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Abstract This paper considers a FIFO single-server queue with service interruptions and multiple batch
Markovian arrival streams. The server state (on and off), the type of arriving customers and their batch
size are assumed to be governed by a continuous-time Markov chain with finite states. To put it more
concretely, the marginal process of the server state is a phase-type alternating Markov renewal process,
the marginal arrival process is a batch marked Markovian arrival process, and they may be correlated.
Further, service times of arriving customers are allowed to depend on both their arrival stream and the
server state on arrival. For such a queue, we derive the vector joint generating function of the numbers of
customers from respective arrival streams. Further assuming discrete phase-type batch size distributions,
we establish a numerical algorithm to compute the joint queue length distribution at a random point in
time. Finally, we show some numerical examples and examine the impact of system parameters on the
queue length distribution.
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1. Introduction

This paper considers a FIFO single-server queue with service interruptions. In such a queue,
the state of the server changes on and off alternately. While in on-state, the server is available
for service. On the other hand, while in off-state, the server dose not work even if customers
are present in the system. Hereafter periods during which the server is in on-state (resp.
off-state) are called on-periods (resp. off-periods).

Queues with service interruptions have many applications in the fields of manufacturing,
computer and telecommunications systems, and many studies on those queues have been
done for a few decades. A detailed survey on queues with service interruptions can be
found in the introduction of the paper by Federgruen and Green [1]. They mainly discussed
approximation methods for an M/G/1 queue with service interruptions, where on- and off-
periods are generally distributed [1]. Further, assuming a phase-type on-period distribution,
they established an exact algorithm to compute the steady-state queue length distribution
[2].

Recently, more general queues with service interruptions have been studied. Sengupta
[9] considered the model where on- and off-period distributions are general, customers arrive
according to a Poisson process whose arrival rate depends on the server state, and service
times are generally distributed, depending on the server state upon arrival. He showed that
the amount of unfinished work in such a queue is closely related to the waiting time in a
special GI/G/1 queue. Also, Takine and Sengupta [12] considered a single-server queue with
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service interruptions, where both the server state and arrival processes are governed by a
finite-state Markov chain. Namely, the marginal processes of the server state and customer
arrivals form an alternating phase-type Markov renewal process and a MAP (Markovian
arrival process) [5], respectively, and they may be dependent. For this queue, they obtained
the steady-state queue length distribution. The crucial assumption posed in [12] was i.i.d.
(independent and identically distributed) service times.

This paper considers an extension of the results in [12] to allowing multiple batch Marko-
vian arrival streams. Thus, the marginal arrival process follows a batch marked MAP [3, 4, 6].
Further, service times of customers can depends on both their arrival stream and the server
state on arrival. As stated in [12], such a queue cannot be analyzed by the conventional
M/G/1 paradigm [8]. To analyze the extended model, therefore, we use a new approach
developed in [7, 13–15], which is based on the invariant relationship of the joint queue length
distributions at random points in time and at departures [14]. We then derive the vector joint
generating function of the numbers of customers from respective arrival streams. Further
assuming discrete phase-type batch size distributions as in [7], we provide a computational
algorithm for the steady-state joint queue length distribution. We also show some numerical
examples and examine the impact of system parameters on the queue length distribution.

The rest of this paper is divided into four sections. In section 2, the mathematical
model is described. Section 3 briefly discusses the sojourn time distribution. In section
4, we first derive a general formula for the joint queue length distribution, and assuming
discrete phase-type batch size distributions, we show recursive formulas to compute the
joint queue length distribution. Finally, in section 5, we show some numerical examples.
Throughout the paper, matrices and vectors are denoted by bold capital letters and bold
small letters, respectively, and the empty sum is defined as zero.

2. Model

We consider a FIFO single-server queue with service interruptions. The state of the server
changes on and off alternately, and while the server is being on, customers are served suc-
cessively. On the other hand, services of customers stop temporally while the server is being
off, and interrupted services are restarted in a preemptive-resume manner when the server
becomes on again. In what follows, we call the process of the server state the on-off process.

We assume that both the on-off and arrival processes are governed by an underlying
finite-state Markov chain that is assumed to be irreducible. Let M = {1, . . . ,M} denote
the state space of the underlying Markov chain, where M ≥ 2. It stays in state i (i ∈ M)
for an exponential interval of time with mean µ−1

i , and when the sojourn time in state i
has elapsed, the underlying Markov chain changes its state to state j with probability σi,j

(j ∈M), where ∑

j∈M
σi,j = 1.

The on-off process of the server is defined in the following way. The state space M is
divided into two disjoint sub-spaces, Mon = {1, . . . ,Mon} and Moff = {Mon + 1, . . . ,Mon +
Moff}, where Mon ≥ 1, Moff ≥ 1 and Mon +Moff = M . The server is assumed to be on (resp.
off) while the underlying Markov chain is being in state i ∈ Mon (resp. i ∈ Moff). Thus
the on-off process forms a phase-type alternating Markov renewal process.

Next we describe the arrival process of customers. We assume that there are K (K ≥ 1)
arrival streams. Let K denote a set of class indices, i.e., K = {1, . . . , K}. Customers arriving
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A FIFO Queue with Service Interruptions 321

from the kth (k ∈ K) arrival stream are called class k customers. Given a state transition of
the underlying Markov chain from state i to state j (i, j ∈ M), n (n = 1, 2, . . .) customers
of class k (k ∈ K) arrive in batch with probability σk,i,j(n)/σi,j, where

∑

k∈K

∞∑

n=1

σk,i,j(n) ≤ σi,j,

for all i, j ∈M. Note that customers in the same batch belong to the same class. For later
use, we define σi,j(0) (i, j ∈M) as

σi,j(0) = σi,j −
∑

k∈K

∞∑

n=1

σk,i,j(n).

Note that σi,j(0)/σi,j represents the conditional probability of no arrivals given that a state
transition from state i to state j happens. Without loss of generality, we assume σi,i(0) = 0
for all i (i ∈M).

In terms of service times, class k customers are further classified into two sub-classes
based on the server state on arrival. We call class k customers arriving in on-periods
(resp. off-periods) class k-on (resp. k-off) customers. Service times of class k-on (resp. k-
off) customers are assumed to be i.i.d. according to a distribution function Hk,on(x) (resp.
Hk,off(x)) with finite mean hk,on (resp. hk,off).

In the rest of this paper, we impose two assumptions on σk,i,j(n). For each k (k ∈ K),
there exists at least one triad (i, j, n) (i, j ∈M, n = 1, 2, . . .) such that σk,i,j(n) > 0. Thus
arrivals of class k customers are certain. Further σk,i,j(n) = 0 (k ∈ K) if i ∈ Mon and
j ∈Moff or if i ∈Moff and j ∈Mon. Thus arrivals of customers and changes of the server
state never happen simultaneously.

We now introduce some notations. Let C denote an M × M matrix whose (i, j)th
(i, j ∈M) element Ci,j is given by

Ci,j =

{
−µi, if i = j,
σi,j(0)µi, otherwise.

For each k ∈ K, let Dk(n) (n = 1, 2, . . .) denote an M ×M matrix whose (i, j)th (i, j ∈M)
element Dk,i,j(n) is given by

Dk,i,j(n) =

{
σk,i,j(n)µi, if i, j ∈Mon or i, j ∈Moff ,

0, otherwise.

Then the on-off and arrival processes are characterized by C and Dk(n) (k ∈ K, n =
1, 2, . . .). Note here that C and Dk(n) have the following structure:

C =

[
Con Eon,off

Eoff,on Coff

]
, Dk(n) =

[
Dk,on(n) O

O Dk,off(n)

]
,

where Con and Dk,on(n) are Mon×Mon matrices, Coff and Dk,off(n) are Moff×Moff matrices,
and Eon,off and Eoff,on are Mon ×Moff and Moff ×Mon matrices, respectively.

We define Dk,ξ (k ∈ K, ξ = on, off) and Dξ (ξ = on, off) as

Dk,ξ =
∞∑

n=1

Dk,ξ(n), Dξ =
∑

k∈K
Dk,ξ,
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respectively. We also define D as

D =

[
Don O
O Doff

]
.

Note that the infinitesimal generator of the underlying Markov chain is given by C + D.
Note also that (C +D)e = 0, where e denotes a column vector whose elements are all equal
to one. We denote the stationary probability vector of the underlying Markov chain by π.
Because of the finite state space M and the irreducibility of the underlying Markov chain,
π is uniquely determined so as to satisfy π(C + D) = 0 and πe = 1. Let πon (resp. πoff)
denote a 1×Mon (resp. 1×Moff) vector representing the conditional stationary probability
vector of the underlying Markov chain given that the server is on (resp. off). Note that πon

and πoff satisfy

πon

[
Con + Don + Eon,off

[
−Coff −Doff

]−1
Eoff,on

]
= 0, πone = 1,

πoff

[
Coff + Doff + Eoff,on

[
−Con −Don

]−1
Eon,off

]
= 0, πoffe = 1,

respectively. Let ron and roff denote fractions of time being in on- and off-periods, respec-
tively. We then have

ron =
Ion

Ion + Ioff

, roff =
Ioff

Ion + Ioff

,

where Ion and Ioff denote the mean lengths of on- and off-periods, respectively, and they
are given by

Ion =
πoffEoff,on

πoffEoff,one

[
−Con −Don

]−1
e, Ioff =

πonEon,off

πonEon,offe

[
−Coff −Doff

]−1
e.

Note here that π, πon and πoff are related by

π = (ronπon, roffπoff).

We denote the mean arrival rate of class k (k ∈ K) customers during on- (resp. off-) periods
by λk,on (resp. λk,off):

λk,ξ = πξ

∞∑

n=1

nDk,ξ(n)e, ξ = on, off.

Let λk = ronλk,on + roffλk,off (k ∈ K) denote the mean arrival rate of class k customers. We
define ρ as the offered load, i.e.,

ρ = ron

∑

k∈K
λk,onhk,on + roff

∑

k∈K
λk,offhk,off .

Further, we define ρon as the conditional utilization factor given that the server is on, which
is given by

ρon = r−1
on ρ.

In the remainder of this paper, we assume that ρon < 1, and the system is in steady state.
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3. Sojourn Time

This section considers sojourn time. Because sojourn time is closely related to the amount
of unfinished work in the system, we first discuss the latter.

Let V and S denote generic random variables representing the amount of unfinished
work and the state of the underlying Markov chain, respectively, in steady state. With
these, we define v(x) as a 1 ×M vector whose jth element represents Pr[V ≤ x, S = j].
Further we define vξ(x) (ξ = on, off) as a 1 × Mξ vector whose jth element represents
Pr[V ≤ x, S = j | S ∈Mξ]. Note here that v(x) is given in terms of von(x) and voff(x):

v(x) = (ronvon(x), roffvoff(x)).

Thus, we consider von(x) and voff(x) below.
Let Joff,on(x) denote an Moff ×Mon matrix whose (i, j)th element represents the proba-

bility that the amount of work arriving during an off-period is not greater than x and the
underlying Markov chain is in state j ∈ Mon at the beginning of the next on-period, given
that the off-period starts in state i ∈Moff . We define Dξ(x) (ξ = on, off) as

Dξ(x) =
∑

k∈K

∞∑

n=1

Dk,ξ(n)H
(n)
k,ξ (x),

where H
(1)
k,ξ (x) = Hk,ξ(x) and H

(n)
k,ξ (x) (n = 2, 3, . . .) denotes the n-fold convolution of Hk,ξ(x)

with itself. According to [10], we define an Mon × Mon matrix Qon as an infinitesimal
generator of the irreducible Markov chain obtained by observing the underlying Markov
chain only when the system is idle in on-periods. Note that Qon satisfies

Qon = Con +
∫ ∞

0
dDon(x) exp(Qonx) + Eon,off

∫ ∞

0
dJoff,on(x) exp(Qonx).

Because ρon < 1, Qon is uniquely determined by the above equation [10]. Let κon denote a
probability vector satisfying κonQon = 0. Then, von(0) is given by [10]

von(0) = (1− ρon)κon.

Further, the LST v∗on(s) of von(x) satisfies [10]

v∗on(s)
[
sI + Con + D

∗
on(s) + Eon,off

[
−Coff −D

∗
off(s)

]−1
Eoff,on

]
= s(1− ρon)κon, (3.1)

where D
∗
ξ(s) (ξ = on, off) denotes the LST of Dξ(x) and I(m) denotes an m×m identity

matrix. We suppress the size m when it is clear from the context. As for the LST v∗off(s) of
voff(x), using the same approach as in [12], we readily obtain

v∗off(s) =
v∗on(s)Eon,off

πonEon,offe

[−Coff −D
∗
off(s)]−1

Ioff

. (3.2)

Next we analyze sojourn time. To do so, we first consider completion time, which is a time
interval from the beginning of a service to its completion, including service interruptions.
Let Tc(u) denote a generic random variable representing the completion time of a service
of u units. Note that the completion time Tc(u) depends on the state of the underlying
Markov chain at the beginning of the service, as well as the amount of the service. We
assume that a service commences at time 0, and let St denote the state of the underlying
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Markov chain at time t. We denote the number of class k (k ∈ K) customers arriving in
interval (0, t] by Lk(t). We then define P ∗∗(z, s | u) as an Mon ×Mon matrix whose (i, j)th
element represents

E


 ∏

k∈K
z

Lk(Tc(u))
k exp(−sTc(u)) 1{STc(u) = j ∈Mon} | S0 = i ∈Mon


 ,

where z denotes a 1×K complex vector (z1, . . . , zK) and 1{χ} denotes an indicator function
of event χ. Further, we define D∗

k,ξ(zk) (k ∈ K, ξ = on, off) as

D∗
k,ξ(zk) =

∞∑

n=1

zn
k Dk,ξ(n). (3.3)

Following an approach similar to [12], we obtain

P ∗∗(z, s | u) = exp [K(z, s)u] ,

where

K(z, s) = Con +
∑

k∈K
D∗

k,on(zk)− sI + Eon,off


sI −Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,on.

We are now ready to discuss sojourn time.

Let Wk (k ∈ K) (resp. Wk,ξ (k ∈ K, ξ = on, off)) denote a generic random variable
representing the sojourn time of a class k (resp. k-ξ) customer. Also let Wk,ξ(n;m) (k ∈ K,
ξ = on, off, n = 1, 2, . . ., m = 1, . . . , n) denote a generic random variable representing the
sojourn time of a randomly chosen class k-ξ customer who is a member of a batch of size
n and the mth served customer among members in the same batch. For convenience, we
assume that if λk,ξ = 0, Wk,ξ = 0, and if Dk,ξ(n) = O for some n (n ≥ 1), Wk,ξ(n;m) = 0
for all m (m = 1, . . . , n). Further, let w∗k(s), w

∗
k,ξ(s) and w∗k,ξ(s | n;m) denote the LSTs

of the distributions of Wk, Wk,ξ and Wk,ξ(n;m), respectively. Because a randomly chosen
departing customer of class k (k ∈ K) belongs to class k-ξ (ξ = on, off) with probability
rξλk,ξ/λk, we obtain

w∗k(s) =
ronλk,on

λk

w∗k,on(s) +
roffλk,off

λk

w∗k,off(s).

Note here that

w∗k,ξ(s) =
∞∑

n=1

nπξDk,ξ(n)e

λk,ξ

· 1

n

n∑

m=1

w∗k,ξ(s | n;m), k ∈ K, ξ = on, off, (3.4)

if λk,ξ > 0, and otherwise w∗k,ξ(s) = 1. Thus, in what follows, we consider w∗k,ξ(s | n;m)
(k ∈ K, ξ = on, off, n = 1, 2, . . ., m = 1, . . . , n).

Let Hk,ξ(n;m) (k ∈ K, ξ = on, off, n = 1, 2, . . ., m = 1, . . . , n) denote a generic random
variable representing the service time of a randomly chosen class k-ξ customer who is a
member of a batch of size n and the mth served customer among members of the same
batch. Because Wk,ξ(n;m) = Wk,ξ(n; 1) +

∑m
l=2 Tc(Hk,ξ(n; l)) for ξ = on, off, n = 1, 2, . . .
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and m = 1, . . . , n, we obtain for n = 1, 2, . . . and m = 1, . . . , n,

w∗k,on(s | n;m) =
1

πonDk,on(n)e

∫ ∞

0
dvon(x)Dk,on(n) exp [Ω(s)x]

·
[∫ ∞

0
dHk,on(y) exp [Ω(s)y]

]m

e, (3.5)

w∗k,off(s | n;m) =
1

πoffDk,off(n)e

∫ ∞

0
dvoff(x)Dk,off(n)

[
sI −Coff −Doff

]−1

·Eoff,on exp [Ω(s)x]
[∫ ∞

0
dHk,off(y) exp [Ω(s)y]

]m

e, (3.6)

respectively, where Ω(s) = K(1, . . . , 1, s). Note here that the (i, j)th (i, j ∈ Mon) element
of exp[Ω(s)x] represents E[exp(−sTc(x))1{STc(x) = j} | a service of x units starts at time 0
and S0 = i]. Thus from (3.4) and (3.5), we obtain for k ∈ K,

w∗k,on(s) =
1

λk,on

∞∑

n=1

∫ ∞

0
dvon(x)Dk,on(n) exp [Ω(s)x]

n∑

m=1

[∫ ∞

0
dHk,on(y) exp [Ω(s)y]

]m

e,

if λk,on > 0, and otherwise w∗k,on(s) = 1. Similarly, from (3.4) and (3.6), we obtain for k ∈ K,

w∗k,off(s) =
1

λk,off

∞∑

n=1

∫ ∞

0
dvoff(x)Dk,off(n)

[
sI −Coff −Doff

]−1
Eoff,on exp [Ω(s)x]

·
n∑

m=1

[∫ ∞

0
dHk,off(y) exp [Ω(s)y]

]m

e,

if λk,off > 0, and otherwise w∗k,off(s) = 1.

4. Joint Queue Length Distribution

This section considers the joint queue length distribution. Let Nk (k ∈ K) denote a generic
random variable representing the number of class k customers in the stationary system. We
then define p(n) (n ∈ Z) as a 1×M vector whose jth element represents Pr[N1 = n1, . . .,
NK = nK , S = j], where n denotes a 1 × K nonnegative integer vector (n1, . . . , nK) and
Z = {(n1, . . . , nK) ; nk = 0, 1, . . . for all k ∈ K}. Further, let N (Dk)

ν (k, ν ∈ K) and S(Dk)

(k ∈ K) denote generic random variables that represent the number of class ν customers in
the system and the state of the underlying Markov chain, respectively, immediately after
departures of class k customers in steady state. We then define qk(n) (k ∈ K, n ∈ Z) as

a 1 ×M vector whose jth element represents Pr[N
(Dk)
1 = n1, . . . , N

(Dk)
K = nK , S

(Dk) = j].
Applying Theorem 1 in [14] to our model, we have the following theorem.

Theorem 4.1 ([14]) The p(n) (n ∈ Z) is recursively determined by

p(0) =
∑

k∈K
λkqk(0)(−C)−1,

p(n) =
∑

k∈K


λk (qk(n)− qk(n− ek)) +

nk∑

mk=1

p(n−mkek)Dk(mk)


 (−C)−1, n ∈ Z+,

where Z+ = Z − {0}, qk(n) = 0 for n ∈/ Z and ek (k ∈ K) denotes the kth unit vector:

ek = (0, . . . , 0, 1
kth
, 0, . . . , 0).

Thus the p(n) is given in terms of the qk(n). We then consider the qk(n) in section
4.1. Further, in section 4.2, assuming discrete phase-type batch size distributions, we derive
numerically feasible recursions for some quantities required in computing the qk(n).
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4.1. Joint queue length distribution immediately after departures

We define q∗k(z) (k ∈ K) as the vector generating function of the joint queue length distri-
bution immediately after departures of class k customers.

q∗k(z) =
∑

n∈Z
zn1
1 · · · znK

K qk(n), |zk| ≤ 1 for all k ∈ K.

Let N
(Dk,ξ)
ν and S(Dk,ξ) (k, ν ∈ K, ξ = on, off) denote generic random variables that represent

the number of class ν customers in the system and the state of the underlying Markov
chain, respectively, immediately after departures of class k-ξ customers in steady state.
We define qk,ξ(n) (k ∈ K, ξ = on, off) as a 1 ×Mon vector whose jth element represents

Pr[N
(Dk,ξ)
1 = n1, . . . , N

(Dk,ξ)
K = nK , S

(Dk,ξ) = j]. We also define q∗k,ξ(z) (k ∈ K, ξ = on, off)
as

q∗k,ξ(z) =
∑

n∈Z
zn1
1 · · · znK

K qk,ξ(n).

We then have

q∗k(z) =

(
ronλk,on

λk

q∗k,on(z) +
roffλk,off

λk

q∗k,off(z), 0, . . . , 0

)
, (4.1)

because all departures always occur in on-periods.
In the rest of this subsection, we derive q∗k,on(z) and q∗k,off(z). We call a randomly chosen

class k-ξ (k ∈ K, ξ = on, off) customer who is a member of a batch of size n and the mth
served customer among members in the same batch the tagged customer. Further we call

the batch to which the tagged customer belongs the tagged batch. Let N
(Dk,ξ)
ν (n;m) and

S(Dk,ξ)(n;m) (k, ν ∈ K, ξ = on, off, n = 1, 2 . . ., m = 1, . . . , n) denote generic random
variables that represent the number of class ν customers in the system and the state of
the underlying Markov chain, respectively, immediately after the departure of the tagged
customer. We then define q∗k,ξ(z | n;m) (k ∈ K, ξ = on, off, n = 1, 2 . . ., m = 1, . . . , n) as a

1 ×Mon vector whose jth element represents E
[ ∏

ν∈K z
N

(Dk,ξ)
ν (n;m)

ν 1{S(Dk,ξ)(n;m) = j}
]
. It

is easy to see that q∗k,ξ(z) can be written in terms of q∗k,ξ(z | n;m):

q∗k,ξ(z) =
∞∑

n=1

nπξDk,ξ(n)e

λk,ξ

1

n

n∑

m=1

q∗k,ξ(z | n;m), k ∈ K, ξ = on, off, (4.2)

if λk,ξ > 0, and otherwise q∗k,ξ(z) = 0.
Note here that customers who contribute to q∗k,on(z | n;m) can be divided into three

types: (i) customers arriving during the completion time of the total unfinished work im-
mediately before the arrival of the tagged batch, (ii) customers arriving during an interval
from the beginning of the first service of a member in the tagged batch to the completion
of the service of the tagged customer, and (iii) n−m customers who belong to the tagged
batch and receive their services after the tagged customer. It then follows that for k ∈ K,
n = 1, 2, . . . and m = 1, . . . , n,

q∗k,on(z | n;m) = zn−m
k ·

∫ ∞

0

dvon(x)Dk,on(n)N ∗(z | x)
πonDk,on(n)e

·
[∫ ∞

0
dHk,on(y)N

∗(z | y)
]m

, (4.3)

where N ∗(z | x) = P ∗∗(z, 0 | x), i.e.,

N ∗(z | x) = exp








Con +
∑

k∈K
D∗

k,on(zk) + Eon,off


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,on




x


 .

(4.4)
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Note that N ∗(z | x) denotes the matrix joint generating function for the numbers of arrivals
in respective classes during the completion time of a service of x units. Similarly, we have
for k ∈ K, n = 1, 2, . . . and m = 1, . . . , n,

q∗k,off(z | n;m) = zn−m
k ·

∫ ∞

0

dvoff(x)Dk,off(n)

πoffDk,off(n)e


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,onN
∗(z | x)

·
[∫ ∞

0
dHk,off(y)N ∗(z | y)

]m

. (4.5)

Thus, from (4.2), (4.3) and (4.5), we obtain the following theorem.

Theorem 4.2 q∗k,on(z) (k ∈ K) is given by

q∗k,on(z) =
1

λk,on

∞∑

m=1

∞∑

l=0

zl
k

∫ ∞

0
dvon(x)Dk,on(m+ l)N ∗(z | x)

[∫ ∞

0
dHk,on(y)N

∗(z | y)
]m

,

if λk,on > 0, and otherwise q∗k,on(z) = 0. On the other hand, q∗k,off(z) (k ∈ K) is given by

q∗k,off(z) =
1

λk,off

∞∑

m=1

∞∑

l=0

zl
k

∫ ∞

0
dvoff(x)Dk,off(m+ l)


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,on

·N ∗(z | x)
[∫ ∞

0
dHk,off(y)N ∗(z | y)

]m

,

if λk,off > 0, and otherwise q∗k,off(z) = 0.

4.2. Recursions for models with discrete phase-type batch sizes

In this subsection, we develop recursive formulas to compute the joint queue length distribu-
tion qk(n) immediately after departures of class k customers under the following assumption.

Assumption 4.1 Batch sizes of class k-ξ (k ∈ K, ξ = on, off) are independent of the state
of the underlying Markov chain and i.i.d. according to a discrete phase-type distribution
with representation (αk,ξ,P k,ξ), where αk,ξ denotes a 1 ×Mk,ξ probability vector and P k,ξ

denotes an Mk,ξ ×Mk,ξ substochastic matrix.

Under Assumption 4.1, Dk,ξ(n) (k ∈ K, ξ = on, off) is given by

Dk,ξ(n) = gk,ξ(n)Dk,ξ, n = 1, 2, . . . ,

where gk,ξ(n) denotes the probability mass function of the batch size of class k-ξ:

gk,ξ(n) = αk,ξP
n−1
k,ξ (I − P k,ξ)e, n = 1, 2, . . . .

Thus, Theorem 4.2 is reduced to:

Corollary 4.1 Under Assumption 4.1, q∗k,on(z) (k ∈ K) is given by

q∗k,on(z) =
1

λk,on

∫ ∞

0
dvon(x)Dk,onN

∗(z | x)

·
(
αk,on ⊗

∫ ∞

0
dHk,on(y)N

∗(z | y)
) [

I − P k,on ⊗
∫ ∞

0
dHk,on(y)N

∗(z | y)
]−1

·
[{

(I − zkP k,on)
−1 (I − P k,on)e

}
⊗ I(Mon)

]
, (4.6)
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if λk,on > 0, and otherwise q∗k,on(z) = 0. Similarly, q∗k,off(z) (k ∈ K) is given by

q∗k,off(z) =
1

λk,off

∫ ∞

0
dvoff(x)Dk,off


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,onN
∗(z | x)

·
(
αk,off ⊗

∫ ∞

0
dHk,off(y)N ∗(z | y)

) [
I − P k,off ⊗

∫ ∞

0
dHk,off(y)N ∗(z | y)

]−1

·
[{

(I − zkP k,off)−1 (I − P k,off)e
}
⊗ I(Mon)

]
, (4.7)

if λk,off > 0, and otherwise q∗k,off(z) = 0.

This corollary can be obtained in the same way as Lemma IV.1 in [7], and therefore we omit
the proof.

We define vk,on(n) and vk,off(n) (k ∈ K,n ∈ Z) as 1×Mon vectors satisfying

∑

n∈Z
zn1
1 · · · znK

K vk,on(n) =
∫ ∞

0
dvon(x)Dk,onN

∗(z | x), (4.8)

∑

n∈Z
zn1
1 · · · znK

K vk,off(n) =
∫ ∞

0
dvoff(x)Dk,off


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,onN
∗(z | x),

(4.9)

respectively. We also define Ak,ξ(n) and Γk,ξ(n) (k ∈ K, ξ = on, off, n ∈ Z) as Mon ×Mon

and Mk,ξMon ×Mk,ξMon matrices satisfying

∑

n∈Z
zn1
1 · · · znK

K Ak,ξ(n) =
∫ ∞

0
dHk,ξ(y)N

∗(z | y), (4.10)

∑

n∈Z
zn1
1 · · · znK

K Γk,ξ(n) =
[
I − P k,ξ ⊗

∫ ∞

0
dHk,ξ(y)N

∗(z | y)
]−1

,

respectively. Then q∗k,ξ(z) (k ∈ K, ξ = on, off) in (4.6) and (4.7) are rewritten to be

q∗k,ξ(z) =
1

λk,ξ

∑

n∈Z
zn1
1 · · · znK

K

nk∑

m=0

∑

n1,n2,n3∈Z
n1+n2+n3
= n−mek

vk,ξ(n1)[αk,ξ ⊗Ak,ξ(n2)]Γk,ξ(n3)

·
[{

P m
k,ξ(I − P k,ξ)e

}
⊗ I(Mon)

]
, (4.11)

if λk,ξ > 0, and otherwise q∗k,ξ(z) = 0. Comparing coefficient vectors of z1 · · · zK on both
sides of (4.1) and (4.11), respectively, we obtain the following result.

Theorem 4.3 Under Assumption 4.1, the qk(n) is given by

qk(n) =

(
ronλk,on

λk

qk,on(n) +
roffλk,off

λk

qk,off(n), 0, . . . , 0

)
, k ∈ K, n ∈ Z,

where the qk,ξ(n) (k ∈ K, ξ = on, off, n ∈ Z) is given by

qk,ξ(n) =
1

λk,ξ

nk∑

m=0

∑

n1,n2,n3∈Z
n1+n2+n3
= n−mek

vk,ξ(n1)[αk,ξ ⊗Ak,ξ(n2)]Γk,ξ(n3)

·
[{

P m
k,ξ(I − P k,ξ)e

}
⊗ I(Mon)

]
,

if λk,ξ > 0, and otherwise qk,ξ(n) = 0 for all n ∈ Z.
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Theorem 4.3 implies that the computation of the qk(n) is reduced to those of the Γk,ξ(n),
Ak,ξ(n) and vk,ξ(n) (ξ = on, off). Note here that the Γk,ξ(n) is given in terms of the Ak,ξ(n).

Lemma 4.1 ([7]) The Γk,ξ(n) (k ∈ K, ξ = on, off, n ∈ Z) is determined by the following
recursion:

Γk,ξ(0) = [I − P k,ξ ⊗Ak,ξ(0)]−1 ,

Γk,ξ(n) =
∑

0≤l≤n
l 6=0

Γk,ξ(n− l) [P k,ξ ⊗Ak,ξ(l)]Γk,ξ(0), n ∈ Z+.

The rest of this subsection therefore discusses the computations of the Ak,ξ(n) and the
vk,ξ(n).

We first consider the Ak,ξ(n). Let F m(n) (m = 0, 1, . . . , n ∈ Z) denote an Mon ×Mon

matrix that satisfies

∑

n∈Z
zn1
1 · · · znK

K F m(n) =


I + θ−1

on



Con +

∑

k∈K
D∗

k,on(zk)

+Eon,off


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,on








m

, (4.12)

where θon = maxj∈Mon |[Con]j,j|.
Lemma 4.2 The F m(n) is recursively determined by

F 0(n) =

{
I, if n = 0,
O, otherwise,

(4.13)

and for m = 1, 2, . . . ,

F m(n) = F m−1(n)(I + θ−1
on Con) + θ−1

on

∑

k∈K

nk∑

lk=1

F m−1(n− lkek)Dk,on(lk)

+ θ−1
on


 ∑

0≤l≤n

F m−1(n− l)Eon,offN off(l)


 Eoff,on, n ∈ Z, (4.14)

where Moff ×Moff matrices N off(n)’s are determined by the following recursion:

N off(0) = (−Coff)−1, (4.15)

N off(n) =


∑

k∈K

nk∑

lk=1

N off(n− lkek)Dk,off(lk)


 N off(0), n ∈ Z+. (4.16)

The proof of Lemma 4.2 is given in Appendix A.
The Ak,ξ(n) is given in terms of the F m(n) in the following way. It follows from (4.4),

(4.10) and (4.12) that

∑

n∈Z
zn1
1 · · · znK

K Ak,ξ(n) =
∞∑

m=0

∫ ∞

0
dHk,ξ(y)

(θony)
m

m!
e−θony


I + θ−1

on



Con +

∑

k∈K
D∗

k,on(zk)

+Eon,off


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

Eoff,on








m

=
∑

n∈Z
zn1
1 · · · znK

K

∞∑

m=0

γ
(m)
k,ξ (θon)F m(n), (4.17)
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where

γ
(m)
k,ξ (θon) =

∫ ∞

0
dHk,ξ(y)

(θony)
m

m!
e−θony, k ∈ K, ξ = on, off, m = 0, 1, . . . .

Comparing coefficient vectors of zn1
1 · · · znK

K on both sides in (4.17), we obtain the following
theorem.

Theorem 4.4 The Ak,ξ(n) is given by

Ak,ξ(n) =
∞∑

m=0

γ
(m)
k,ξ (θon)F m(n), k ∈ K, ξ = on, off, n ∈ Z,

where the F m(n) is given in Lemma 4.2.

Next we consider the vk,on(n) in (4.8) and the vk,off(n) in (4.9). Expanding N ∗(z | x)
in (4.8) and (4.9), and comparing coefficient vectors of zn1

1 · · · znK
K on both sizes of each

equation, we obtain the following theorem.

Theorem 4.5 The vk,on(n) (k ∈ K) and the vk,off(n) (k ∈ K) are given by

vk,on(n) =
∞∑

m=0

v(m)
on (θon)Dk,onF m(n), n ∈ Z,

vk,off(n) =
∞∑

m=0

v
(m)
off (θon)Dk,off

∑

0≤l≤n

N off(n− l)Eoff,onF m(l), n ∈ Z,

respectively, where the F m(n) and the N off(n) are given in Lemma 4.2, and

v
(m)
ξ (θon) =

∫ ∞

0
dvξ(x)

(θonx)
m

m!
e−θonx, ξ = on, off, m = 0, 1, . . . .

Thus the vk,ξ(n) (ξ = on, off) is given in terms of the v
(m)
ξ (θon) whose computation has

already been studied in [15]. In what follows, we summarize the result. Note first that

v∗ξ(θon − θonz) =
∞∑

m=0

zmv
(m)
ξ (θon), ξ = on, off. (4.18)

Substituting θon − θonz for s in (3.1) and using (4.18), we have

∞∑

m=0

zmv(m)
on (θon)

[
(θon − θonz)I + Con +

∞∑

m=0

zmD(m)
on (θon) + Eon,off

∞∑

m=0

zmJ
(m)
off (θon)Eoff,on

]

= (θon − θonz)(1− ρon)κon, (4.19)

where D
(m)
ξ (θon) (ξ = on, off) and J

(m)
off (θon) are matrices satisfying

∞∑

m=0

zmD
(m)
ξ (θon) = D

∗
ξ(θon − θonz), (4.20)

∞∑

m=0

zmJ
(m)
off (θon) =

[
−Coff −D

∗
off(θon − θonz)

]−1
,

respectively. The computation of the D
(m)
ξ (θon) (ξ = on, off) has already been studied in

[7], while the recursion for the J
(m)
off (θon) can be obtained from

∞∑

m=0

zmJ
(m)
off (θon)

[
−Coff −

∞∑

m=0

zmD
(m)
off (θon)

]
= I.
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Lemma 4.3 ([7]) Under Assumption 4.1, the D
(m)
ξ (θon) (ξ = on, off) is given by

D
(m)
ξ (θon) =

∑

k∈K
d

(m)
k,ξ (θon)eDk,ξ, m = 0, 1, . . . ,

where the d
(m)
k,ξ (θon) (k ∈ K, ξ = on, off) is given by the following recursion:

d
(0)
k,ξ(θon) = γ

(0)
k,ξ(θon)αk,ξ(I − P k,ξ)

[
I − γ

(0)
k,ξ(θon)P k,ξ

]−1
,

d
(m)
k,ξ (θon) =

γ
(m)
k,ξ (θon)

γ
(0)
k,ξ(θon)

d
(0)
k,ξ(θon) +

[
m∑

l=1

γ
(l)
k,ξ(θon)d

(m−l)
k,ξ (θon)

]

· P k,ξ

[
I − γ

(0)
k,ξ(θon)P k,ξ

]−1
, m = 1, 2, . . . .

Lemma 4.4 The J
(m)
off (θon) is recursively determined by the following recursion:

J
(0)
off (θon) =

[
−Coff −D

(0)
off (θon)

]−1
,

J
(m)
off (θon) =

[
m−1∑

l=0

J
(l)
off(θon)D

(m−l)
off (θon)

]
J

(0)
off (θon), m = 1, 2, . . . .

The v(m)
on (θon) is computed as follows. Comparing the coefficient vectors of zm (m =

0, 1, . . .) on both sides of (4.19), we can show that the v(m)
on (θon) is identical to the steady-

state solution of a Markov chain of M/G/1 type whose transition probability matrix is given
by [15] 



B0 + B1 B2 B3 B4 · · ·
B0 B1 B2 B3 · · ·
O B0 B1 B2 · · ·
O O B0 B1 · · ·
O O O B0 · · ·
...

...
...

...
. . .




,

where

B0 = I + θ−1
on

[
Con + D(0)

on (θon) + Eon,offJ
(0)
off (θon)Eoff,on

]
,

Bm = θ−1
on

[
D(m)

on (θon) + Eon,offJ
(m)
off (θon)Eoff,on

]
, m = 1, 2, . . . .

Thus applying the general theory of Markov chains of M/G/1 type [8], we can compute the
v(m)

on (θon).

On the other hand, the v
(m)
off (θon) can be computed by the following theorem whose proof

is given in Appendix B.

Theorem 4.6 The v
(m)
off (θon) is determined by the following recursion:

v
(0)
off (θon) =

v(0)
on (θon)Eon,off

πonEon,offe

[
−Coff −D

(0)
off (θon)

]−1

Ioff

, (4.21)

v
(m)
off (θon) =

[
v(m)

on (θon)Eon,off

πonEon,offe

1

Ioff

+
m−1∑

l=0

v
(l)
off(θon)D

(m−l)
off (θon)

]

·
[
−Coff −D

(0)
off (θon)

]−1
, m = 1, 2, . . . , (4.22)

where the D
(m)
off (θon) is given in Lemma 4.3.
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Among the recursions required in computing the joint queue length distribution, Lemma
4.2 for the F m(n) is the most extensive. In fact, its straightforward implementation will
require very huge memory space. Note that an efficient implementation scheme for it is
proposed in [7]. All other recursions can be readily implemented as they are. See [7, 11] for
details. Note also that from the results in this subsection, we can readily obtain recursions
to compute the total queue length distribution, which are much less extensive than those
for the joint queue length distribution. The results for the total queue length distribution
are summarized in Appendix C.

5. Numerical Examples

In this section, we provide some numerical examples using two-class models. Throughout
this section, we assume that the marginal arrival process follows a two-state batch marked
MAP (C̃, D̃1(n), D̃2(n)):

C̃ =

[
−λg−1 − a a

a −λg−1 − a

]
, (5.1)

D̃1(n) = g(n)

[
λg−1 0

0 0

]
, D̃2(n) = g(n)

[
0 0
0 λg−1

]
, n = 1, 2, . . . , (5.2)

where λ, g, a > 0 and g(n) = 1 if n = g, and otherwise g(n) = 0.
We also assume that the marginal on-off process follows an alternating Markov renewal

process whose infinitesimal generator is given by
[

Son T on,off

T off,on Soff

]
,

where Son (resp. Soff) denotes an mon × mon (resp. moff × moff) matrix representing an
infinitesimal generator that governs transitions in on-periods (resp. off-periods), and T on,off

(resp. T off,on) denotes a transition rate matrix from on-states (resp. off-states) to off-states
(resp. on-states). When the on-off and arrival processes are independent of each other, the
model is characterized as follows:

Con = Son ⊕ C̃, Coff = Soff ⊕ C̃, Eon,off = T on,off ⊗ I(2), Eoff,on = T off,on ⊗ I(2),

D1,on(n) = I(mon)⊗ D̃1(n), D1,off(n) = I(moff)⊗ D̃1(n),

D2,on(n) = I(mon)⊗ D̃2(n), D2,off(n) = I(moff)⊗ D̃2(n).

5.1. Impact of service time dependency

In this subsection, we discuss the impact of the service time dependency on the queue
length. We assume that the on-off and arrival processes are mutually independent. Let
Son = Soff = −α and T on,off = T off,on = α, where α > 0. Also let a = 0.1 and λ = 0.125 in
(5.1) and (5.2). As for the service time, we consider two cases, Case GD (class-dependent
service times) and Case GI (i.i.d. service times):

[Case GD] H1 = 1 with probability 1, H2 = 5 with probability 1,

[Case GI] Hk =

{
1, with probability 1/2,
5, with probability 1/2,

k = 1, 2,

where Hk (k = 1, 2) denotes a generic random variable representing a service time of a class
k customer. Note here that the overall service time distributions in both cases are identical
and ρon = 6λ = 0.75.
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Figure 1 plots the expected total queue lengths E[N ] in Cases GD and GI as functions
of α−1. As α−1 goes to 0, the above model gets close to a work-conserving single-server
queue (i.e., no service interruptions occur) with the same arrival process and service time
distributions, where the processing speed of the server is reduced by half. We observe that
the difference in the expected total queue lengths of the two models is kept almost constant
regardless of the value of α−1 and gets large with constant batch size g.
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40
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E[N ]

α−1

Case GD
Case GI

Figure 1: Expected total queue length E[N ].

g = 1

g = 5

g = 10

Table 1 shows the joint queue length distribution for g = 1. Let pGD(n1, n2) (resp.
pGI(n1, n2)) denote p(n1, n2) in Case GD (resp. GI). We observe that pGI(n1, n2)e =
pGI(n2, n1)e is due to the symmetry of input parameters of classes 1 and 2 in Case GI.
Further, Table 1 shows that pGD(n1, n2)e > pGI(n1, n2)e for n1 < n2, and vice versa. Thus
for m, n such that m > n,

pGD(m,n)e < pGI(m,n)e = pGI(n,m)e < pGD(n,m)e,

in this particular example. We conjecture that this phenomenon is caused by the fact that
service times of class 2 customers are larger than those of class 1 customer in Case GD, and
while a class 2 customer is being served, succeeding class 2 customers are likely to arrive
back to back and stay in the system.

5.2. Impact of variation of on- and off-periods

Next, we discuss the impact of the variation in on- and off-periods on the total queue length
N . We assume that the on-off process follows an alternating renewal process, and the on-
off and arrival processes are mutually independent. Let C2

v,on and C2
v,off denote the squared

coefficients of variation of on-periods and off-periods, respectively. To examine the impact of
the variation of on-periods, the off-period distribution is fixed to be exponential with mean
100. For C2

v,on = k−1 ≤ 1 (k = 1, 2, . . .), on-periods follow a k-stage Erlang distribution with
mean 100, and for C2

v,on > 1, they follow a balanced hyper-exponential distribution ψ(x)
with mean 100, where

ψ(x) = 1− p exp(−0.02px)− (1− p) exp [−0.02(1− p)x] , 0 < p < 0.5.

Note that C2
v,on = 1/{2p(1 − p)} − 1 in this case. On the other hand, in examining the

impact of the variation of off-periods on the total queue length, the above on- and off-
period distributions are exchanged.
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Table 1: Joint queue length distribution p(n1, n2)e.
(Upper rows for Case GD and lower rows for Case GI )

n1 0 1 2 5 10 20
n2

1.34× 10−1 1.74× 10−2 5.67× 10−3 1.38× 10−3 1.79× 10−4 3.10× 10−6

0
1.34× 10−1 3.41× 10−2 1.41× 10−2 2.51× 10−3 3.44× 10−4 6.80× 10−6

4.67× 10−2 9.37× 10−3 5.88× 10−3 2.12× 10−3 4.02× 10−4 1.14× 10−5

1
3.41× 10−2 9.25× 10−3 6.25× 10−3 2.71× 10−3 6.02× 10−4 2.07× 10−5

2.18× 10−2 6.87× 10−3 5.31× 10−3 2.60× 10−3 6.48× 10−4 2.68× 10−5

2
1.41× 10−2 6.25× 10−3 5.27× 10−3 3.03× 10−3 8.78× 10−4 4.38× 10−5

3.68× 10−3 3.26× 10−3 3.41× 10−3 2.87× 10−3 1.30× 10−3 1.24× 10−4

5
2.51× 10−3 2.71× 10−3 3.03× 10−3 2.89× 10−3 1.50× 10−3 1.70× 10−4

5.02× 10−4 7.92× 10−4 1.09× 10−3 1.68× 10−3 1.54× 10−3 4.04× 10−4

10
3.44× 10−4 6.02× 10−4 8.78× 10−4 1.50× 10−3 1.55× 10−3 4.73× 10−4

1.04× 10−5 2.97× 10−5 6.03× 10−5 2.15× 10−4 5.42× 10−4 6.12× 10−4

20
6.80× 10−6 2.07× 10−5 4.38× 10−5 1.70× 10−4 4.73× 10−4 6.09× 10−4

As for the arrival process, we set a = 0.1, λ = 0.125 and g = 1 in (5.1) and (5.2).
Besides, service times of each class are assumed to follow the same service time distribution
as in Case GD of the preceding subsection.

Figures 2 and 3 plot the 99.9 percentile (99.9 PT) and expected value E[N ] of the
total queue length, respectively, as functions of the squared coefficient of variation C2

v,ξ

(ξ = on, off), where the vertical axes are in log-scale. Note that in the case of C2
v,ξ = 1

(ξ = on, off), the two models become identical with exponential on- and off-periods. We
observe that both 99.9 PT and E[N ] are monotone increasing functions of C2

v,ξ (ξ = on, off)
and C2

v,off has a more impact on the total queue length N than C2
v,on.

100

1000

0 1 5 10

99.9 PT

C2
v,ξ

ξ = OFF
ξ = ON

Figure 2: 99.9 percentile (99.9 PT) of the
total queue length.

10

100

0 1 5 10

E[N ]

C2
v,ξ

ξ = OFF
ξ = ON

Figure 3: Expected total queue length
E[N ].

5.3. Impact of correlation in on- and off-periods

In this subsection, we examine the impact of the correlation in on- and off-periods on the
total queue length N . For this purpose, we assume that the on-off and arrival processes are
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mutually independent and the marginal on-off process is given by

Son = Soff =

[
−1/40 0

0 −1/160

]
, T on,off = T off,on =

[
p/40 (1− p)/40

(1− p)/160 p/160

]
,

where 0 < p < 1. Thus the marginal distributions of on- and off-periods follow the same
hyper-exponential distribution whose distribution function ψ(x) is given by

ψ(x) = 1− 0.5 exp(−x/40)− 0.5 exp(−x/160).

Note that parameter p controls the correlation in consecutive on- and off-periods. Suppose
the on-off process starts with an on-period. Let Ion(n) and Ioff(n) (n = 1, 2, . . .) denote
the lengths of the nth on- and off-periods, respectively. Then, both Cov[Ion(n), Ioff(n)] and
Cov[Ioff(n), Ion(n + 1)] are negative for 0 < p < 0.5, equal to zero for p = 0.5, and positive
for 0.5 < p < 1. We set a = 0.1, λ = 0.125 and g = 1 in (5.1) and (5.2). Service times of
each class follow the same distribution as in Case GD of subsection 5.1.

Figures 4 and 5 plot the 99.9 percentile (99.9 PT) and expected value E[N ] of the total
queue length, respectively, as functions of p. From these figures, we observe the followings.
As p goes to zero, both 99.9 PT and E[N ] rapidly increase. This phenomenon is due to the
fact that once the on-off process is in a long off-period, long off-periods and short on-periods
are likely to repeat alternately, and during those intervals, many customers are accumulated
in the system. As p becomes large, however, this effect is weakened, and finally, both 99.9
PT and E[N ] take their minimums and turn to increase. This implies that there exists
some factor to make the queue length increase with p. In what follows, we examine this
phenomenon more closely.

300
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700
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900

1000

0 0.2 0.4 0.6 0.8 1

99.9 PT

p

Figure 4: 99.9 percentile (99.9 PT) of the
total queue length.
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Figure 5: Expected total queue length
E[N ].
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Let Ψshort−on, Ψlong−on, Ψshort−off and Ψlong−off denote the events that the on-off process
is in a short on-period, long on-period, short off-period and long off-period, respectively.
Figures 6 and 7 plot the conditional expected total queue lengths given those events as
functions of p. From Figure 6, we observe that as expected, E[N | Ψlong−off ] is always larger
than E[N | Ψshort−off ], so that the total queue length in an on-period following a long off-
period is likely to be larger than that in an on-period following a short off-period, regardless

c© Operations Research Society of JapanJORSJ (2003) 46-3



336 H. Masuyama & T. Takine

of the value of p. Note here that as p goes to one, the contribution of the total queue
length in an on-period following a long off-period to E[N | Ψlong−on] becomes large, and we
conjecture that this factor makes E[N | Ψlong−on] increase in the region where p is close to
one, as shown in Figure 7. Moreover, once E[N | Ψlong−on] turns to increase, this affects the
total queue length in the following off-period, and as p goes to one, off-periods following
long on-periods are likely to be long off-periods. Thus E[N | Ψlong−off ] turns to increase
after E[N | Ψlong−on] does, as shown in Figures 6 and 7.

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
p

E[N |Ψlong−off ]
E[N |Ψshort−off ]

Figure 6: Conditional expected total queue
length.

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1
p

E[N |Ψlong−on]
E[N |Ψshort−on]

Figure 7: Conditional expected total queue
length.

Note here that in this particular example,

Pr(Ψlong−on) = Pr(Ψlong−off) = 0.4, Pr(Ψshort−on) = Pr(Ψshort−off) = 0.1.

Therefore the contributions of E[N | Ψlong−on] and E[N | Ψlong−off ] to E[N ] are four times
as large as those of E[N | Ψshort−on] and E[N | Ψshort−off ]. As a result, E[N ] increases for p
near one. A similar observation can be applied to the 99.9 percentile, too.

5.4. Impact of correlation between on-off and arrival processes

Finally, we examine the impact of the correlation between on-off and arrival processes on
the total queue length N . We consider the following three models, where service times of
each class follow the same distribution as in Case GD of subsection 5.1.

In Model 1, the on-off and arrival processes have a correlation, and they are represented
by

C =

[ −0.125− α α

α −0.125− α

]
, D1(1) =

[
0.125 0

0 0

]
, D2(1) =

[
0 0

0 0.125

]
,

and Dk(n) = O (k = 1, 2) for n = 2, 3, . . ., where Mon = Moff = 1. In Model 2, the on-off
and arrival processes are mutually independent. As for the arrival process, we set a = α,
λ = 0.125 and g = 1 in (5.1) and (5.2). The on-off process is the same as that in subsection
5.1. In Model 3, the on-off and arrival processes have a correlation, and they are represented
by

C =

[ −0.125− α α

α −0.125− α

]
, D1(1) =

[
0 0

0 0.125

]
, D2(1) =

[
0.125 0

0 0

]
,
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and Dk(n) = O (k = 1, 2) for n = 2, 3, . . ., where Mon = Moff = 1. Note here that the
marginal on-off processes in the three models are identical, and so are the marginal arrival
processes.

Figures 8 and 9 show the 99.9 percentile (99.9 PT) and expected value E[N ] of the total
queue length, respectively, as functions of α−1. Note here that as α−1 goes to zero, all the
three models get close to a work-conserving single-server queue, where the arrival process
follows a Poisson process with rate 0.125, and service times are i.i.d. and take 2 or 10 with
equal probability. This is a reason why both 99.9 PTs and E[N ]’s in all the three models
converge the same values, respectively, as α−1 → 0. We also observe that 99.9PT and E[N ]
in Model 1 (resp. Model 3) are always larger (resp. smaller) than those in Model 2. This is
due to the fact the amount of work brought into the system during off-periods in Model 1
(resp. Model 3) is likely to be larger (resp. smaller) than that in Model 2.
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Figure 8: 99.9 percentile (99.9 PT) of the
total queue length.
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Figure 9: Expected total queue length
E[N ].

A. Proof of Lemma 4.2

From the definition (4.12) of F m(n), (4.13) is clearly satisfied. (4.14) is proved in the
following way. Let N off(n) denote an Moff ×Moff matrix satisfying

∑

n∈Z
zn1
1 · · · znK

K N off(n) =


−Coff −

∑

k∈K
D∗

k,off(zk)



−1

. (A.1)

From (3.3), (4.12) and (A.1), we have for m = 1, 2, . . .,

∑

n∈Z
zn1
1 · · · znK

K F m(n)

=
∑

n∈Z
zn1
1 · · · znK

K F m−1(n)

·

I + θ−1

on



Con +

∑

k∈K

∞∑

nk=1

znk
k Dk,on(nk) + Eon,off

∑

n∈Z
zn1
1 · · · znK

K N off(n)Eoff,on








=
∑

n∈Z
zn1
1 · · · znK

K F m−1(n)(I + θ−1
on Con)
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+
∑

n∈Z
zn1
1 · · · znK

K θ−1
on

∑

k∈K

nk∑

lk=1

F m−1(n− lkek)Dk,on(lk)

+
∑

n∈Z
zn1
1 · · · znK

K θ−1
on

∑

0≤l≤n

F m−1(n− l)Eon,offN off(l)Eoff,on.

Comparing coefficient matrices of zn1
1 · · · znK

K on both sides of the above equation, we obtain
(4.14). Next, we show (4.15) and (4.16). From (3.3) and (A.1), we have

∑

n∈Z
zn1
1 · · · znK

K N off(n)


−Coff −

∑

k∈K

∞∑

nk=1

znk
k Dk,off(nk)


 = I.

Comparing coefficient matrices of zn1
1 · · · znK

K on both sides of the above equation yields

N off(0) (−Coff) = I,

N off(n) (−Coff) − ∑

k∈K

nk∑

lk=1

N off(n− lkek)Dk,off(lk) = O,

from which (4.15) and (4.16) follow.

B. Proof of Theorem 4.6

Post-multiplying both sides of (3.2) by −Coff −D
∗
off(s) and substituting θon − θonz for s,

we obtain

∞∑

m=0

zmv
(m)
off (θon)

[
−Coff −

∞∑

m=0

zmD
(m)
off (θon)

]
=

∞∑

m=0

zmv(m)
on (θon)Eon,off

πonEon,offe

1

Ioff

, (B.1)

where we use (4.18) and (4.20). Comparing coefficient vectors of zm (m = 0, 1, . . .) on both
sides of (B.1) yields

v
(0)
off (θon)

[
−Coff −D

(0)
off (θon)

]
=

v(0)
on (θon)Eon,off

πonEon,offe

1

Ioff

,

and for m = 1, 2, . . .,

v
(m)
off (θon)

[
−Coff −D

(0)
off (θon)

]
−

m−1∑

l=0

v
(l)
off(θon)D

(m−l)
off (θon) =

v(m)
on (θon)Eon,off

πonEon,offe

1

Ioff

.

(4.21) and (4.22) follow the above two equations.

C. Total Queue Length Distribution

This appendix summarizes the recursions for the total queue length distribution. Because
they are readily derived from the results in Section 4, we omit the proofs.

We first define p(T)(n) (n = 0, 1, . . .) and q
(T)
k (n) (k ∈ K, n = 0, 1, . . .) as the station-

ary total queue length distributions at a random point in time and at immediately after
departures of class k, respectively.

p(T)(n) =
∑

n∈Z
|n|=n

p(n), q
(T)
k (n) =

∑

n∈Z
|n|=n

qk(n),

where |n| = |n1|+ · · ·+ |nK |. From Theorem 4.1, we obtain the following corollary.
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Corollary C.1 The p(T)(n) is recursively determined in the following way:

p(T)(0) =
∑

k∈K
λkq

(T)
k (0)(−C)−1,

and for n = 1, 2, . . .,

p(T)(n) =
∑

k∈K

[
λk

(
q

(T)
k (n)− q

(T)
k (n− 1)

)
+

n∑

m=1

p(T)(n−m)Dk(m)

]
(−C)−1.

In what follows, we show recursions to compute the q
(T)
k (n). For this purpose, we

introduce the following notations: For k ∈ K, ξ = on, off, n = 0, 1, . . . and m = 0, 1, . . .,

q
(T)
k,ξ (n) =

∑

n∈Z
|n|=n

qk,ξ(n), Γ
(T)
k,ξ (n) =

∑

n∈Z
|n|=n

Γk,ξ(n), A
(T)
k,ξ (n) =

∑

n∈Z
|n|=n

Ak,ξ(n),

v
(T)
k,ξ (n) =

∑

n∈Z
|n|=n

vk,ξ(n), F (T)
m (n) =

∑

n∈Z
|n|=n

F m(n).

From Theorem 4.3, we have the following corollary.

Corollary C.2 Under Assumption 4.1, the q
(T)
k (n) (k ∈ K, n = 0, 1, . . .) is given by

q
(T)
k (n) =

(
ronλk,on

λk

q
(T)
k,on(n) +

roffλk,off

λk

q
(T)
k,off(n), 0, . . . , 0

)
,

where the q
(T)
k,ξ (n) (k ∈ K, ξ = on, off, n = 0, 1, . . .) is given by

q
(T)
k,ξ (n) =

1

λk,ξ

∑

m1+m2+m3
+m4=n

v
(T)
k,ξ (m1)[αk,ξ⊗A

(T)
k,ξ (m2)]Γ

(T)
k,ξ (m3)

[{
P m4

k,ξ (I − P k,ξ)e
}
⊗ I(Mon)

]
,

if λk,ξ > 0, and otherwise q
(T)
k,ξ (n) = 0.

As for the Γ
(T)
k,ξ (n), the following corollary can be obtained from Lemma 4.1.

Corollary C.3 The Γ
(T)
k,ξ (n) (k ∈ K, ξ = on, off, n = 0, 1, . . .) is determined by the follow-

ing recursion:

Γ
(T)
k,ξ (0) =

[
I − P k,ξ ⊗A

(T)
k,ξ (0)

]−1
,

Γ
(T)
k,ξ (n) =

n∑

l=1

Γ
(T)
k,ξ (n− l)

[
P k,ξ ⊗A

(T)
k,ξ (l)

]
Γ

(T)
k,ξ (0), n = 1, 2, . . . .

As for the A
(T)
k,ξ (n), the following recursions can be obtained from Lemma 4.2 and The-

orem 4.4.

Corollary C.4 The A
(T)
k,ξ (n) is given by

A
(T)
k,ξ (n) =

∞∑

m=0

γ
(m)
k,ξ (θon)F

(T)
m (n), k ∈ K, ξ = on, off, n = 0, 1, . . . ,
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where the F (T)
m (n) is recursively determined by

F
(T)
0 (n) =

{
I, if n = 0,
O, otherwise,

and for m = 1, 2, . . . ,

F (T)
m (n) = F

(T)
m−1(n)(I + θ−1

on Con) + θ−1
on

n∑

l=1

F
(T)
m−1(n− l)

∑

k∈K
Dk,on(l)

+ θ−1
on

[
n∑

l=0

F
(T)
m−1(n− l)Eon,offN

(T)
off (l)

]
Eoff,on, n = 0, 1, . . . ,

with the N
(T)
off (n), which is given by the following recursion:

N
(T)
off (0) = (−Coff)−1,

N
(T)
off (n) =




n∑

l=1

N
(T)
off (n− l)

∑

k∈K
Dk,off(l)


 N

(T)
off (0), n = 1, 2, . . . .

Finally, from Theorem 4.5, we obtain the following result.

Corollary C.5 The v
(T)
k,on(n) (k ∈ K) and the v

(T)
k,off(n) (k ∈ K) are determined by

v
(T)
k,on(n) =

∞∑

m=0

v(m)
on (θon)Dk,onF

(T)
m (n), n = 0, 1, . . . ,

v
(T)
k,off(n) =

∞∑

m=0

v
(m)
off (θon)Dk,off

n∑

l=0

N
(T)
off (n− l)Eoff,onF

(T)
m (l), n = 0, 1, . . . ,

respectively.
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