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Abstract Maximum adjacency (MA) ordering has effectively been applied to graph connectivity problems
by Nagamochi and Ibaraki. We show an application of MA ordering to the maximum flow problem to get a
new polynomial-time algorithm and propose its scaling versions that run in O(mn log U) time, where m is
the number of arcs, n the number of vertices, and U the maximum capacity. We give computational results,
comparing our algorithms with those of Goldberg-Tarjan and Dinitz, to show behaviors of our proposed
algorithms.
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1. Introduction

Maximum adjacency (MA) ordering has effectively been applied to graph connectivity prob-
lems by Nagamochi and Ibaraki (see [9, 10]).

One of the authors [5] showed an application of MA ordering to the maximum flow
problem to get a new polynomial-time algorithm. For a flow network with n vertices, m
arcs, and integral arc capacities c(a) (≤ U) our MA ordering algorithm finds a maximum
flow by O(n log nU) augmentations, in O(n(m + n log n) log nU) time. A full description
and a complexity proof of the algorithm are given in Section 3.

We propose scaling versions of our MA-ordering algorithm in Section 4. The scaling al-
gorithms require O(mn logU) running time. The complexity is the same as that of Gabow’s
scaling algorithm [6]. Furthermore, in Section 5 we give computational results, comparing
our algorithms with those of Dinitz [3] and Goldberg-Tarjan [7], to show behaviors of our
algorithms.

2. Maximum Flow and Residual Network

Let N = (G = (V,A), s+, s−, c) be a flow network, where G = (V,A) is a directed graph
with a vertex set V and an arc set A, s+ ∈ V an entrance (or a source), s− ∈ V an exit (or
a sink), and c : A→ Z+ a capacity function taking on nonnegative integers.

A function ϕ : A→ Z+ is called a flow in N if it satisfies

(a) (Capacity constraints) ∀a ∈ A : 0 ≤ ϕ(a) ≤ c(a)

(b) (Flow conservation) ∀v ∈ V \ {s+, s−} : ∂ϕ(v) = 0, where for each v ∈ V

∂ϕ(v) =
∑

a=(v,w)∈A

ϕ(a)−
∑

a=(w,v)∈A

ϕ(a).
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For a flow ϕ in N the value of flow ϕ is defined to be ∂ϕ(s+)(= −∂ϕ(s−)) and is denoted
by v̂(ϕ). A maximum flow is a flow of maximum value.

Given a flow ϕ in N , a residual network Nϕ = (Gϕ=(V,Aϕ), s+, s−, cϕ) with an under-
lying graph Gϕ and a capacity function cϕ : Aϕ → Z+ is defined by

Aϕ = A+
ϕ ∪ A−ϕ , (2.1)

A+
ϕ = {a | a ∈ A,ϕ(a) < c(a)}, (2.2)

A−ϕ = {ā | a ∈ A, 0 < ϕ(a)} (ā : a reorientation of a), (2.3)

cϕ(a) =

{
c(a)− ϕ(a) (a ∈ A+

ϕ )
ϕ(ā) (a ∈ A−ϕ ).

(2.4)

3. A Maximum Flow Algorithm Using MA Orderings

Suppose that we are given a flow ϕ in N . For any flow ψ in the residual network Nϕ such
that a ∈ A+

ϕ and ā ∈ A−ϕ imply ψ(a) = 0 or ψ(ā) = 0, we define a flow ϕ⊕ψ in the original
network N by

ϕ⊕ ψ(a) =





ϕ(a) + ψ(a) if a ∈ A+
ϕ and ψ(a) > 0

ϕ(a)− ψ(ā) if ā ∈ A−ϕ and ψ(ā) > 0
ϕ(a) otherwise.

(3.1)

The value of the new flow ϕ ⊕ ψ in N increases by the value of ψ in Nϕ. While ordinary
augmenting path algorithms choose an appropriate flow ψ along a single directed path for
each augmentation, we will make an augmentation by a multiple-path flow ψ found by an
MA ordering.

The argument in this section is found in [5] but we give it here together with some
additional remarks for completeness.

An MA ordering from s+ to s− in Nϕ is obtained as follows.

Procedure MA-Ordering(Nϕ)
Step MA0: Put i ← 0 and b(u) ← 0 for each u ∈ V . Also put W ← {s+} and v0 ← s+.
For each u ∈ V let Lu be an empty list.
Step MA1: For each w ∈ V \W with (vi, w) ∈ Aϕ put b(w) ← b(w) + cϕ(vi, w) and add
arc (vi, w) to list Lw.
Step MA2: Let vi+1 be a vertex that attains the maximum of b(w) (w ∈ V \ W ). If
vi+1 = s−, then return (v0=s

+, v1, · · · , vi+1=s
−), b, and Lu (u ∈ V ), and otherwise put

W ← W ∪ {vi+1} and i← i+ 1 and go to Step MA1.

The time required for Procedure MA-Ordering is O(m+ n log n) by adapting Dijkstra’s
shortest path algorithm with the Fibonacci heap. It should be noted here that vertex set
U = {v0=s

+, v1, · · · , vi+1=s
−} and lists Lu (u ∈ U \{s+}) of in-coming arcs form an acyclic

subgraphHϕ of Gϕ and that (v0=s
+, v1, · · · , vi+1=s

−) gives a topological ordering of vertices
in Hϕ.

Now our MA ordering algorithm for maximum flows is described as follows.

A Maximum Flow Algorithm
Step 0: Put ϕ(a)← 0 for each a ∈ A.
Step 1: Perform MA-Ordering(Nϕ). Let k be a positive integer such that vk = s−. Put
δ ← min{b(vj) | j = 1, 2, · · · , k}. If δ = 0, then return ϕ (a maximum flow) and otherwise
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put β(s−)← δ and β(u)← 0 for each u ∈ V \ {s−}.
Step 2: For each a ∈ Aϕ put ψ(a)← 0.
For i = k, k − 1, · · · , 1 do the following:
(∗) For each arc (u, vi) in list Lvi

ψ(u, vi)← min{β(vi), cϕ(u, vi)}
β(vi)← β(vi)− ψ(u, vi)
β(u)← β(u) + ψ(u, vi)

Step 3: Put ϕ← ϕ⊕ ψ and go to Step 1.

It should be noted that by the definition of δ computed in Step 1 we have δ ≤ b(vi)
(i = 1, 2, · · · , k). Hence in Step 2 β(vi) ≤ δ ≤ b(vi), which makes it possible to compute
ψ in Step 2 such that ∂ψ(vi) = 0 (i = 1, 2, · · · , k − 1) in Nϕ. The method of constructing
such a flow ψ in the residual graph is similar to an ingredient in that of finding a blocking
flow in an acyclic network proposed in [8].

It should also be worth mentioning the following

Lemma 3.1: If there exists an augmenting path-flow of value α in Nϕ, then the value of
the flow ψ computed in Step 3 of our algorithm is greater than or equal to α. In particular,
if δ = 0 in Step 1, there is no augmenting path in Nϕ.

Proof: Let P be a path defining an augmenting path-flow of value α. Then, for each
i = 1, 2, · · · , k, putting W = {v0, v1, · · · , vi}, there exists an arc (u,w) of P such that
u ∈ W and w ∈ V \ W since s+ ∈ W and s− ∈ V \ W . Such an arc (u,w) of P has
a capacity cϕ(u,w) ≥ α by the definition of P . Hence we have b(w) ≥ α because of the
definition of b. It follows that b(vi) (i = 1, 2, · · · , k) computed by MA-Ordering(Nϕ) satisfy
b(vi) ≥ α.

Now, we examine the complexity of our algorithm. First note that Step 1 requires
O(m+n log n) time and that Step 2 and Step 3 require O(m) time. We consider how many
times the cycle of Steps 1∼3 is repeated.

Lemma 3.2: Suppose that δ > 0 in Step 1. Then ψ computed in Step 2 has a value not
less than (v̂(ϕ∗)− v̂(ϕ))/n, where ϕ∗ is a maximum flow in N .

Proof: Suppose that in Step 1 δ = b(vi). Then define W = {v0, v1, · · · , vi−1}. It follows
from the definition of vi that, using the current b when vi is chosen,

∑
{cϕ(u,w) | u ∈ W, w ∈ V \W, (u,w) ∈ Aϕ} =

∑

w∈V \W
b(w) ≤ |V \W |b(vi). (3.2)

Note that v̂(ϕ∗)− v̂(ϕ) is equal to the value of a maximum flow in the residual network Nϕ.
Hence, from (3.2) and the max-flow min-cut theorem we have

v̂(ϕ∗)− v̂(ϕ) ≤ |V \W |b(vi) ≤ nδ. (3.3)

Recall that δ is the value of flow ψ in Nϕ.

Lemma 3.2 shows that, denoting by ϕ(i) the flow ϕ computed at the end of the ith
execution of Step 3, we have

v̂(ϕ∗)− v̂(ϕ(i+1)) ≤ (1− 1

n
)(v̂(ϕ∗)− v̂(ϕ(i))). (3.4)

This implies that every O(n) iterations of Steps 1∼3 at least halve the difference v̂(ϕ∗)−v̂(ϕ).
Since initially v̂(ϕ∗) − v̂(ϕ) ≤ nU − 0 where U denotes the maximum arc capacity in N
and since ϕ computed while executing our algorithm is integer-valued, our algorithm finds
a maximum flow by repeating Steps 1∼3 O(n log nU) times. Hence, we have
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Lemma 3.3: Our MA-ordering max-flow algorithm finds a maximum flow by repeating
Steps 1∼3 O(n log nU) times and requires in total O(n(m+ n log n) log nU) time.

Queyranne [11] showed that the maximum-capacity augmenting path algorithm “Capac-
ity” for maximum flows, due to Edmonds and Karp [4], requires O(m logU) augmentations
(also see [1, Sec. 7.3]). Our MA-ordering algorithm can be regarded as acceleration of
“Capacity.”

4. Scaling Algorithms

We can also consider a scaling version of our algorithm as follows. Starting from δ = U ,
instead of performing MA-Ordering we expand W to W ∪ {v} for v ∈ V \W if b(v) ≥ δ.
When W can not be expanded in such a way, the current W is a cut of capacity less than
nδ in Nϕ. Then we replace δ by bδ/2c and continue the algorithm with the current W and
new δ. We repeat this process until δ = 1. Other part of the scaling algorithm is exactly
the same as our original one. The scaling algorithm requires O(mn logU) time without
using sophisticated data structures such as the Fibonacci heap. This basic scaling version
is suggested in [5].

We can further consider a modification of the scaling algorithm as follows. Suppose that
in a current scaling phase with parameter δ we cannot expand W . Then, instead of putting
δ ← bδ/2c, we let γ = max{b(v) | v ∈ V \W} and put δ ← max{bσγc, 1}, where σ is an
appropriately chosen constant such that 0 < σ < 1. We continue the algorithm with current
W and updated δ, and the algorithm terminates after finishing a scaling phase with δ = 1.

If we put σ = 1 in the modified scaling version of our algorithm, we get an algorithm
without explicit scaling. This algorithm can be regarded as a modification of our MA-
ordering algorithm without using the Fibonacci heap.

It should also be noted that while expanding W , as soon as we get b(s−) ≥ δ, we choose
s− as a vertex to be added to W . The idea can also be incorporated into our original MA
ordering algorithm as follows. If we have min{b(v) | v ∈ W \{s+}} ≤ b(s−), then we should
choose s− and finish MA-Ordering.

5. Computational Results

In this section we describe computational results on our algorithms compared with Dinitz’s
algorithm and Goldberg and Tarjan’s.

5.1. Computional setup

We use a DELL Precision Workstation 330 with an Intel Pentium 4, CPU 1.80GHz, 512
megabytes of memory and running Linux RedHat version 2.4.7. All programs are written
in C language and compiled with gcc using the -O3 optimization option. Program DF
implements Dinitz’s algorithm, Program H PRF Goldberg and Tarjan’s algorithm using
highest label first criterion, and Program Q PRF Goldberg and Tarjan’s algorithm using a
queue to select active vertices. The three programs are the same as used by Cherkassky and
Goldberg in their paper [2].

Employing the adjacency list representation of input graphs, we implemented both the
original version of our algorithm using MA orderings and its scaling versions. We denote by
FMA the program of the original version of our algorithm, which uses the Fibonacci heap to
select vertices in MA orderings. Programs FS, FS1/2, and FS4/5 are the scaling versions:
the first (FS) replaces δ as δ ← bδ/2c and the others as δ ← max{bσγc, 1} with σ = 1/2 for
FS1/2, σ = 4/5 for FS4/5, and σ = 1 for FS1.

c© Operations Research Society of JapanJORSJ (2003) 46-3



New Maximum Flow Algorithms 247

All the running times reported here are in seconds, and we only report the user CPU
time, excluding the time required for inputs and outputs. We generated five instances for
each problem family of specified size, using different random seeds. Each number shown in
the figures is the averaged time over five runs.

5.2. Problem instances

We used the generator genrmf available from DIMACS Challenge [12] for creating networks
based on random seeds that are suggested by DIMACS Core Experiments [12].

The Genrmf family: Each generated network has b grid-like frames of size (a× a).
The number of vertices is a2b and that of arcs 5a2b − 4ab − a2. All vertices in each
frame are connected to its grid neighbors and each vertex is connected by an arc to
a vertex randomly chosen from the next frame. Arc capacities within a frame are
c2 × a × a and those between frames are randomly chosen integers from the range
[c1, c2]. In our case we set c1 = 1 and c2 = 100. The source vertex is in a corner of
the first frame, and the sink is in a corner of the last frame. We used genrmf to
produce two kinds of networks as follows:

• Genrmf-long. The number of vertices of a generated graph is n = 2x. The
parameters are a = 2x/4 and b = 2x/2.

• Genrmf-wide. The number of vertices of a generated network is n = 2x. The
parameters are a = 22x/5 and b = 2x/5.

5.3. Experiments

As shown in Figures 1 and 2, we compared different versions of our algorithm on networks
of the Genrmf-long and Genrmf-wide families.

Running time (sec)
n m FMA FS FS1/2 FS4/5 FS1
4096 18368 0.374 0.164 0.164 0.130 0.140
7371 33498 0.866 0.400 0.418 0.338 0.332

15488 71687 2.970 1.280 1.468 1.034 1.122
30589 143364 7.848 3.684 3.852 2.654 2.784
65536 311040 27.830 11.162 12.636 9.296 8.958

130682 625537 76.736 32.108 37.136 25.394 22.798
270848 1306607 239.912 104.212 122.786 78.240 71.144

Figure 1: Behaviors of our algorithms on Genrmf-long family data.

We see from Figures 1 and 2 that the modified implicit scaling version FS1 runs faster
than other variants of our algorithm. Our MA-ordering algorithm shows rather poor per-
formance but there is not very substantial difference in efficiency among the variants.

Next, we compared our modified implicit scaling version FS1 with Dinitz’s and Goldberg
and Tarjan’s algorithms on networks of the Genrmf-long and Genrmf-wide families. Here,
we made computational experiments for two variants of the Goldberg-Tarjan push-relabel
method. One, denoted by H PRF, uses the highest label first criterion and the other, denoted
by Q PRF, uses a queue to select active vertices. Except for our algorithms, all implemen-
tations were done by the programs due to Cherkassky/Goldberg that could be downloaded
from Goldberg’s site. Additional information can be found in Cherkassky and Goldberg’s
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Running time (sec)
n m FMA FS FS1/2 FS4/5 FS1
3920 18256 4.654 1.500 1.790 1.182 0.910
8214 38813 18.656 7.068 8.658 5.526 4.262

16807 80262 72.266 29.948 32.366 23.062 17.528
32768 157696 252.964 104.222 112.100 79.328 61.194
65025 314840 929.442 363.894 402.184 285.014 224.758

123210 599289 3184.632 1242.924 1361.766 997.506 745.964
259308 1267875 12430.902 4833.230 4800.926 3628.004 2844.520

Figure 2: Behaviors of our algorithms on Genrmf-wide family data.

paper [2]. Figure 3 shows results for the Genrmf-long family. Our algorithm FS1 was faster
than Dinitz’s algorithm but was slower than Goldberg and Tarjan’s. The results for the
Genrmf-wide family are shown in Figure 4. Our algorithm showed poor performance on this
family data.
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Running time (sec)
n m log2 U FS1 DF Q PRF H PRF
4096 18368 12 0.140 0.162 0.024 0.008
7371 33498 12 0.332 0.484 0.062 0.018

15488 71687 13 1.122 2.046 0.230 0.058
30589 143364 14 2.784 5.460 0.540 0.106
65536 311040 14 8.958 20.432 1.376 0.238

130682 625537 15 22.798 61.246 3.378 0.820
270848 1306607 15 71.144 203.572 8.902 2.596

Figure 3: Computational results on Genrmf-long family data.
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n m log2 U FS1 DF Q PRF H PRF
3920 18256 16 0.910 0.264 0.062 0.046
8214 38813 17 4.262 0.996 0.256 0.138

16807 80262 17 17.528 3.768 0.840 0.416
32768 157696 18 61.194 11.304 1.948 1.018
65025 314840 19 224.758 34.418 5.826 2.786

123210 599289 20 745.964 85.790 14.974 7.586
259308 1267875 21 2844.520 291.006 40.858 19.380

Figure 4: Computational results on Genrmf-wide family data.

6. Concluding Remarks

We have proposed new polynomial-time maximum flow algorithms by MA orderings and
scaling and examined behaviors of the proposed algorithms by computational experiments.
In our proposed algorithms each flow augmentation is carried out by finding a flow (or a
multiple-path) in a residual graph, whereas standard flow algorithms except for push-relabel
methods adopt the augmenting single-path approach. This feature is interesting in its own
right. Furthermore, our computational results showed that ours ran faster than Dinitz’s for
the generated Genrmf-long family data. Our proposed algorithms thus seem to be worth
further investigation.
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