412)
kek
where 0, = max;jem,, |[Conlj ;|-
Lemma 4.2 The F,,(n) is recursively determined by
I, ifn=0,
Fo(n) = { O, otherwise, (4.13)

and form=1,2,...,

Fm(”) - F ( )(I+ 0 ICOH +00n Z Z Fm 1 - lkek>Dk,on(lk)
ke =1

+ 6!

Z Fm_l(n — l)EOH’OHNOff(l)] Eoff,on, n & Z, (4.14)

0<il<n

where Mog X Mog matrices Nog(n)’s are determined by the following recursion:

Noi(0) = (—Cop) ", (4.15)
= {Z i Nog(n — lkek)Dk,oﬁ‘(lk)] N (0), nez'. (4.16)
keK ly=1

The proof of Lemma 4.2 is given in Appendix A.
The Aj¢(n) is given in terms of the F',,(n) in the following way. It follows from (4.4),
(4.10) and (4.12) that

901’1 —
Dot 2 Age(n Z/ dHye(y y) font

I + 90_n1 {COH + Z Dz,on(zk)

nez keK
1 m
+Eon70ff Z ‘Dk off Zk: Eoff,on
ke
= Z EIRRERY- o Z ’Ylg?(eon)Fm<n)a (4.17)
nez m=0
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where

o0 Hon m B
Y (Bon) :/ dHy ¢(y)" y‘> et kek, E=on,off, m=0,1,....
’ 0

m!:

Comparing coefficient vectors of z{'* - - - ziX on both sides in (4.17), we obtain the following
theorem.

Theorem 4.4 The Aj¢(n) is given by
Ape(n ny F,(n), kek, E=on, off, n€ Z,

where the F,(n) is given in Lemma 4.2.

Next we consider the vy on(m) in (4.8) and the vg og(n) in (4.9). Expanding N*(z | z)
n (4.8) and (4.9), and comparing coefficient vectors of zi* - --z;* on both sizes of each
equation, we obtain the following theorem.

Theorem 4.5 The vy on(n) (k€ K) and the viox(n) (k € K) are given by

Uk,on Z ’Uon on Dk onFm(n)a nc Za
Vg off Z 'U on Dk,off Z Noff(n - l>Eoff,0nFm<l)7 nc Za
o<i<n

respectively, where the F,,(n) and the Nog(n) are given in Lemma 4.2, and

m) g \_ [ (Oon )™ _gonz _ _
Vg (Gon)—/o dve () e , &=on,off, m=0,1,....

Thus the vy ¢(n) (€ = on,off) is given in terms of the vém) (0on) whose computation has
already been studied in [15]. In what follows, we summarize the result. Note first that

UE(QOH — Gonz) Z 2™ v5 Oon) & = on, off. (4.18)
Substituting 0o, — 0oz for s in (3.1) and using (4.18), we have

Z Zm'v(()?;;b) (eon) (eon - eonZ)I + C’on + Z ZmD(()T) (eon) + Eon,off Z ZmJ(()Tf)fl) (eon)Eoff,on
=0

= (Oon — Oonz)(1 — pon)Kon,  (4.19)
where ng)(eon) (¢ = on, off) and J(6,,) are matrices satisfying
Z sz Dg(eOn — Oonz), (4.20)

*

z_: ZmJOZ; (eon) = {_Coﬂ - EOH(QOH - gonz)} - )

respectively. The computation of the Dém) (Oon) (& = on,off) has already been studied in
[7], while the recursion for the J (m)(Hon) can be obtained from

Z 2T (G l Cort — > szg’;?(eon)] =T

m=0
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Lemma 4.3 ([7]) Under Assumption 4.1, the Dém)(eon) (& = on, off) is given by

Dém)<80n) = Z d](:’rg) (00n>eDk,§; m = O, 1, ey
keK
where the d,(:?(ﬁon) (k € IC, & = on, off) is given by the following recursion:

-1
di 2 (Bon) = Yt (Oon) (I = Prog) [T = 1 (0n) Pre]

(m)
m Vig (Bon) m
dgc,g)(eon) - k(g)id 0 [Z ’7( on dkg ) (eon)]
’Ykg(e n)

-1

: Pk,£ {I - vk’E(GOH)Pk,E} s m = 1, 2, e

Lemma 4.4 The J (()7;;)(9011) 1s recursively determined by the following recursion:

-1

T4t (0on) = [~Cor = D (0on)]

T (0n) = [Z J Y (05) DL (eon)] T (O0n), m=1,2,....
=0

The v(™(6,,) is computed as follows. Comparing the coefficient vectors of 2™ (m =
0,1,...) on both sides of (4.19), we can show that the v{™(6,,) is identical to the steady-
state solution of a Markov chain of M/G/1 type whose transition probability matrix is given
by [15]
 Bo+ B, B, B; B, 1
BO B1 B2 B3
o By, B, B, ---
O [0 BO B1 R
(0] O O By -

where

BO =1+ 971 >Con + D(()?l) (eon) + Eon,offJ((gf) (90n)Eoff,0n} 5
= 05 [DS (Oon) + Bon ot I (Oon) Bofron| .m0 =1,2,....
Thus applying the general theory of Markov chains of M/G/1 type [8], we can compute the
V5 (fon)-
On the other hand, the vf;;) (Oon) can be computed by the following theorem whose proof
is given in Appendix B.

Theorem 4.6 The vé?(@on) is determined by the following recursion:

0
'U(O) ((9 ) - ’vg)%) (90n)EOn,off {_COH - Dgﬁ? (0011)} (4 21)
oft A7on/ Ton Eon,off e 7oﬂr ’ '

-1

) (Gon ) E 1
(m) 0 _ Vin ( on) on,off
Yot ( OH) [ 7"-on-Eon,offe

’jz D00

[~Cor - Dg?f)(eon)} m=1,2,..., (4.22)

where the Dgg)(ﬁon) is given in Lemma 4.5.
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Among the recursions required in computing the joint queue length distribution, Lemma
4.2 for the F,,(n) is the most extensive. In fact, its straightforward implementation will
require very huge memory space. Note that an efficient implementation scheme for it is
proposed in [7]. All other recursions can be readily implemented as they are. See [7,11] for
details. Note also that from the results in this subsection, we can readily obtain recursions
to compute the total queue length distribution, which are much less extensive than those
for the joint queue length distribution. The results for the total queue length distribution
are summarized in Appendix C.

5. Numerical Examples

In this section, we provide some numerical examples using two-class models. Throughout
this section, we assume that the marginal arrival process follows a two-state batch marked
MAP (C, D;(n), Dy(n)):

~ Mgt —a a
G- l RN ] (5.1)
Di(n) = g(n) [ o0 ] . Dy(n) = g(n) [ 0 et ] L on=12..., (52

where A, g,a > 0 and g(n) =1 if n = g, and otherwise g(n) = 0.
We also assume that the marginal on-off process follows an alternating Markov renewal
process whose infinitesimal generator is given by

S on Ton,off
TOH ,on S off ’

where S, (resp. So) denotes an mg, X Mep (r€Sp. Mo X Meg) Mmatrix representing an
infinitesimal generator that governs transitions in on-periods (resp. off-periods), and T'oy, oft
(resp. Tofron) denotes a transition rate matrix from on-states (resp. off-states) to off-states
(resp. on-states). When the on-off and arrival processes are independent of each other, the
model is characterized as follows:

Con - Son @ 57 Coﬂ" = Soﬁ ¥ 57 Eon,off = Ton,off & I(2)7 Eoff,on = Toff,on X I<2)7

Dl,on(n) — I<m0n) & -P:l(n)y Dl,oﬁ(”) - I(moff) & ?1(”)7
Dy on(n) = I(mon) @ Da(n), Daog(n) = I(meg) @ Da(n).

5.1. Impact of service time dependency

In this subsection, we discuss the impact of the service time dependency on the queue
length. We assume that the on-off and arrival processes are mutually independent. Let
Son = Sot = —a and Ty, o = Tofion = @, Where a > 0. Also let @ = 0.1 and A = 0.125 in
(5.1) and (5.2). As for the service time, we consider two cases, Case GD (class-dependent
service times) and Case GI (i.i.d. service times):

[Case GD| H, =1 with probability 1, H,; =5 with probability 1,
| 1, with probability 1/2, B
[Case GIJ Hi = { 5, with probability 1/2, k=12,

where Hy (k = 1,2) denotes a generic random variable representing a service time of a class
k customer. Note here that the overall service time distributions in both cases are identical
and po, = 6 = 0.75.
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Figure 1 plots the expected total queue lengths E[N] in Cases GD and GI as functions
1. As a™! goes to 0, the above model gets close to a work-conserving single-server
queue (i.e., no service interruptions occur) with the same arrival process and service time
distributions, where the processing speed of the server is reduced by half. We observe that
the difference in the expected total queue lengths of the two models is kept almost constant
regardless of the value of a~! and gets large with constant batch size g.

40 1

of o~

35
30
25
E[N] 20
15F

10F.

0 20 40 60 80 100

Figure 1: Expected total queue length E[N].

Table 1 shows the joint queue length distribution for ¢ = 1. Let pap(ni, na) (resp.
Pai(ni,n2)) denote p(ny,ng) in Case GD (resp. GI). We observe that pg(ni,nq)e =
Par(n2,ny)e is due to the symmetry of input parameters of classes 1 and 2 in Case GI.
Further, Table 1 shows that pgp(n1,n2)e > pg(ni, ne)e for ny < ng, and vice versa. Thus
for m, n such that m > n,

Pap(m,n)e < pgr(m,n)e = pgi(n,m)e < pgp(n, m)e,

in this particular example. We conjecture that this phenomenon is caused by the fact that
service times of class 2 customers are larger than those of class 1 customer in Case GD, and
while a class 2 customer is being served, succeeding class 2 customers are likely to arrive
back to back and stay in the system.

5.2. Impact of variation of on- and off-periods

Next, we discuss the impact of the variation in on- and off-periods on the total queue length
N. We assume that the on-off process follows an alternating renewal process, and the on-
off and arrival processes are mutually independent. Let C’aon and C’ioﬁ denote the squared
coefficients of variation of on-periods and off-periods, respectively. To examine the impact of
the variation of on-periods, the off-period distribution is fixed to be exponential with mean
100. For C7,, = k=" <1 (k=1,2,...), on-periods follow a k-stage Erlang distribution with

mean 100, and for C2_ > 1, they follow a balanced hyper-exponential distribution 1 (x)

v,0n
with mean 100, where

Y(z) =1 —pexp(—0.02pz) — (1 — p) exp [-0.02(1 — p)z], 0<p<0.5.
Note that C2_, = 1/{2p(1 — p)} — 1 in this case. On the other hand, in examining the

v,0n

impact of the variation of off-periods on the total queue length, the above on- and off-
period distributions are exchanged.
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Table 1: Joint queue length distribution p(n,ns)e.
(Upper rows for Case GD and lower rows for Case GI )
ny 0 1 2 5 10 20
U]
0 1.34 x 107! 1.74x 1072 567 x 1073 1.38x 1073 1.79 x 10~* 3.10 x 10~
1.34 x 107! 341 x1072 141 x 1072 251 x107% 344 x107* 6.80 x 1076
| 467 x 1072 937x 1073 588 x 1072 212x 1073 4.02x 107* 1.14 x 107°
341 x 1072 925 x 1072 6.25x 1072 271 x 1073 6.02x 10~* 2.07 x 107°
9 218 x 1072 6.87 x 1073 531 x 1072 2.60 x 1073 6.48 x 107* 2.68 x 107°
1.41 x 1072 6.25 x 1073 527 x 1072 3.03 x 1072 8.78 x 107* 4.38 x 1075
s 3.08x 1073 326x 1073 341x10°% 287x10° 1.30x 1073 1.24 x 107*
251 x 1072 271 x 1073 3.03x 1073 2.89 x 10~* 1.50 x 103 1.70 x 10~*
10 5.02x 107% 7.92 x 107* 1.09 x 10™° 1.68 x 1073 1.54 x 10~ 4.04 x 10~*
3.44 x 107* 6.02 x 107* 8.78 x 10™* 150 x 1073 1.55 x 1073 4.73 x 10~*
920 1.04 x107° 297 x 10 6.03 x 107°> 2.15x107* 542 x107* 6.12 x 1074
6.80 x 1075 2.07 x107® 4.38 x 107™° 1.70 x 107* 4.73 x10~* 6.09 x 1074

As for the arrival process, we set a = 0.1, A = 0.125 and g = 1 in (5.1) and (5.2).
Besides, service times of each class are assumed to follow the same service time distribution
as in Case GD of the preceding subsection.

Figures 2 and 3 plot the 99.9 percentile (99.9 PT) and expected value E[N] of the
total queue length, respectively, as functions of the squared coefficient of variation C’f’f
(¢ = on,off), where the vertical axes are in log-scale. Note that in the case of C’ig =1
(¢ = on,off), the two models become identical with exponential on- and off-periods. We
observe that both 99.9 PT and E[N] are monotone increasing functions of C7 . (£ = on, off)
and C7 ¢ has a more impact on the total queue length N than C7

v,on*

T T 7 x T
1000 |- T 100 |
99.9 PT | E[N]
= OFF —— ¢ = OFF ——
/ 55 = ON —— £ =O0N —
100 : : 10 * *
0 1 5 10 0 1 5 10
2
Cg,g Cv,§
Figure 2: 99.9 percentile (99.9 PT) of the Figure 3: Expected total queue length
total queue length. E[N].

5.3.

In this subsection, we examine the impact of the correlation in on- and off-periods on the
total queue length N. For this purpose, we assume that the on-off and arrival processes are

Impact of correlation in on- and off-periods
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mutually independent and the marginal on-off process is given by

~1/40 0 B p/40 (1 —p)/40
0 —1/160 |’ (1-p)/160  p/160 |’

Ton,off = Toff,on =
where 0 < p < 1. Thus the marginal distributions of on- and off-periods follow the same
hyper-exponential distribution whose distribution function (x) is given by

Son = Soff =

Y(z) =1 —0.5exp(—x/40) — 0.5 exp(—x/160).

Note that parameter p controls the correlation in consecutive on- and off-periods. Suppose
the on-off process starts with an on-period. Let I,,(n) and I,g(n) (n = 1,2,...) denote
the lengths of the nth on- and off-periods, respectively. Then, both Cov[/y,(n), lyg(n)] and
Cov|[lyg(n), Ion(n + 1)] are negative for 0 < p < 0.5, equal to zero for p = 0.5, and positive
for 0.5 <p< 1. Weseta=0.1, A =0.125 and g = 1 in (5.1) and (5.2). Service times of
each class follow the same distribution as in Case GD of subsection 5.1.

Figures 4 and 5 plot the 99.9 percentile (99.9 PT) and expected value E[N] of the total
queue length, respectively, as functions of p. From these figures, we observe the followings.
As p goes to zero, both 99.9 PT and E[N] rapidly increase. This phenomenon is due to the
fact that once the on-off process is in a long off-period, long off-periods and short on-periods
are likely to repeat alternately, and during those intervals, many customers are accumulated
in the system. As p becomes large, however, this effect is weakened, and finally, both 99.9
PT and E[N] take their minimums and turn to increase. This implies that there exists
some factor to make the queue length increase with p. In what follows, we examine this
phenomenon more closely.

1000 : : : — 200
900 180
800 160
140
700
120
99.9 PT ¢ | E[N]
100
500 20
400 60
300 - - 40
1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
p p
Figure 4: 99.9 percentile (99.9 PT) of the Figure 5: Expected total queue length
total queue length. E[N].

Let Wenort—on, Piong—ons Yshort—off ad Wione o denote the events that the on-off process
is in a short on-period, long on-period, short off-period and long off-period, respectively.
Figures 6 and 7 plot the conditional expected total queue lengths given those events as
functions of p. From Figure 6, we observe that as expected, E[N | U)one_of] is always larger
than E[N | Ygnort—of], SO that the total queue length in an on-period following a long off-
period is likely to be larger than that in an on-period following a short off-period, regardless
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of the value of p. Note here that as p goes to one, the contribution of the total queue
length in an on-period following a long off-period to E[N | Wjong_on] becomes large, and we
conjecture that this factor makes E[N | Wjong_on] increase in the region where p is close to
one, as shown in Figure 7. Moreover, once E[N | W, _on] turns to increase, this affects the
total queue length in the following off-period, and as p goes to one, off-periods following
long on-periods are likely to be long off-periods. Thus E[N | U)on,_o] turns to increase
after E[N | Wipng_on] does, as shown in Figures 6 and 7.

200 T T T T 200 q T T T I l
E[N | \Illong—off] - E[N | ‘Illong—on] -
\ E[N ‘ \I]shortfoff] E[N ’ \Ijshortfon] -
150 »~ 150
A
\
100 | | - 100
\\
50 50 -
0 1 1 1 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
p p
Figure 6: Conditional expected total queue Figure 7: Conditional expected total queue
length. length.

Note here that in this particular example,

Pr(\lllong—on> = Pr(\lllong—off) = 047 Pr(qjshort—on) = Pr(qjshort—oﬂ) =0.1.

Therefore the contributions of E[N | Yiong—on| and E[N | V.o to E[N] are four times
as large as those of E[N | ¥ ort—on] and E[N | Wgori—of]. As a result, E[N] increases for p
near one. A similar observation can be applied to the 99.9 percentile, too.
5.4.
Finally, we examine the impact of the correlation between on-off and arrival processes on
the total queue length N. We consider the following three models, where service times of
each class follow the same distribution as in Case GD of subsection 5.1.

In Model 1, the on-off and arrival processes have a correlation, and they are represented

by
| 20 [fsta]

and Dy(n) = O (k =1,2) for n = 2,3,..., where M,, = Moz = 1. In Model 2, the on-off
and arrival processes are mutually independent. As for the arrival process, we set a = «,
A =0.125 and g = 1 in (5.1) and (5.2). The on-off process is the same as that in subsection
5.1. In Model 3, the on-off and arrival processes have a correlation, and they are represented

by

Impact of correlation between on-off and arrival processes

—0.125 — | a

©= a | -0125—a

]’ D,(1) = [0.125 0

0 |0

0] 0
01]0.125

0.125 |0

—0.125 — | a B
]’ DQ(D_[ 0 ]o

©= a | -0125—a

| oo
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and Dg(n) = O (k = 1,2) for n = 2,3,..., where M,, = M,z = 1. Note here that the
marginal on-off processes in the three models are identical, and so are the marginal arrival
processes.

Figures 8 and 9 show the 99.9 percentile (99.9 PT) and expected value E[N] of the total
queue length, respectively, as functions of a~!. Note here that as a~! goes to zero, all the
three models get close to a work-conserving single-server queue, where the arrival process
follows a Poisson process with rate 0.125, and service times are i.i.d. and take 2 or 10 with
equal probability. This is a reason why both 99.9 PTs and E[N]’s in all the three models
converge the same values, respectively, as a=! — 0. We also observe that 99.9PT and E[N]
in Model 1 (resp. Model 3) are always larger (resp. smaller) than those in Model 2. This is
due to the fact the amount of work brought into the system during off-periods in Model 1
(resp. Model 3) is likely to be larger (resp. smaller) than that in Model 2.

450 I I y y 60 I x x I n
400 | Model 1 4 Model 1
Model 2 —— 50 - Model 2 —— -
350 - Model 3 —— — Model 3 ——
300 — 40 —
2 — |
99.9 PT 2 E[N] 30 |- 4
200 — —
150 — 20 - —
1 —
00 10 L -
50 —
| | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
a~! a~!

Figure 8: 99.9 percentile (99.9 PT) of the Figure 9: Expected total queue length
total queue length. E[N].

A. Proof of Lemma 4.2

From the definition (4.12) of F,,(n), (4.13) is clearly satisfied. (4.14) is proved in the
following way. Let Nog(n) denote an Myg X Mg matrix satisfying

SO 2 Nog(n) = (—coﬁ = D;ﬂoﬁ(m) . (A1)

nez ke

From (3.3), (4.12) and (A.1), we have for m =1,2,...,

S e 2 Fou(n)

nez

= Z 27111 R z’;{KFm_l(n)

nez

ke np=1 nez

1 + 90_111 {Con + Z Z Z]?ka,on(nk:) + Eon,off Z Z{Ll T Z?(KNOH(n)Eoff,on}]

= Z 2 K F L (n) (T4 61C )

nez
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+ Z Z? . Z?(K(g Z Z Fm 1 - lkek>Dk,on(lk)

nez ke =1
+ Z z?l e Z?(Kec;nl Z Fm—l(n - l)Eon,offNoff(l>Eoff,on-
nez 0<l<n

Comparing coefficient matrices of 21" - - - ;X on both sides of the above equation, we obtain
(4.14). Next, we show (4.15) and (4.16). From (3.3) and (A.1), we have

Z 2?1 . Z?(KNOH(n) _Coff — Z Z ZZ’Ckaﬂ‘(TLk) =1.
nez kel np=1

Comparing coefficient matrices of 21" - - - 2% on both sides of the above equation yields
N5(0) (=Cog) =1,
ng
Nog(n) (—Co) — Z Z Nog(n — lyer) Dy o (Ik) = O,
keK ly=1

from which (4.15) and (4.16) follow. n

B. Proof of Theorem 4.6
Post-multiplying both sides of (3.2) by —Clog — D.4(s) and substituting fe, — oz for s,
we obtain

e szvg?)(eon)Eon,off 1
3 0l On) | ~Cur — 3 D (0| = 22 L ®

m=0 7"-On-E'on,offe [off

where we use (4.18) and (4.20). Comparing coefficient vectors of 2™ (m = 0,1,...) on both
sides of (B.1) yields

vg?l)(eon)Eon,off 1
7Ton-Eon,offe Toff’

UE)?CE) (Oon) [_Coff - DE)?E) (eon)} =

and form =1,2,..

= () (o) E 1
(m) . . D(m 1) _ Von ( on) on,off
Yot (eon) |: COH } IU on off (eon) 7Ton-laon off € Ioff

=0

(4.21) and (4.22) follow the above two equations. n

C. Total Queue Length Distribution
This appendix summarizes the recursions for the total queue length distribution. Because
they are readily derived from the results in Section 4, we omit the proofs.

We first define p™(n) (n = 0,1,...) and q\"/(n) (k € K,n = 0,1,...) as the station-
ary total queue length distributions at a random point in time and at immediately after
departures of class k, respectively.

D)= 3 pn), a’n)= 3 q(»)

nez nez
In|=n |n|=n

where |n| = |ny| + -+ + |nk|. From Theorem 4.1, we obtain the following corollary.
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Corollary C.1 The p'™(n) is recursively determined in the following way

D) =3 Mgl (0)(-C) 7,

kek
and forn=1,2,...,

p'M(n)

> [Ak (a7 0) = a0 = 1)+ 3= pn = m)Dy(m)| (<€)

In what follows, we show recursions to compute the qffT)( )

For this purpose, we
introduce the following notations: For k € IC, £

=on,off, n=0,1,...and m =0,1,...,
T T T
o = =
T
v,(ﬁé) (n) = Y vpe(n), FM(n =Y F,
nez nez
In|=n In|=n

From Theorem 4.3, we have the following corollary.

Corollary C.2 Under Assumption 4.1, the q,(fT) (n) (ke K,n=0,1,...) is given by

7"‘01’1A on TO A 0.
q;T><n>:( kion () (1) ToftNeoff (1 <n>,o,...,o),

q
)\k k,on )\k k,off

where the qu( n) (k €k, &= on, off, n= ..) is given by

ded) =5 2 v (m)lene® AL ()T (ma) [{PLET = Pre)e} © I(Man)]
S mit+ma+ms

+mg=n

if Ae > 0, and otherwise qgg) (n) =0.

As for the I‘,(C? (n), the following corollary can be obtained from Lemma 4.1

Corollary C.3 The I‘,(CTg (n) (ke K, &= on, off, n=0,1,...) is determined by the follow-
NG TeCUTSION:

gl
w3
=
Il
T~
|
&
A
&
'

n=12....

As for the Ak?(n), the following recursions can be obtained from Lemma 4.2 and The-
orem 4.4.

Corollary C.4 The A,g)(n) is given by

e}

2n) =Y W) FD(n), kek, €=onoff, n=0,1,.
m=0

ey
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where the F(n) is recursively determined by

O, otherwise,

F(n) :{ I, ifn=0,

and form=1,2,...,

FOn)=F" (0T +6;1C.) + 6 1ZF ((n =13 Dyon(l)

kek

+6;! [Z F" (n— Z)Eon,oﬁNg?(l)} Eoft.on, n=01,...,
=0

with the N(()? (n), which is given by the following recursion:

NP(0) = (~Cor) 7Y,

7 (n) = LZ NYn-0)Y Dk,offa)] NDw©), n=12,....
=1

kek

Finally, from Theorem 4.5, we obtain the following result.

Corollary C.5 The v\ (n) (k € K) and the U,E;To)ﬁ(n) (k € K) are determined by

k,on

'vgcTo)n Z’U on DkonF (n), n=0,1,...,
vl r(n Z O Oon) Dot S NZ (0 = D Eog on FXO(1),  n=0,1,...,
1=0
respectively.
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