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Abstract This paper considers a FIFO single-server queue with independent and homogeneous sources.
Each source generates exactly one message every interval of fixed length. Each message is then divided into
a constant number of fixed-size cells and these cells arrive to the queue back to back as if they form a train
of cells. We call this arrival process clustered periodic arrivals. The queue with clustered periodic arrivals
is an obvious generalization of

∑
D/D/1 queue which corresponds to the case that each message consists

of only one cell. This paper derives the stationary probability distributions of sojourn times of respective
cells in a message. An interesting feature of these sojourn time distributions is that they are not continuous
functions of time, but they have masses at multiples of the cell transmission time. This paper also derives
the joint probability distribution of differences between sojourn times of successive cells in a message and
the mean waiting times of respective cells in a message. At last, the overall mean waiting time in the queue
with clustered periodic arrivals is compared with those in the corresponding queues with dispersed periodic
arrivals and periodic batch arrivals, and the efficiency of dispersing cells is quantitatively shown by simple
formulas.
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1. Introduction

ATM is considered as one of the most promising transfer technologies for implementing
Broadband ISDN that provides service to such diverse traffic as video, still image, voice and
data. In ATM, information flow is organized into fixed-size cells. CBR is one of service
classes supported by ATM, where CBR sources generate bit streams at a constant rate. For
example, video with fixed rate encoders and coding voice result in CBR traffic streams. Thus
the performance of multiplexers with CBR traffic streams has been studied extensively.

So far, queues with the superposition of periodic arrival processes have been studied
in a large number of research papers (see [9] and references therein). In particular, an
algorithmic solution to the complementary distribution of queue length in the

∑
D/D/1

queue was derived in [6], where all sources are independent and homogeneous and the
number of sources is fixed. In [5] and [16], the steady-state delay distributions were derived
in a discrete-time and continuous-time

∑
D/D/1 queues, respectively. In [10], an analytical

approach using the Ballot Theorems was shown to obtain steady-state delay distributions
both in a discrete-time and continuous-time

∑
D/D/1 queues. Note that in those papers,

each source is assumed to generate cells one by one every time interval of fixed length.

According to a recent report on monitoring of CBR traffic generated by a CBR MPEG
encoder, the cell stream generated by the CBR MPEG encoder turns not to be a CBR in
cell-level, but it is a clustered cell stream at a constant rate [13]. More precisely, the CBR
MPEG encoder generates eight cells (corresponding to the size of PDU of the upper layer)
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Figure 1: Cell generation epochs from a CBR MPEG encoder.

back to back at full rate every interval of fixed length (see Figure 1). Such a feature may
be found in cell-level traffic of other streaming applications.

In this paper, we call clustered cells corresponding to a PDU of the upper layer a message
and the arrival pattern in cell level clustered periodic arrivals. For this kind of arrivals, of
particular interest is the length of time from a message generation epoch (i.e., a generation
epoch of the first cell in a message) to the end of the last cell’s transmission in the message.
Cidon et al. [4] found the stationary probability distributions of unfinished work for queues
with discrete-time clustered periodic arrivals and with fluid clustered periodic arrivals. Note
that from those results, we can obtain only the stationary probability distribution of sojourn
times of the first cells in messages (or the first part of fluid messages). Related work is also
found in [1], [2], [3], [7], [8], [9], [12], [15] and [17], where each source is allowed to generate
more than one cell every time interval of fixed length.

We consider a continuous-time single-server FIFO queue with independent and homo-
geneous clustered periodic arrivals. Note that our model is not a fluid model but a model
with instantaneous arrivals, and therefore it is an obvious generalization of

∑
D/D/1 queue

which corresponds to the case that each message consists of only one cell. We obtain explicit
formulas for the probability distributions of sojourn times of respective cells in a message.
The message-level performance, which is important in dimensioning network resources, is
then obtained by adding the constant lag (i.e., time interval between generation epochs of
the first and last cells in a message) to the sojourn time of the last cell. As by-products, the
stationary probability distributions of the amount of unfinished work and the queue length
are also obtained. An interesting feature of the sojourn time distributions of respective cells
in a message is that they are not continuous functions of time, but they have masses at
multiples of the cell transmission time.

Moreover we obtain the joint probability distribution of differences between sojourn times
of successive cells in a message, and using this result we derive the explicit expressions for
the mean waiting times of respective cells. Finally, We will compare the overall mean
waiting time of the queue with clustered periodic arrivals with those in the corresponding
queues with dispersed periodic arrivals [9] and periodic batch arrivals, and the efficiency of
dispersing cells is quantitatively shown by simple formulas.

The rest of this paper is organized as follows. In section 2, we describe the mathematical
model. In section 3, we derives the probability distributions of sojourn times of respective
cells. In section 4, we obtain the joint probability generating function of the distributions
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Figure 2: Original system.

of differences of sojourn times of successive cells. Finally, in section 5, we derive the overall
mean waiting time and compare it with those in the corresponding systems with dispersed
periodic arrivals and periodic batch arrivals.

2. Model and Equivalent Systems

2.1. Model description

We consider a work-conserving single-server queue fed by K + 1 (K ≥ 0) independent
and homogeneous sources labeled 0 to K. Each source generates messages of fixed length
periodically with period of length T . We assume that source j (j = 0, . . . , K) generates
messages at time τj, τj±T, τj±2T, . . ., where τj’s are independent and identically distributed
according to a uniform distribution in interval [0, T ). Each message is then divided into
M + 1 (M ≥ 0) cells of fixed length. When a message is generated at time t, the ith
(i = 1, . . . , M + 1) cell in the message arrives to the queue at time t + i− 1 (see Figure 2).
The queue has a buffer of infinite capacity, so that no cell is lost. Cells are served by a
single server on an FIFO basis. Service times of cells are constant and are chosen as a unit
of time. Because the amount of work brought into the system during any interval of length
T is equal to (K + 1)(M + 1), we assume that

(K + 1)(M + 1) ≤ T, (1)

so that the system is stable.

Remark 1 When the queue is stable, the maximum queue length is equal to (M + 1)K + 1
cells, so that no cells are lost if the capacity of the buffer is not less than (M +1)K +1 cells.

We define Ut as the amount of unfinished work at time t. The amount Ut of unfinished
work is decreasing at rate 1 while Ut > 0 and Ut has an upward jump by 1 when a cell
arrives. We assume that Ut is right-continuous and has left-hand-side limits. Thus when a
cell arrives at time t, Ut includes the service time of this cell, so that Ut ≥ 1.

Let A(x, y], A[x, y] and A(x, y) be the number of cells arriving in interval (x, y], [x, y]
and (x, y), respectively. We now assume that the queueing process Ut begins at time −τ ∗

(τ ∗ > 0) with U−τ∗ = 0. We then have [4]

Ut = max
0≤u≤t+τ∗

{A(t− u, t]− u} , t ≥ −τ ∗. (2)

Proposition 1 Suppose the stability condition (1) holds and U−τ∗ = 0. Then Ut+T = Ut

for all t ≥ −τ ∗ + T .
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Proof. Substituting t in (2) by t + T , we obtain for all t ≥ −τ ∗ + T ,

Ut+T = max
0≤u≤t+τ∗+T

(A(t + T − u, t + T ]− u)

= max
{

max
0≤u≤t+τ∗

(A(t + T − u, t + T ]− u), max
t+τ∗≤u≤t+τ∗+T

(A(t + T − u, t + T ]− u)
}

= max
{

max
0≤u≤t+τ∗

(A(t− u, t]− u), max
t+τ∗−T≤u′≤t+τ∗

(A(t− u′, t + T ]− u′ − T )
}

, (3)

where we use the periodicity A(t− u, t] = A(t + T − u, t + T ] in the last equality. Note here
that

max
t+τ∗−T≤u′≤t+τ∗

(A(t− u′, t + T ]− u′ − T )

= max
t+τ∗−T≤u≤t+τ∗

(A(t− u, t]− u + A(t, t + T ]− T )

≤ max
t+τ∗−T≤u≤t+τ∗

(A(t− u, t]− u)

≤ max
0≤u≤t+τ∗

(A(t− u, t]− u),

where the first inequality follows from the stability condition A(t, t+T ] = (K+1)(M+1) ≤ T
(see (1)). It then follows from (3) that

Ut+T = max
0≤u≤t+τ∗

(A(t− u, t]− u) = Ut,

for all t ≥ −τ ∗ + T , which completes the proof. 2

Because K + 1 sources are independent and homogeneous, we focus on the sojourn time
distribution of the (i + 1)st (i = 0, . . . , M) cells in messages generated by source 0. To do
so, we shift the time axis by τ0 in such a way that source 0 generates messages at time
0,±T,±2T, . . .. Further, we assume that U−τ∗ = 0 for some τ ∗ ≥ 2T in the shifted time
axis. It is easy to see from Proposition 1 that the system is periodic after epoch −τ ∗ + T
(≤ −T ) when the stability condition (1) holds. Thus the sojourn times for the (i + 1)st
cells is equivalent to the amount Ui of unfinished work at time i because cells are served on
a FIFO basis and Ut is assumed to be right-continuous.

2.2. Equivalent systems

To obtain the probability distribution of the amount Ui (i = 0, . . . , M) of unfinished work
at time i in the original system, we follow an idea in [4]. Namely, we introduce an equivalent
system for the (i+1)st cells (i = 0, . . . , M) which is also called system Ei in short. In system
Ei (i = 0, . . . , M), nothing is changed except that all cells in messages generated in interval
(−τ ∗, i−M ] in the original system arrive at the same time when the first cells arrive, i.e.,
batch arrivals (see Figure 3). Note that arrival epochs of cells in messages generated after
time i−M in system Ei are identical to those in the original system.

We define U
(i)
t (i = 0, . . . , M) as the amount of unfinished work at time t in the equivalent

system Ei for the (i + 1)st cells. Let A(i)(x, y], A(i)[x, y] and A(i)(x, y) denote the number
of cells arriving in interval (x, y], [x, y] and (x, y), respectively, in system Ei. We then have

U
(i)
t = max

0≤u≤t+τ∗

(
A(i)(t− u, t]− u

)
, t ≥ −τ ∗. (4)

Note here that
A(i)(−τ ∗, t] = A(−τ ∗, t], t ≥ i. (5)
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Figure 3: System Ei: Equivalent system for the (i + 1)st cells.

Proposition 2 The amount U
(i)
i (i = 0, . . . , M) of unfinished work at time i in the equiv-

alent system for the (i + 1)st cells is identical to the amount Ui of unfinished work at time
i in the original system.

Proof. To prove the theorem, we first consider the corresponding system with batch arrivals,
where it is empty at time −τ ∗, all messages are generated at the same time as in the original
system and M+1 cells in each message simultaneously arrive to the system when the message
is generated. Let C(x, y] denote the number of messages generated in interval (x, y]. We

define U
(B)
t as the amount of unfinished work at time t in the corresponding system with

batch arrivals. We then have

U
(B)
t = max

0≤u≤t+τ∗
((M + 1)C(t− u, t]− u) , t ≥ −τ ∗. (6)

Note that U
(i)
t = U

(B)
t (i = 0, . . . , M) for t ∈ [−τ ∗, i − M ] because A(i)(t − u, t] = (M +

1)C(t− u, t] for all t ∈ (−τ ∗, i−M ] and u ∈ (0, t + τ ∗], and in general,

Ut ≤ U
(i)
t ≤ U

(B)
t , t ≥ −τ ∗, i = 0, . . . , M, (7)

because A(t− u, t] ≤ A(i)(t− u, t] ≤ (M + 1)C(t− u, t] for all t > −τ ∗ and u ∈ (0, t + τ ∗].
It is easy to see from (7) that if U

(B)
t = 0, Ut = U

(i)
t = 0. Conversely, if Ut = 0, this

implies that all messages generated in (−τ ∗, t] have been already served before time t, so

that U
(i)
t = U

(B)
t = 0. Thus we have the following lemma.

Lemma 1 Both the original system and the equivalent system Ei for the (i + 1)st cells are

busy if and only if U
(B)
t > 0.

When the stability condition (1) holds, it is easy to see that there exists a time instant

t, at which U
(B)
t− = 0 and U

(B)
t = M +1 > 0, in any interval of length T beginning after time

−T (≥ −τ ∗ + T ). Because a message from source 0 is generated at time 0, it follows that

U
(B)
t > 0 for all t ∈ [0, i]. Thus there exists a time instant t∗ ∈ [i− T, 0) such that U

(B)
t∗− = 0

and U (B)
τ > 0 for all τ ∈ [t∗, i]. Thus it follows from Lemma 1 that both the original system

and system Ei are busy in [t∗, i]. Further, Lemma 1 (or (7)) implies that Ut∗− = U
(i)
t∗− = 0.

Therefore we obtain

Ui = A[t∗, i]− (i− t∗), (8)

U
(i)
i = A(i)[t∗, i]− (i− t∗). (9)
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Note here that Ut∗− = U
(i)
t∗− = 0 implies that all cells arriving in interval (−τ ∗, t∗) have

already been served before time t∗ both in the original system and the equivalent system Ei

for the (i + 1)st cells. Thus
A(−τ ∗, t∗) = A(i)(−τ ∗, t∗),

from which and (5), it follows that

A[t∗, i] = A(i)[t∗, i]. (10)

Finally, with (8), (9) and (10), we have

Ui = A[t∗, i]− (i− t∗)

= A(i)[t∗, i]− (i− t∗) = U
(i)
i ,

which complete the proof. 2

3. Sojourn Time Distributions

In the preceding section, we showed that sojourn times of the (i + 1)st cells have the same

probability distribution as U
(i)
i does. Thus, in this section, we consider the amount U

(i)
i

of unfinished work at time i in the equivalent system for the (i + 1)st cells to obtain the
sojourn time distribution of the (i + 1)st cells in the original system.

3.1. Equation for U
(i)
i

Let B(x, y] denote the number of messages arriving in interval (x, y] from sources other than
source 0. We define G(x, y] as the length of an interval from time x to the first generation
epoch of messages in interval (x, y].

G(x, y] = arg min{q ∈ (x, y] | B(x, q] > 0} − x.

Let G(x, y] = y − x if B(x, y] = 0.

Theorem 1 U
(i)
i (i = 0, . . . , M) is given by

U
(i)
i = max

{
G(i−M, 0], max

0≤u≤T−M
((M + 1)B(i−M − u, i−M ]− u)

}

+
M∑

k=1

kB(i− k, i− k + 1] + i−M + 1. (11)

Proof. Setting t = i in (4) yields

U
(i)
i = max

0≤u≤i+τ∗

(
A(i)(i− u, i]− u

)

= max
{

max
0≤u≤T

(
A(i)(i− u, i]− u

)
, max
T≤u≤i+τ∗

(
A(i)(i− u, i]− u

)}
. (12)

Note here that τ ∗ ≥ 2T and according to the same argument as in the proof of Proposition
1,

max
T≤u≤i+τ∗

(
A(i)(i− u, i]− u

)

= max
0≤u≤i+τ∗−T

(
A(i)(i− T − u, i]− u− T

)

= max
0≤u≤i+τ∗−T

(
A(i)(i− T − u, i− u]− T + A(i)(i− u, i]− u

)

≤ max
0≤u≤i+τ∗−T

(
A(i)(i− u, i]− u

)

= max
{

max
0≤u≤T

(
A(i)(i− u, i]− u

)
, max
T≤u≤i+τ∗−T

(
A(i)(i− u, i]− u

)}
.
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Thus when i + τ ∗ = kT + x for some positive integer k and 0 ≤ x < T , we repeat the above
procedure and obtain

max
T≤u≤i+τ∗

(
A(i)(i− u, i]− u

)
≤ max

{
max

0≤u≤T

(
A(i)(i− u, i]− u

)
, max
0≤u≤x

(
A(i)(i− u, i]− u

)}

= max
0≤u≤T

(
A(i)(i− u, i]− u

)
. (13)

Therefore we obtain from (12) and (13)

U
(i)
i = max

0≤u≤T

{
A(i)(i− u, i]− u

}

= max
{

max
0≤u≤M

(
A(i)(i− u, i]− u

)
, max
M≤u≤T

(
A(i)(i− u, i]− u

)}

= max
{

max
0≤u≤M

(
A(i)(i− u, i]− u

)
,

max
0≤u≤T−M

(
A(i)(i−M − u, i−M ]− u + A(i)(i−M, i]−M

)}
. (14)

We now consider the first component max0≤u≤M

(
A(i)(i− u, i]− u

)
on the right hand

side of (14). Let g(i)(u) = A(i)(i − u, i] − u for 0 ≤ u ≤ M . Suppose cells arrive at i − tj
(j = 0, . . . , m) during interval (i−M, i], where tj−1 < tj (j = 1, . . . , m). Note that t0 = 0 and
tm = M−G(i−M, 0]. Because M+1 cells arrive one by one with intervals of length one once
a message is generated, we have tj−tj−1 ≤ 1 for all j = 1, . . . , m. Further each cell brings one
unit of unfinished work into the system. Thus the sequence g(i)(t0+), g(i)(t1+), . . . , g(i)(tm+)
is nondecreasing, while g(i)(u) is a locally decreasing function of u in interval (tj−1, tj] (j =
1, . . . , m). Further g(i)(u) is a decreasing function of u in interval (tm,M ]. As a result, the
first component in (14) attains its maximum at u = (M −G(i−M, 0])+. Thus we have

max
0≤u≤M

(
A(i)(i− u, i]− u

)
= A(i)[i−M + G(i−M, 0], i]− (M −G(i−M, 0])

= A(i)(i−M, i]− (M −G(i−M, 0]), (15)

where the second equality follows from the fact that there are no arrivals in (i−M, i−M +
G(i−M, 0]). Note also that

A(i)(i−M − u, i−M ] = (M + 1)B(i−M − u, i−M ], u ∈ [0, i−M + τ ∗], (16)

A(i)(i−M, i] =
M∑

k=1

kB(i− k, i− k + 1] + (i + 1), (17)

where cells arriving from source 0 contribute to the last term, i + 1, in the second equation.
Thus it follows from (14), (15), (16) and (17) that

U
(i)
i = max

{(
M∑

k=1

kB(i− k, i− k + 1] + (i + 1)− (M −G(i−M, 0])

)
,

max
0≤u≤T−M

(
M∑

k=1

kB(i− k, i− k + 1] + (i + 1)−M

+ (M + 1)B(i−M − u, i−M ]− u)

}
,

which is equivalent to (11). 2
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Figure 4: Events I1(k1), I2(k2) and I3(k3).

3.2. Distribution function of U
(i)
i

In this subsection, we derive the distribution function of the amount U
(i)
i of unfinished work

at time i in the equivalent system for the (i+1)st cells. Let I1(k1), I2(k2) and I3(k3) denote
the events B(i − T, i − M ] = k1, B(i − M, 0] = k2 and B(0, i] = k3, respectively. See
Figure 4. By definition, k1 + k2 + k3 = B(i − T, i] = K, B(i −M, 0] = k2 = 0 for i = M ,
and B(0, i] = k3 = 0 for i = 0.

We first consider the distribution function of U
(i)
i by conditioning those three events.

That is,

Pr
(
U

(i)
i ≤ v

)
=

∑

k1+k2+k3=K
k1,k2,k3≥0

Pr(I1(k1), I2(k2), I3(k3)) Pr
(
U

(i)
i ≤ v | I1(k1), I2(k2), I3(k3)

)
,

(18)
where Pr(I1(k1), I2(k2), I3(k3)) follows a multinomial distribution:

Pr(I1(k1), I2(k2), I3(k3)) =
K!

k1!k2!k3!

(
T −M

T

)k1 (
M − i

T

)k2 (
i

T

)k3

,

because message generation epochs of K sources are independent and identically distributed
according to a uniform distribution over any interval of length T .

It follows from (11) that the event U
(i)
i ≤ v happens if and only if





G(i−M, 0] +
M∑

k=1

kB(i− k, i− k + 1] + i−M + 1 ≤ v,

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u) +
M∑

k=1

kB(i− k, i− k + 1] + i−M + 1 ≤ v,

or equivalently,





M∑

k=1

kB(i− k, i− k + 1] ≤ j
(i)

(v −G(i−M, 0]) ,

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u) ≤ v + M − i− 1−
M∑

k=1

kB(i− k, i− k + 1],

(19)
where

j
(i)

(x) = bxc+ M − i− 1, (20)

and bxc represents the maximum integer which is not greater than x.
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We define q(i)(j | k2, k3, w) and R(i)(y | k1) as

q(i)(j | k2, k3, w)

= Pr

(
M∑

k=1

kB(i− k, i− k + 1] = j

∣∣∣∣∣ I2(k2), I3(k3), G(i−M, 0] = w

)
, (21)

R(i)(y | k1) = Pr
(

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u) ≤ y

∣∣∣∣ I1(k1)
)

. (22)

Note here that

Pr

(
M∑

k=1

kB(i− k, i− k + 1] = j

∣∣∣∣∣ I1(k1), I2(k2), I3(k3), G(i−M, 0] = w

)

= Pr

(
M∑

k=1

kB(i− k, i− k + 1] = j

∣∣∣∣∣ I2(k2), I3(k3), G(i−M, 0] = w

)

= q(i)(j | k2, k3, w),

Pr
(

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u) ≤ y

∣∣∣∣ I1(k1), I2(k2), I3(k3)
)

= Pr
(

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u) ≤ y
∣∣∣∣ I1(k1)

)

= R(i)(y | k1).

Thus the two probabilities q(i)(j | k2, k3, w) and R(i)(y | k1) are conditionally independent
given Ij(kj) (j = 1, 2, 3) and G(i−M, 0] = w. Note here that (22) is rewritten to be

R(i)(y | k1) = Pr((M + 1)B(i−M − u, i−M ]− u ≤ y, ∀u ∈ [0, T −M ] | I1(k1)). (23)

In what follows, an empty sum is defined as zero.

Lemma 2 R(i)(y | k1) is given by

R(i)(y | k1) = 1−
k1∑

j=b y
M+1c+1

(T −M)− (M + 1)k1 + y

(T −M)− (M + 1)j + y

·
(
k1

j

) (
(M + 1)j − y

T −M

)j (
1− (M + 1)j − y

T −M

)k1−j

. (24)

The proof is given in Appendix A.

Remark 2 Consider the special case of M = 0 and k1 = K for i = 0 in (24).

R(0)(y | K) =
K∑

j=byc+1

T + y −K

T + y − j

(
K

j

) (
j − y

T

)j (
1− j − y

T

)K−j

. (25)

Note that R(0)(y | K) for M = 0 represents the probability distribution function of the
amount of unfinished work in the conventional

∑
D/D/1 queue with K sources of period

T , which is considered in section 3-C of [10]. Conversely, (24) is obtained by substituting
y/(M + 1), k1 and (T − M)/(M + 1) for y, K and T , respectively, in (25). Thus (24)
itself is considered as the the distribution function of the amount of unfinished work in the
conventional

∑
D/D/1 queue with a particular setting of parameters.
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In what follows, we derive the conditional distribution Pr(U
(i)
i ≤ v | I1(k1), I2(k2), I3(k3))

by considering two cases, k2 = 0 and k2 ≥ 1, separately.
Lemma 3 Pr(U

(i)
i ≤ x | I1(k1), I2(0), I3(k3)) is given by

Pr(U
(i)
i ≤ v | I1(k1), I2(0), I3(k3)) =

bvc−1∑

j=0

q(i)(j | 0, k3,M−i)R(i)(v+M−i−1−j | k1). (26)

Proof. Note first that when the event I2(0) happens, B(i − M, 0] = 0, so that the first
arrival in (i − M, 0] occurs from source 0 at time 0. Thus G(i − M, 0] = M − i. It then
follows from (19) that

Pr
(
U

(i)
i ≤ v

∣∣∣ I1(k1), I2(0), I3(k3)
)

= Pr

(
M∑

k=1

kB(i− k, i− k + 1] ≤ j
(i)

(v − (M − i)) ,

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u)

≤ v + M − i− 1−
M∑

k=1

kB(i− k, i− k + 1]
∣∣∣∣ I1(k1), I2(0), I3(k3)

)

=
j
(i)

(v−M+i)∑

j=0

q(i)(j | 0, k3,M − i) Pr
(

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u)

≤ v + M − i− 1− j
∣∣∣∣ I1(k1)

)
.

Thus (26) follows from (20), (22) and the above equation. 2

Lemma 4 For k2 ≥ 1, Pr(U
(i)
i ≤ v | I1(k1), I2(k2), I3(k3)) is given by

Pr
(
U

(i)
i ≤ v | I1(k1), I2(k2), I3(k3)

)

=
M−i−1∑

l=0

k2∑

k4=1

k2!

k4!(k2 − k4)!

(M − i− l − 1)k2−k4

(M − i)k2

·
{ bvc−l+M−i−2∑

j=k4(M−l)

q(i) (j − k4(M − l) | k2 − k4, k3, l + 1, ) R(i)(v + M − i− 1− j | k1)

+
[
1− (1− v + bvc)k4

]
q(i) (bvc − (k4 − 1)(M − l)− i− 1 | k2 − k4, k3, l + 1)

·R(i)(v − bvc+ l | k1)

}
. (27)

Proof. Let f(y | k2) denote the conditional probability density function of G(i−M, 0] given
I2(k2) for k2 ≥ 1. Because k2 arrivals are independent and uniformly distributed over the
interval (i−M, 0], we have

f(y | k2) =
k2

M − i

(
M − i− y

M − i

)k2−1

, 0 ≤ y ≤ M − i.

To obtain Pr(U
(i)
i ≤ v | I1(k1), I2(k2), I3(k3)), let I4(k4) denote the following event:

B
(
i−M + G(i−M, 0], i−M + dG(i−M, 0]e

]
= k4 − 1,
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0 ii−M
Source 0

G(i−M, 0]

i− T

l x

B(i−M + l, i−M + l + 1] = k4

B(i− T, i−M ] = k1

B(i−M + l + 1, 0] = k2 − k4

B(0, i] = k3

Figure 5: Events Ii(ki) (i = 1, . . . , 4) in the case k2 ≥ 1.

where dye represents the minimum integer which is not smaller than y. Suppose the interval
(i −M, 0] is divided into M − i slots of length one. Then the event I4(k4) implies that k4
messages arrive in the first slot among those having message arrivals. Thus, given the event
I2(k2), we have 1 ≤ k4 ≤ k2, and the number of messages arriving in the interval from the
end of the first slot with message arrivals to time 0 is given by k2 − k4. See Figure 5.

We now divide G(i−M, 0] into the integer part l and the decimal part x, i.e., G(i−M, 0] =
l + x with 0 ≤ x < 1. Then, using (19) and conditioning events G(i −M, 0] = l + x and
I4(k4), we obtain

Pr
(
U

(i)
i ≤ v

∣∣∣ I1(k1), I2(k2), I3(k3)
)

=
M−i−1∑

l=0

∫ 1

0
dxf(l + x | k2)

k2∑

k4=1

Pr (I4(k4) | I2(k2), G(i−M, 0] = l + x)

· Pr

(
k4(M − l) +

M−l−1∑

k=1

kB(i− k, i− k + 1] ≤ j
(i)

(v − (l + x)) ,

max
0≤u≤T−M

((M + 1)B(i−M − u, i−M ]− u)

≤ v + M − i− 1− k4(M − l)−
M−l−1∑

k=1

kB(i− k, i− k + 1]

∣∣∣∣ I1(k1), I2(k2), I3(k3), I4(k4), G(i−M, 0] = l + x

)
.

Further, by conditioning the value of
∑M−l−1

k=1 kB(i− k, i− k + 1] and using (21) and (22),
we rewrite the above equation to be

Pr
(
U

(i)
i ≤ v

∣∣∣ I1(k1), I2(k2), I3(k3)
)

=
M−i−1∑

l=0

∫ 1

0
dxf(l + x | k2)

k2∑

k4=1

Pr (I4(k4) | I2(k2), G(i−M, 0] = l + x)

·
j
(i)

(v−(l+x))∑

j=k4(M−l)

q(i) (j − k4(M − l) | k2 − k4, k3, l + 1) R(i)(v + M − i− 1− j | k1). (28)

Note here that

Pr (I4(k4) | I2(k2), G(i−M, 0] = l + x)

= Pr(B(i−M + l + x, i−M + l + dxe] = k4 − 1 | B(i−M + l + x, 0] = k2 − 1)

=
(k2 − 1)!

(k4 − 1)!(k2 − k4)!

( dxe − x

M − i− l − x

)k4−1 (
M − i− l − dxe
M − i− l − x

)k2−k4

,
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and

j
(i)

(v − l − x) =





j
(i)

(v − l), x ≤ v − bvc,
j
(i)

(v − l − 1), x > v − bvc.
We define x(i)(v) as

x(i)(v) = v − bvc. (29)

Then (28) is rewritten to be

Pr
(
U

(i)
i ≤ v

∣∣∣ I1(k1), I2(k2), I3(k3)
)

=
M−i−1∑

l=0

(∫ x(i)(v)

0
+

∫ 1

x(i)(v)

)
dx

k2

M − i

·
k2∑

k4=1

(k2 − 1)!

(k4 − 1)!(k2 − k4)!

(dxe − x

M − i

)k4−1 (
M − i− l − dxe

M − i

)k2−k4

·
j
(i)

(v−l−x)∑

j=k4(M−l)

q(i) (j − k4(M − l) | k2 − k4, k3, l + 1) R(i)(v + M − i− 1− j | k1)

=
M−i−1∑

l=0

k2∑

k4=1

k2!

k4!(k2 − k4)!

(M − i− l − 1)k2−k4

(M − i)k2

·
{ [

1− (1− x(i)(v))k4

] j
(i)

(v−l)∑

j=k4(M−l)

q(i) (j − k4(M − l) | k2 − k4, k3, l + 1)

·R(i)(v + M − i− 1− j | k1) + (1− x(i)(v))k4

·
j
(i)

(v−l−1)∑

j=k4(M−l)

q(i) (j − k4(M − l) | k2 − k4, k3, l + 1) R(i)(v + M − i− 1− j | k1)

}
.

Thus (27) follows from (20), (29) and the above equation. 2

Finally, using (18), Lemmas 3 and 4, we obtain the following theorem.

Theorem 2 Let Si (i = 0, . . . , M) denote a generic random variable representing sojourn
times of the (i + 1)st cells. We then have

Pr(Si ≤ v) =
∑

k1+k2+k3+k4=K
k1,k2,k3≥0,k4≥1

K!

k1!k2!k3!k4!

(T −M)k1

TK

·
M−i−1∑

l=0

{ bvc−l+M−i−2∑

j=k4(M−l)

n(i) (j − k4(M − l) | k2, k3, l + 1)

·R(i)(v + M − i− 1− j | k1)−
[
1− (1− v + bvc)k4

]

· n(i) (bvc − (k4 − 1)(M − l)− i− 1 | k2, k3, l + 1)

·R(i)(v − bvc+ l | k1)

}
+

∑

k1+k3=K
k1,k3≥0

K!

k1!k3!

(T −M)k1

TK

·
bvc−1∑

j=0

n(i)(j | 0, k3,M − i)R(i)(v + M − i− 1− j | k1), (30)
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where R(i)(y | k1) is given in (24), n(i)(j | k2, k3, l) is defined as

n(i)(j | k2, k3, l) = (M − i− l)k2ik3q(i)(j | k2, k3, l), (31)

and they are recursively computed by

n(i)(j | 0, 0, l) =

{
1 (j = 0)
0 (j 6= 0)

, (32)

n(i)(j | k2 + 1, k3, l), =
M−l∑

m=i+1

n(i)(j −m | k2, k3, l), (33)

n(i)(j | k2, k3 + 1, l) =
i∑

m=1

n(i)(j −m | k2, k3, l). (34)

Proof. Recall that Pr(Si ≤ v) = Pr(U
(i)
i ≤ v). Thus we obtain (30) by substituting (26)

and (27) into (18), using (31) and noting with k′2 = k2 − k4

∑

k1+k2+k3=K
k1,k3≥0,k2≥1

K!

k1!k2!k3!

k2∑

k4=1

k2!

k4!(k2 − k4)!
=

∑

k1+k′2+k3+k4=K
k1,k′2,k3≥0,k4≥1

K!

k1!k′2!k3!k4!
.

On the other hand, from (21) and (31), n(i)(j | k2, k3, l) can be regarded as the number of
ways such that

∑M−l
k=1 kB(i− k, i− k + 1] is equal to j given that three events I2(k2), I3(k3)

and G(i−M, 0] = l occur. With this observation, we have (32)-(34). 2

From Theorem 2, we can derive the probability distributions of the amount of unfinished
work and the queue length. Note that the first cells in respective messages from source 0 see
the time average of unfinished work in the system with source 0 removed [18]. On the other
hand, the queue length is uniquely determined by the amount of unfinished work because
service times of all cells are equal to one. Thus we have the following corollary.

Corollary 1 For the system with K sources, the probability distribution function of the
amount of the stationary unfinished work is given by Pr(S0 ≤ v), and the stationary queue
length distribution Pr(L ≤ k) is given by Pr(S0 ≤ k +1) (k = 0, 1, . . . , (M +1)(K− 1)+1),
where L denotes a generic random variable representing the stationary queue length.

Remark 3 Consider the special case of M = 0 (i.e., the conventional
∑

D/D/1) and
Pr(S0 ≤ v). In this special case, the first term on the right hand side of (30) vanishes.
Further in the summation in the second term, only the term for k1 = K and j = 0 remains
because Pr(I3(0)) = 1 and n(j)(0, 0, 0) = 0 for all j ≥ 1. Thus Pr(S0 ≤ v) in (30) is reduced
to R(0)(v − 1 | K). Thus, the sojourn time is given by the sum of the amount of unfinished
work in the system with K sources and the service time in this special case.

For K + 1 = 8, T = 128 and M + 1 = 8, we plot the distribution function Pr(Si ≤ v)
and its complement Pr(Si > v) in Figure 6 (a) and (b), respectively. From Figure 6 (a),
we observe that Pr(Si ≤ v) (i = 1, . . . , M) is a discontinuous function of v. This is due
to the fact that sojourn times of all cells in a message which starts a busy period always
take integer values. Thus the sojourn time distributions of the second to the last cells have
masses at integers. Further, from Figure 6 (b), we observe that the formula in Theorem 2
is numerically stable.
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(a) Probability distribution of S  
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Figure 6: Sojourn time distributions (K + 1 = 8, T = 128 and M + 1 = 8).

4. Joint Distribution of Differences of Sojourn Times

In this section, we consider the joint distribution of the differences of sojourn times Si

(i = 0, . . . , M) of the (i + 1)st cells in a message. Recall that Si = Ui. Thus it follows from
(2) that

Si = Si−1 + A(i− 1, i]− 1, i = 1, . . . , M,

because Ut > 0 for all t ∈ [0,M ]. Let ∆i (i = 1, . . . , M) denote the difference between
sojourn times of the ith and (i− 1)st cells in the message generated at time 0:

∆i = Si − Si−1, i = 1, . . . , M.

We then have

∆i = A(i− 1, i]− 1 = (B(i−M − 1, i] + 1)− 1 = B(i−M − 1, i]. (35)

Thus ∆i (i = 1, . . . , M) takes integer values and 0 ≤ ∆i ≤ K. We define P (z1, . . . , zM) as
the probability generating function of the joint distribution of ∆i (i = 0, . . . , M).

P (z1, . . . , zM) = E
[
z∆1
1 · · · z∆M

M

]
.
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Theorem 3 P (z1, . . . , zM) is given by

P (z1, . . . , zM) =


T − 2M

T
+

1

T

M∑

j=1

j∏

l=1

zl +
1

T

M∑

j=1

M∏

l=j

zl




K

. (36)

Proof. It follows from (35) that

∆i =
i−1∑

k=i−M−1

B(k, k + 1], i = 1, . . . , M.

Thus we have

z∆i
i =

i−1∏

k=i−M−1

z
B(k,k+1]
i ,

from which it follows that

P (z1, . . . , zM) = E




0∏

k1=−M

z
B(k1,k1+1]
1 · · ·

i−1∏

ki=i−M−1

z
B(ki,ki+1]
i · · ·

M−1∏

kM=−1

z
B(kM ,kM+1]
M




= E




−1∏

k=−M

(z1 · · · zM+1+k)
B(k,k+1] ·

M−1∏

k=0

(zk+1 · · · zM)B(k,k+1]


 . (37)

Note here that the probability generating function of the joint distribution of B(k, k + 1]
(k = −M, . . . , M − 1) is given by

E




M−1∏

k=−M

ω
B(k,k+1]
k


 =


T − 2M

T
+

M−1∑

k=−M

ωk

T




K

, (38)

because message generation epochs of sources 1 to K are independent and identically dis-
tributed according to a uniform distribution over any interval of length T . Theorem 3 then
follows from (37) and (38). 2

Corollary 2 The probability mass function of ∆i (i = 1, . . . , M) and its mean are given by

Pr(∆i = j) =

(
K

j

) (
M + 1

T

)j (
1− M + 1

T

)K−j

, j = 1, . . . , K, (39)

E[∆i] =
K(M + 1)

T
, (40)

respectively.

Proof. Setting zi = z for a specific i and zj = 1 for all j 6= i in (36), we have

E
[
z∆i

]
=

(
(M + 1)z + T −M − 1

T

)K

,

from which Corollary 2 follows immediately. 2

5. Mean Waiting Time and Its Comparison to Related Systems

In this section, we first derive an explicit formula for the mean waiting time of the (i + 1)st
cells. Next, we compare the overall mean waiting time with those in the corresponding
systems with dispersed periodic arrivals and with periodic batch arrivals.
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5.1. Mean waiting time

Let Wi (i = 0, . . . , M) denote a generic random variable representing waiting times of the
(i + 1)st cells. Note here that Wi = Si − 1, and Wi = 0 when K = 0. Thus we assume
K ≥ 1 in the rest of this subsection. We define E[W ] as the overall mean waiting time, i.e.,

E[W ] =
1

M + 1

M∑

i=0

E[Wi]. (41)

Theorem 4 When K ≥ 1, the mean waiting time E[Wi] (i = 0, . . . , M) of the (i + 1)st
cells is given by

E[Wi] = E[W ] +
K(M + 1)

T

(
i− M

2

)
, (42)

where the overall mean waiting time E[W ] is given by

E[W ] =
M + 1

2

K−1∑

j=0

K!

j!

(
M + 1

T

)K−j

. (43)

Proof. From (40), we have

E[Wi]− E[W0] = E[Si]− E[S0]

=
i∑

j=1

E[∆j]

=
K(M + 1)

T
i. (44)

It then follows from (41) and (44) that

E[W ] =
1

M + 1

M∑

i=0

(
E[W0] +

K(M + 1)

T
i

)

= E[W0] +
KM(M + 1)

2T
.

Thus substituting E[W ]−KM(M + 1)/(2T ) for E[W0] in (44) and rearranging terms yield
(42).

To show (43), we employ an induction with respect to the number of sources. For
k = 1, . . . , K + 1, let E[Wi | k] (i = 0, . . . , M) and E[W | k] denote the mean waiting time
of the (i + 1)st cells and the overall mean waiting time, respectively, in the system with k
sources. Note that, by definition, E[Wi] = E[Wi | K + 1] and E[W ] = E[W | K + 1]. We
also define E[U | k] (k = 1, . . . , K +1) as the time-average of the amount of unfinished work
in the system with k sources. Because of periodicity of Ut (see Proposition 1), we have

E[U | K + 1] =
1

T

∫ t+T

t
Uudu,

for any t ≥ −τ ∗ + T , where U−τ∗ = 0.
We first observe that the sojourn time of the first cell in a message generated at time t

from a particular source is not affected by cells generated before time t from the same source.
Further the arrival epochs of the first cells are independent and identically distributed
according to a uniform distribution over any interval of length T , while the amount of

c© Operations Research Society of JapanJORSJ (2003) 46-2



236 D. Inoue & T. Takine

Period T

t

x2

x1

x1 + 1/2

x2 + 1/2

Ut

Figure 7: Contribution of respective waiting times to unfinished work.

unfinished work has a period of length T . Thus the first cell in a message from a particular
source sees the time average unfinished work in the system with this source removed [18].
We then have

E[W0 | k + 1] = E[U | k], k = 1, . . . , K. (45)

Next we consider the relationship between the amount of unfinished work and waiting
times of respective cells. It is easy to see from Figure 7 that a customer whose waiting time
is equal to x contributes the amount (x + 1)2/2− x2/2 = x + 1/2 to unfinished work. Thus

E[U | k] =
1

T

M∑

i=0

k(E[Wi | k] +
1

2
)

=
k(M + 1)

T
E[W | k] +

k(M + 1)

2T
, (46)

where we use (41), i.e.,
∑M

i=0 E[Wi | k] = (M + 1)E[W | k]. It then follows from (45) and
(46) that

E[W0 | k + 1] =
k(M + 1)

T
E[W | k] +

k(M + 1)

2T
,

and therefore from (42) with i = 0 and K = k, we obtain

E[W | k + 1] = E[W0 | k + 1] +
kM(M + 1)

2T

=
k(M + 1)

T
E[W | k] +

k(M + 1)2

2T
, k = 1, . . . , K. (47)

Thus (43) is obtained by a straightforward induction with E[W | 1] = 0. 2

5.2. Mean waiting time comparison to related systems

In this subsection, we compare the overall mean waiting time E[W ] to those in the related
queueing systems with K + 1 periodic sources, each of which generates exactly M + 1
cells in any interval of length T . In particular, we consider (i) the corresponding system
with dispersed periodic arrivals, where successive cells from each source are spread with an
equal distance T/(M + 1), and (ii) the corresponding system with periodic batch arrivals

introduced in the proof of Proposition 2. See Figure 8. Let E
[
WD

]
and E

[
WB

]
denote the

overall mean waiting times in the corresponding systems with dispersed periodic arrivals
and periodic batch arrivals, respectively.
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Clustered

Dispersed
M + 1

M + 1

Period T

Period T/(M + 1)

Batch

M + 1M + 1

Figure 8: Clustered periodic, dispersed periodic and periodic batch arrivals.

Theorem 5 E
[
WD

]
and E

[
WB

]
are given in terms of E[W ]:

E
[
WD

]
=

E[W ]

M + 1
, (48)

E
[
WB

]
= E[W ] +

M

2
. (49)

Proof. Note that the system with dispersed periodic arrivals is a special case of M = 0 and
period T/(M + 1) in the system with clustered periodic arrivals. Thus substituting 0 and
T/(M + 1) for M and T , respectively, in (43) yields

E
[
WD

]
=

1

2

K−1∑

j=0

K!

j!

(
M + 1

T

)K−j

. (50)

Thus (48) immediately follows from (43) and (50).

Next we consider E
[
WB

]
. We define E

[
WB

i

]
(i = 0, . . . , M) as the mean waiting time

of the (i + 1)st cells in the corresponding system with periodic batch arrivals. Note here
that

E
[
WB

i

]
= E

[
WB

i−1

]
+ 1, i = 1, . . . , M,

from which it follows that

E
[
WB

]
=

1

M + 1

M∑

i=0

E
[
WB

i

]

=
1

M + 1

M∑

i=0

(
E

[
WB

0

]
+ i

)

= E
[
WB

0

]
+

M

2
. (51)

As in the proof of Theorem 4, we consider E
[
WB

0

]
by an induction with respect to the

number of sources. For k = 1, . . . , K + 1, let E
[
WB

i | k
]

and E
[
UB | k

]
(i = 0, . . . , M)

denote the mean waiting time of the (i + 1)st cells and the time-average of the amount of
unfinished work, respectively, in the corresponding system with periodic batch arrivals when
the system has k sources. Note, by definition, that E

[
WB

i

]
= E

[
WB

i | K + 1
]
. According to
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x

Ut

(M + 1)x + (M + 1)2/2

Period T

t

x + M + 1

Figure 9: Contribution of respective waiting times to unfinished work.

an argument very similar to that in the proof of Theorem 4, we can show that E
[
WB

0 | k + 1
]

is identical to E
[
UB | k

]
. Further, since each batch arrival whose first cell’s waiting time

is equal to x contributes the amount (x + M + 1)2/2 − x2/2 = (M + 1)x + (M + 1)2/2 to
unfinished work (see Figure 9), we have

E
[
WB

0 | k + 1
]

= E
[
UB | k

]

= k

(
(M + 1)E

[
WB

0 | k
]
+

(M + 1)2

2

)/
T

=
k(M + 1)

T
E

[
WB

0 | k
]
+

k(M + 1)2

2T
. (52)

Because the recursion (52) for E
[
WB

0 | k
]

is the same as (47) for E[W | k] and E[W | 1] =

E
[
WB

0 | 1
]

= 0, we obtain E
[
WB

0

]
= E[W ], and from (51), (49) immediately follows. 2

Finally, we consider the mean waiting times E[Wi] (i = 0, . . . , M) and the overall mean
waiting time E[W ] in the limit K → ∞ while fixing ρ = (M + 1)(K + 1)/T < 1. In this
limit, T also goes to infinity, and the queue with clustered periodic arrivals converges to
the M/D/1 queue with clustered arrivals, where the size of a cluster is equal to M + 1. Let
E[W ∗] (resp. E[W ∗

i ] (i = 0, . . . , M)) denote the overall mean waiting time (resp. the mean
waiting time of the (i+ 1)st cells) in the queue with clustered periodic arrivals in this limit.
Then E[W ∗] is obtained by either (48) or (49), because the limits of the mean waiting times
in the corresponding systems are known. For example, the queue with dispersed periodic
arrivals converges to the M/D/1 queue with arrival rate ρ whose mean waiting time is given
by ρ/{2(1 − ρ)} [11]. Further from Theorem 4, we can obtain E[W ∗

i ]. The results are
summarized in the following corollary.

Corollary 3 Suppose ρ = (M + 1)(K + 1)/T < 1. Then E[W ∗] and E[W ∗
i ] (i = 0, . . . , M)

are given by

E[W ∗] =
(M + 1)ρ

2(1− ρ)
,

E[W ∗
i ] = E[W ∗] + ρ

(
i− M

2

)
, i = 0, . . . , M.

A. Proof of Lemma 2

For a fixed t1, we define R(y, t | k) as

R(y, t | k) = Pr (B(t1 − u, t1]− u ≤ y, ∀u ∈ [0, t] | B(t1 − t, t1] = k) .
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Note that R(y, k | t) is equivalent to the probability distribution function of the amount of
unfinished work in the conventional

∑
D/D/1 queue with k sources of period t.

Lemma 5 ([10]) R(y, t | k) is given by

R(y, t | k) = 1−
k∑

j=byc+1

t− k + y

t− j + y

(
k

j

) (
j − y

t

)j (
1− j − y

t

)k−j

. (53)

Recall that

R(i)(y | k1) = Pr((M + 1)B(i−M − u, i−M ]− u ≤ y, ∀u ∈ [0, T −M ] | I1(k1)).

Thus it is easy to see that

R(i)(y | k1) = R

(
y

M + 1
,
T −M

M + 1

∣∣∣∣∣ k1

)
.

Therefore Lemma 2 immediately follows from Lemma 5.
Because Lemma 5 is provided in [10] without proof, we prove it below for completeness.

We first note that

R(y, t | k) = 1− Pr(B(t1 − u, t1] > u + y, ∃u ∈ [0, t] | B(t1 − t, t1] = k)

= 1−
∫ t

0
Pr(arg max{q ∈ [0, t] | B(t1 − q, t1] > q + y} = u | B(t1 − t, t1] = k)du.

Suppose arg max{q ∈ [0, t] | B(t1 − q, t1] > q + y} = u for some u (u ∈ (0, t]). This event
is equivalent to (i) B(t1 − u, t1] = y + u + δ > y + u, (ii) B(t1 − (u + δ), t1] = y + u + δ,
and (iii) B(t1 − q, t1] ≤ q + y for all q ∈ [u + δ, t], where δ denotes an infinitesimal positive
value. Note here that the conditional joint probability of the first two events is given by

Pr(B(t1 − u, t1] = y + u + δ, B(t1 − (u + δ), t1] = y + u + δ) | B(t1 − t, t1] = k)

= Pr(B(t1 − (u + δ), t1] = y + u + δ | B(t1 − t, t1] = k)

· Pr(B(t1 − (u + δ), t1 − u] = 0 | B(t1 − (u + δ), t1] = y + u + δ, | B(t1 − t, t1] = k)),

and the second term on the right hand side of the above equation converges to one when
δ goes to zero. Further B(t1 − q, t1] takes a nonnegative integer value and byc + 1 ≤
B(t1− (u + δ), t1] = y + u + δ ≤ k. Thus letting B(t1− (u + δ), t1] = y + u + δ = j, we have

R(y, t | k) = 1−
k∑

j=byc+1

Pr (B(t1 − (j − y), t1] = j | B(t1 − t, t1] = k)

· Pr(B(t1 − q, t1] ≤ q + y, ∀q ∈ [j − y, t]

| B(t1 − (j − y), t1] = j, B(t1 − t, t1] = k). (54)

Note here that

Pr (B(t1 − (j − y), t1] = j | B(t1 − t, t1] = k) =
k∑

j=byc+1

(
k

j

) (
j − y

t

)j (
1− j − y

t

)k−j

.

Therefore (54) is rewritten to be

R(y, t | k) = 1−
k∑

j=byc+1

(
k

j

) (
j − y

t

)j (
1− j − y

t

)k−j

· Pr
(
B(t1 − q, t1] ≤ q + y, ∀q ∈ [j − y, t]

| B(t1 − (j − y), t1] = j, B(t1 − t, t1] = k
)
. (55)
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To obtain the expression of the probability in the last line in (55), we define a(u) as a
function which satisfies

∫ r
0 a(u)du = B(t1 − (j − y)− r, t1 − (j − y)]. With a(u), we have

Pr(B(t1 − q, t1] ≤ q + y, ∀q ∈ [j − y, t] | B(t1 − (j − y), t1] = j, B(t1 − t, t1] = k)

= Pr(B(t1 − q, t1 − (j − y)] ≤ q + y − j ∀q ∈ [j − y, t] | B(t1 − t, t1 − (j − y)] = k − j)

= Pr

(∫ r

0
a(u)du ≤ r ∀r ∈ [0, t− (j − y)]

∣∣∣∣∣
∫ t−(j−y)

0
a(u)du = k − j

)
.

Lemma 6 (Ballot Theorem [10]) Let a(u) be an integrable periodic real function on the
real numbers, with period T and values that are either 0 or greater than or equal to some
L > 0. Then, for arbitrary selected s ∈ [0, T )

Pr

(∫ s+r

s
a(u)du ≤ Lr, ∀r ∈ [0, T ]

∣∣∣∣∣
∫ T

0
a(u)du = W ≤ LT

)
= 1− W

LT
.

Substituting t − (j − y), 1, k − j and 0 for T , L, W and s, respectively, in Lemma 6, we
obtain

Pr (B(t1 − q, t1] ≤ q + y, ∀q ∈ [j − y, t] | B(t1 − (j − y), t1] = j, B(t1 − t, t1] = k)

= 1− k − j

t− (j − y)

=
t− k + y

t− j + y
. (56)

(53) now follows from (55) and (56).
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