
Journal of the Operations Research
Society of Japan

2003, Vol. 46, No. 2, 189-202

A METHOD FOR SOLVING 0-1 MULTIPLE OBJECTIVE LINEAR

PROGRAMMING PROBLEM USING DEA

Golam Reza Jahanshahloo Farhad Hosseinzadeh Nagi Shoja Ghasem Tohidi
Teacher Training University Islamic Azad University

(Received Received March 19, 2002; Revised July 19, 2002)

Abstract In this paper, by using Data Envelopment Analysis (DEA) technique a method is proposed to
find efficient solutions of 0-1 Multiple Objective Linear Programming (MOLP) problem. In this method
from a feasible solution of 0-1 MOLP problem, a Decision Making Unit (DMU) without input vector is
constructed in which output vector for DMU is the values of objective functions. The method consists
of a two-stage algorithm. In the first stage, some efficient solutions are generated. In the second stage,
the DMUs corresponding to the generated efficient solutions in the first stage together with the generated
DMUs in the previous iterations are evaluated by using the additive model without input.
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1. Introduction

Data Envelopment Analysis (DEA) is a mathematical programming technique, which is used
to evaluate relative efficiency of Decision Making Units (DMUs) and has been proposed by
Charnes et al. [4]. This technique has extended by Banker et al. (BCC model) [2]. The
additive model, which is used in this paper, has proposed by Charnes et al. [5]. In the liter-
ature of DEA some articles can be found in which application of DEA in Multiple Objective
Linear Programming (MOLP) and application of MOLP in DEA have been discussed (see
[7,8]).

To solve 0-1 MOLP problem some methods by Bitran [3] and Deckro et al. [6] have
been proposed. Bitran used relaxation technique to generate efficient solutions. He defined
a relaxation problem and proved the efficient solutions of the relaxation problem that are
feasible to original problem would also be efficient in the original problem. Deckro et al. re-
ported computational results in terms of implicit enumeration compared to Bitran’s works.
They claimed that their studies was compared favorably with Bitran’s results. The proposed
method by Deckro et al. solves 0-1 MOLP problem through implicit enumeration. Liu et
al. [8] proposed another method and used DEA technique to generate efficient solutions.
They defined a DMU corresponding to each feasible solution of the problem and developed
a two-stage algorithm to generate and evaluate DMUs. They used BCC model to evaluate
the generated DMUs. Since in each iteration of their method three problems are solved in
stage 1, it is not computationally efficient. In their method for the following reasons some
efficient solutions are lost.
1) Existence of the convexity constraint in BCC model,

2) adding the constraints
Q∑

q=1

[ s∑

r=1

u∗rjcrq −
m∑

i=1

v∗ijaiq

]
wqd > u∗oj, ∀j ∈ G′

k to problem in

step 1.1 of algorithm,
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3) omitting the DMUs with negative inputs or outputs.
As well, their method may find some efficient solutions, which are not indeed the desired
solution according to the definition in literature.
The difficulties mentioned above are illustrated by numerical examples at the end of this pa-
per. Since there is a close relation between DEA and MOLP, we use this relation for solving
0-1 MOLP problem. The proposed method in this paper, in comparison with the proposed
method by Liu et al., is more computationally efficient and removes some difficulties of this
method.

In the next section, 0-1 Multiple Objective Programming (MOP) and DEA are intro-
duced. In section 3, a method for finding efficient solutions of 0-1 MOLP problem by using
DEA and reference hyperplane is proposed. Section 4 illustrates the procedure with some
numerical examples. In the last section, a conclusion and some remarks are put forward.

2. 0-1 MOP and DEA

DEA and MOP are introduced briefly in the following subsections.

2.1. 0-1 multiple objective programming

A multiple objective programming problem is defined in the following form:

Max (f1(W ), f2(W ), · · · , fk(W ))
Min (g1(W ), g2(W ), · · · , gt(W ))
s.t. W ∈ Ω

(1)

where f1, f2, · · · , fk and g1, g2, · · · , gt are objective functions and Ω is a feasible region. If
all objective functions are linear and Ω is a convex polyhedron, then problem (1) is called
a multiple objective linear programming problem. In order to solve problem (1), there are
some different methods in the literature.

Definition 1: W ∈ Ω is said to be an efficient solution of problem (1) if and only if there
does not exist a point W o ∈ Ω, such that:

(f1(W
0), · · · , fk(W

0),−g1(W
0), · · · ,−gt(W

0)) ≥ (f1(W ), · · · , fk(W ),−g1(W ), · · · ,−gt(W ))

and inequality holds strictly for at least one index.
If in problem (1) all variables are restricted to be zero - one and all objective functions and
constraints are linear then, problem (1) is called 0-1 MOLP problem and defined as follows:

Max (f1(W ), f2(W ), · · · , fk(W ))
Min (g1(W ), g2(W ), · · · , gt(W ))
s.t. W ∈ Ω

wj ∈ {0, 1}, j = 1, 2, · · · , n
(2)

where W = (w1, w2, . . . , wn)T .

2.2. Data envelopment analysis

Consider n decision making units DMUj(j = 1, 2, . . . , n) where each DMU consumes a
m-vector input to produce a s-vector output. Suppose that Xj = (x1j, x2j . . . , xmj)

T and
Yj = (y1j, y2j, . . . , ysj)

T are the vectors of inputs and outputs values respectively for DMUj,
in which it has been assumed that Xj ≥ 0 & Xj 6= 0 and Yj ≥ 0 & Yj 6= 0. Consider the
set S and its convex hull as follows:
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S =
{ (

Yj

Xj

)
| j = 1, 2, . . . , n

}

C(S) =
{ (

Y
X

)
|

(
Y
X

)
=

n∑

j=1

λj

(
Yj

Xj

)
,

n∑

j=1

λj = 1, λj ≥ 0, j = 1, · · · , n
}
.

Suppose that
(

Yp

Xp

)
corresponds to DMUp. If a vector belonging to C(S) can be found such

that
(

Y
−X

)
≥

(
Yp

−Xp

)
&

(
Y
−X

)
6=

(
Yp

−Xp

)

then DMUp is called inefficient, otherwise it is called efficient.
For evaluating relative efficiency of DMUp, additive model is used which is as follows:

Min hp = −
m∑

i=1

s−i −
s∑

r=1

s+
r

s.t.
n∑

j=1

λjyrj − s+
r = yrp , r = 1, · · · , s

−
n∑

j=1

λjxij − s−i = −xip , i = 1, · · · ,m
n∑

j=1

λj = 1

λj ≥ 0, s−i ≥ 0, s+
r ≥ 0, j = 1, · · · , n, i = 1, · · · ,m, r = 1, · · · , s

(3)

where s−i and s+
r are the slack variables of the corresponding constraints of ith input and

rth output, respectively. The dual of model (3) is:

Max gp =
s∑

r=1

urpyrp −
m∑

i=1

vipxip + uop

s.t.
s∑

r=1

urpyrj −
m∑

i=1

vipxij + uop ≤ 0, j = 1, · · · , n
−vip ≤ −1, i = 1, · · · ,m
−urp ≤ −1, r = 1, · · · , s.

(4)

We know that DMUp is efficient in the additive model if and only if h∗p = g∗p = 0 (see [5]).

Lemma 1: The additive model is translation invariant (see [1]).

As additive model is translation invariant, it can be used for evaluating relative efficiency
of DMUs with zero or negative component of input/output vector. The additive model
also can be used for evaluating relative efficiency of DMUs without input. The models (5)
and (6) which are the multiplier and envelopment sides of additive model without input
respectively, formulated as:

Max Qp =
s∑

r=1

urpyrp + uop

s.t.
s∑

r=1

urpyrj + uop ≤ 0, j = 1, · · · , n
urp ≥ 1, r = 1, · · · , s.

(5)
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Min Q′
p = −

s∑

r=1

s+
r

s.t.
n∑

j=1

λjyrj − s+
r = yrp, r = 1, · · · , s

n∑

j=1

λj = 1

λj, s
+
r ≥ 0, j = 1, · · · , n, r = 1, · · · , s.

(6)

Theorem 1: Envelopment side of additive model without input is feasible and bounded.

Proof : It can be easily verified that λ = ep = (0, 0, . . . , 0, 1, 0, . . . , 0, 0) where 1 is in p-
position and S+ = (0, 0, . . . , 0) is a feasible solution for this model.
Consider the model (5) which is the dual of envelopment side of additive model without
input. Since (u1p, u2p, . . . , usp, uop) = (1, 1, . . . , 1, uop) where uop = min1≤j≤n{−∑s

r=1 yrj} is
feasible solution for (5), the dual is feasible. Therefore the envelopment side of the additive
model without input is bounded. 2

Lemma 2: The additive model without input is translation invariant.
The proof is straightforward.

Lemma 3: In additive model without input, DMUp is efficient if and only if Q
′∗
p = Q∗

p = 0.
The proof is straightforward.

3. Efficient Solutions for 0-1 MOLP Problem

Consider the following problem:

Max {C1W,C2W, · · · , CsW}
s.t. AiW ≤ bi, i = 1, 2, · · · ,m

wj ∈ {0, 1}, j = 1, 2, · · · , n
(7)

where Ai = (ai1, ai2, · · · , ain) and Cr = (cr1, cr2, · · · , crn) are the coefficients vector for the
ith constraint and the rth objective function, respectively.

Corresponding to each feasible solution Wd in (7), the vector Yd is defined as Yd =
(y1d, y2d, · · · , ysd)

T where,Yd ∈ Rs & yrd = CrWd =
∑n

j=1 Crjwjd, r = 1, · · · , s.
In order to use DEA technique for finding efficient solutions of the problem (7), correspond-
ing to each vector Yd, we consider a DMU with output vector of Yd and without input
vector. By using additive model without input, the relative efficiency of constructed DMUs
is evaluated.

Theorem 2: If DMUd is efficient in model (5) then Wd is an efficient solution for the
problem (7).

Proof: If DMUd is efficient in (5) then it will be efficient in (6). By contradiction, suppose
that Wd is not an efficient solution of (7). So, there exists Wβ such that

Cr(Wβ) ≥ Cr(Wd), r = 1, · · · , s
and inequality holds strictly for at least one index. That is, there will be at least one index,
say l, such that Cl(Wβ) > Cl(Wd). Hence, ylβ > yld. From λ = el = (0, 0, . . . , 0, 1, 0, . . . , 0, 0)
and Cl(Wβ) > Cl(Wd), we will have

∑n
j=1 λjylj > yld. Hence, s+

l > 0. This means that there

exists a feasible solution for model (6), say (λ, S+), such that Qd = −s+
l < 0 and this is a

contradiction. 2
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3.1. The reference hyperplane

Let gr = CrW
∗
r , r = 1, 2, . . . , s where W ∗

r is the optimal solution of the following problem:

Max CrW
s.t. AiW ≤ bi, i = 1, 2, · · · ,m

wj ∈ {0, 1}, j = 1, 2, · · · , n.
(8)

For r = 1, 2, · · · , s, (8) denotes s problem. To state the following theorem, we consider the
lth problem from problems (8) (r = l).

Theorem 3: If Ol = {W ∗
1l,W

∗
2l, · · · ,W ∗

fl} is the set of optimal solutions of lth problem from
the problems (8), then at least one of these is an efficient solution of the problem (7).

Proof: First, suppose that Ol is singleton; namely, Ol = {W ∗
l }. We prove that W ∗

l is an
efficient solution of the problem (7). By contradiction, suppose that W ∗

l is not an efficient
solution. So, there will be a feasible solution such as W o such that

CrW
o ≥ CrW

∗
l , r = 1, 2, · · · , s & ∃ k (1 ≤ k ≤ s) ; CkW

o > CkW
∗
l .

Hence, ClW
o ≥ ClW

∗
l and this contradicts ClW

o < ClW
∗
l .

Now, suppose Ol = {W ∗
1l,W

∗
2l, · · · ,W ∗

fl} where f > 1 and Ω is the feasible region of the
problem (7). We prove that for each W o ∈ Ω−Ol there is not W ∗

ql ∈ Ol such that:

CrW
o ≥ CrW

∗
ql , r = 1, 2, · · · , s & ∃ k ; CkW

o > CkW
∗
ql.

By contradiction, suppose that there are W p ∈ Ω−Ol and W ∗
il ∈ Ol such that:

CrW
p ≥ CrW

∗
il , r = 1, 2, · · · , s & ∃ k ; CkW

p > CkW
∗
il

if k = l then ClW
p > ClW

∗
il which is a contradiction. If k 6= l then ClW

p = ClW
∗
il so,

W p ∈ Ol and this contradicts W p ∈ Ω−Ol.
Let K = {Y1l, Y2l, · · · , Yfl} where Yql = (C1W

∗
ql, C2W

∗
ql, · · · , CsW

∗
ql)

T (q = 1, 2, · · · , f). It is
evident that there is a member from K, say Yil, such that Yql 6≥ Yil (q = 1, 2, · · · , f , q 6= i).
Otherwise, for each member of K, say Yjl, there should exist a member of K, say Ypl, so
that Yjl ≤ Ypl & Yjl 6= Ypl. Without loss of generality, suppose that

Y1l ≤ Y2l & Y1l 6= Y2l,
Y2l ≤ Y3l & Y2l 6= Y3l,

...
Y(f−1)l ≤ Yfl & Y(f−1)l 6= Yfl,
Yfl ≤ Ykl & Yfl 6= Ykl, 1 ≤ k < f

which is a contradiction. Therefore, W ∗
il is an efficient solution of the problem (7). 2

Definition 2: The vector g, which is defined as

g = (g1, g2, · · · , gj, · · · , gs)
T = (C1W

∗
1 , C2W

∗
2 , · · · , CjW

∗
j , · · · , CsW

∗
s )T ,

is called the ideal vector.

Lemma 4: The vector g = (g1, g2, · · · , gs)
T dominates all DMUs ( 6= g) which correspond to

the feasible solutions of the problem (7).

Proof: Suppose DMUo is a decision making unit corresponding to W o where,

Y o = (C1W
o, C2W

o, · · · , CsW
o)T & Y o 6= g

and also suppose that W ∗
r (r = 1, 2, · · · , s) is an optimal solution of rth problem from the

problems (8). So, CrW
o ≤ CrW

∗
r (r = 1, 2, · · · , s). In other words, g ≥ Y o. If ∃ k(1 ≤ k ≤

s) ; gk > yo
k then g dominates the vector Y o. Otherwise, CrW

o = CrW
∗
r (r = 1, 2, · · · , s)
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and W o is an optimal solution of all the problems (8). Therefore, Y o = g which contradicts
Y o 6= g. 2

Definition 3: The sets G and G′ are defined as follows:

G = {Yd | Yd = (C1Wd, C2Wd, · · · , CsWd)
T , AiWd ≤ bi, i = 1, 2, · · · ,m, wjd ∈ {0, 1}}

and G′ = G ∪ {g}.
Definition 4: The hyperplane H = {Y | 1T (Y − g) = 0} where 1T = (1, 1, . . . , 1) is called
reference hyperplane.
H is a supporting hyperplane on the convex hull of G′ at g because 1) 1T (Y − g) = 1T (g−
g) = 0 and 2) if Y = (y1, y2, · · · , ys) ∈ G′, then according to Lemma (4), we will have
yr ≤ gr , r = 1, 2, · · · , s. So, y1 + y2 + · · · + ys ≤ g1 + g2 + · · · + gs; that is, 1T Y ≤ 1T g.
Instead of using gradient 1, a vector, say a = (|g1|, |g2|, · · · , |gs|)T , may be used to find
the supporting hyperplane for G′ at g, but from the computational point of view, this is a
difficult task.

3.2. Distance function

For each point Y o ∈ G, the distance function is defined as follows:

D(Y o) =
|aT Y o − aT g|√

aT a
.

Note that for each Y o ∈ G, aT Y o ≤ aT g so, D(Y o) = 1√
aT a

(aT g − aT Y o).

For illustration, consider the following problem:

Max 4w1 − 3w2 + 5w3

Max 2w1 + 7w2 − w3

s.t. w1 + 2w2 + w3 ≤ 7
3w1 + w2 + 2w3 ≤ 6
w1, w2, w3 ∈ {0, 1}.

The feasible solutions of the above problem and its corresponding output vectors are shown
in Table 1.

Table 1: The feasible solutions and corresponding outputs
DMUj 1 2 3 4 5 6 7 8

Wi (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
Output (0,0) (4,2) (-3,7) (5,-1) (1,9) (9,1) (2,6) (6,8)

It is evident that W5 = (1, 1, 0) and W6 = (1, 0, 1) are the optimal solutions of (8) for r = 1, 2,
respectively. For this problem, the reference hyperplane, the ideal vector and the distance
function are y1 + y2 = 18 , g = (C1W

∗
1 , C2W

∗
2 )T = (9, 9)T and D(Y o) = 1√

2
(18− yo

1 − yo
2),

respectively which have been depicted in Figure 1.

3.3. Efficient solutions generation

Let G
′′

be the set of DMUs corresponding to all optimal solutions of the problems (8). To
find efficient solutions of the problem (7), two steps should be taken. First, the members of
G
′′

are evaluated by using the model (5) and efficient DMUs are specified. Suppose that Go
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Figure 1: Reference hyperplane and ideal vector

is the set of efficient DMUs in G
′′
. Based on the theorem (2), each W corresponding to a

member of Go is an efficient solution of the problem (7) and these are not the only efficient
solutions of it. Let (U∗

p , u∗op) denote an optimal solution of the problem which corresponds

to DMUp (DMUp ∈ G
′′

). If DMUp is efficient in the model (5), U∗
p Y + u∗op = 0 is the

supporting hyperplane on the production possibility set constructed by efficient DMUs (the
members of Go) which is defined as follows:

T (Go) = {Y | Y ≤
l∑

j=1

λjYj,
l∑

j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . , l}.

The supporting hyperplanes on T (Go) separate the set G into two sets which are as follows:

GH = {Yd | U∗
p Yd + u∗op ≤ 0, p = 1, 2, · · · , l}, GE = G−GH .

In the second step, in order to find other efficient solutions, we specify a point from GE that
has the minimal distance from the reference hyperplane. To do so, the following problem
may be solved.

Min D(Yd)
s.t. U∗

p Yd + u∗op > −Mtp, p = 1, 2, · · · , l
t1 + t2 + · · ·+ tl ≤ l − 1
Yd ∈ G
tp ∈ {0, 1}, p = 1, 2, · · · , l.

(9)

where D(Yd) is the distance of the vector Yd from the reference hyperplane and M is a
positive large number. Note that if tp = 1, then constraint U∗

p Yd + u∗op > −M is redundant.
Otherwise, this constraint is not redundant. The constraint t1 + t2 + · · ·+ tl ≤ l− 1 implies
that at least one of the constraints U∗

p Yd + u∗op > 0, p = 1, 2, · · · , l is not redundant.

Based on the definition of the vector Yd = (y1d, y2d, · · · , ysd)
T , we will have:

yrd =
n∑

j=1

Crjwjd, r = 1, 2, · · · , s,

c© Operations Research Society of JapanJORSJ (2003) 46-2
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D(Yd) =
1√
aT a

(aT g − aT Yd) =
1√
1T1

(1T g − 1T Yd)

=
1√
s
[(g1 + g2 + · · ·+ gS)− (y1d + y2d + · · ·+ ysd)],

Min D(Yd) = Max (y1d + y2d + · · ·+ ysd) = Max (
n∑

j=1

s∑

r=1

Crjwjd),

U∗
p Yd + u∗op =

s∑

r=1

u∗rpyrd + u∗op =
n∑

j=1

s∑

r=1

u∗rpCrjwjd + u∗op.

Hence, the problem (9) is transformed to a single objective 0-1 linear programming problem
which is as follows:

Max ZW =
n∑

j=1

s∑

r=1

Crjwjd

s.t.
n∑

j=1

s∑

r=1

u∗rpCrjwjd > −u∗op − tpM, p = 1, 2, · · · , l
n∑

j=1

aijwjd ≤ bi, i = 1, 2, · · · ,m
t1 + t2 + · · ·+ tl ≤ l − 1
tp ∈ {0, 1}, p = 1, 2, · · · , l
wjd ∈ {0, 1}, j = 1, 2, · · · , n.

(10)

Theorem 4: Each optimal solution of the problem (10) is an efficient solution for the
problem (7).

Proof: Let W ∗
d be an optimal solution of the problem (10). By contradiction, suppose that

W ∗
d is not efficient for the problem (7). Hence, the problem (7) has a feasible solution W o

so that:
CrW

o ≥ CrW
∗
d , r = 1, 2, · · · , s and ∃ k ; CkW

o > CkW
∗
d (11)

By multiplying u∗rp in CrW
o ≥ CrW

∗
d (r = 1, 2, · · · , s) and summing them, we will have:

s∑

r=1

u∗rpCrW
o ≥

s∑

r=1

u∗rpCrW
∗
d , p = 1, 2, · · · , l

n∑

j=1

s∑

r=1

u∗rpCrjw
o
j ≥

n∑

j=1

s∑

r=1

u∗rpCrjw
∗
jd, p = 1, 2, · · · , l

n∑

j=1

s∑

r=1

u∗rpCrjw
o
j > −u∗op − tpM , p = 1, 2, · · · , l.

Also, W o holds in the inequalities
∑n

j=1 aijwj ≤ bi, i = 1, 2, · · · ,m. Therefore, W o is a
feasible solution of the problem (10). From (11), we have

∑s
r=1 CrW

o >
∑s

r=1 CrW
∗
d (ZWo >

ZW ∗
d
) which is a contradiction. 2

After obtaining W ∗
d , the corresponding DMU is constructed and the set of G1 is defined as

G1 = Go ∪ {Yd}. By evaluating the members of G1 and continuing the above process, the
efficient solutions of (7) are obtained. Since the number of the efficient solutions is finite
and at least one efficient solution is found at each iteration, the algorithm is terminated in
the finite number of the iteration. The aforementioned concepts have been illustrated in
Figure 2. This Figure corresponds to a problem which has two objective functions.

In the Figure 2: 1) L1 is the reference hyperplane, 2)D(Yd) is the distance Yd from L1,
3) The points (1) and (3) are the members of Go and the point (2) is corresponding to an
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efficient solution which is obtained in iteration 1(that is G1 = {1, 2, 3}), 4) L2 and L3 are
the supporting hyperplanes on T (G1) and 5) GH and GE are the set of the points s and c,
respectively.
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Figure 2: Distance D(Yd) and sets GH and GE

In order to develop the algorithm of finding efficient solutions, the sets Gk, G
H
k , GE

k and
T (Gk) are defined as follows:
Gk: Gk is a subset of G which denotes the set of the evaluated DMUs by the model (5) at
the beginning of the kth iteration.
GH

k : GH
k = {Yd | U∗

p Yd + u∗op ≤ 0, p = 1, 2, · · · , l, l + 1, · · · , η} where η is the number of the
elements Gk and Yd is corresponding to a feasible solution of (7), say Wd.
GE : GE = G−GH .
T (Gk) : T (Gk) = {Y | Y ≤ ∑η

j=1 λjYj,
∑η

j=1 λj = 1, λj ≥ 0, j = 1, 2, . . . , η}.
3.4. An algorithm for generating efficient solutions

Stage 0: Initialization
Step 0-1 : Find the output vector of DMUs corresponding to all optimal solutions of (8)
and put, G

′′
= {Y1, Y2, · · · , Yh},

Step 0-2 : By evaluating the members of G
′′

by means of the model (5), determine the
members of Go and the supporting hyperplanes on T (Go).
Stage 1 : The generation of an Efficient Solution
Step 1-1 : Solve the problem (10). If it has an optimal solution, go to stage 2; otherwise,
stop,
Stage 2 : The evaluation of DMUs and Generation of the Supporting Hyperplane
Step 2-1 : Determine the vector Yd = (C1W

∗
d , C2W

∗
d , . . . , CsW

∗
d ) where, W ∗

d is an efficient
solution of the problem (10), and put Gk+1 = Gk ∪ {Yd},
Step 2-2 : Evaluate the members of Gk+1 by using model (5) and identify the supporting
hyperplanes on T (Gk+1) and go to stage 1.

4. Numerical Examples

Example 1: Consider the following 0-1 MOLP problem:
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Max 2w1 − 5w2 + w3

Max −7w1 + 4w2 + w3

s.t. 2w1 + 3w2 − w3 ≤ 7
−3w1 + w2 + 5w3 ≤ 6
w1, w2, w3 ∈ {0, 1}.

Table 2 denotes the feasible solutions of the problem, the outputs vector and the inputs
vector of DMU corresponding to these feasible solutions.

Table 2: The feasible solutions, outputs and inputs
DMUj 1 2 3 4 5 6 7 8

Wi (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,1,0) (1,0,1) (0,1,1) (1,1,1)
Input (0,0) (2,-3) (3,1) (-1,5) (5,-2) (1,2) (2,6) (4,3)

Output (0,0) (2,-7) (-5,4) (1,1) (-3,-3) (3,-6) (-4,5) (-2,-2)

As it can be seen, all DMUs(except DMU1) have at least one negative input or output. Thus,
the proposed method by Liu et al. cannot determine the efficient solutions of this example.
But the suggested method in this paper obtains efficient solutions, which are W3 = (0, 1, 0)
, W4 = (0, 0, 1) , W6 = (1, 0, 1) and W7 = (0, 1, 1).

Example 2: Consider the following 0-1 MOLP problem in which W = (1, 1) is its efficient
solution.

Max 4w1 + w2

Max 6w1 + w2

s.t. 3w1 + 5w2 ≤ 9
4w1 + 7w2 ≤ 12
w1, w2 ∈ {0, 1}.

This example has been solved by the proposed method in [8] and the presented method
in this paper. To solve the above example by Liu’s method, we choose feasible solutions
W1 = (1, 0) , W2 = (0, 1) , W3 = (1, 1) and W4 = (0, 0) in step 0-1 of the presented algorithm
in [8]. The results of the evaluation of DMUs corresponding to these feasible solutions by
BCC model are represented in Table 3.

Table 3: The data set and feasible solutions
No Wi Input Output Eff-BCC
1 (1,0) (3,4) (4,6) 1
2 (0,1) (5,7) (1,1) 0.15
3 (1,1) (8,11) (5,7) 1
4 (0,0) (0,0) (0,0) -

Based on the proved theorem in [8], W1 = (1, 0) and W3 = (1, 1) are the efficient solutions of
the above problem. But according to the definition of the efficient solution in literature (in
[8]), W1 is not efficient; that is, the Liu’s method obtains a solution which is not efficient.
The proposed method in this paper introduces only W3 = (1, 1) as the efficient solution.

Example 3: Consider a 0-1 MOLP problem which the corresponding DMUs of its feasible
solutions have been depicted in Figure 3.
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Figure 3: Omitting of efficient solutions in the Liu’s method

To solve the corresponding problem of Figure 3 by Liu’s method, if the points 2, 4 and 6 are
chosen in step 0-1, the constraints L3 : U∗

1 Y − V ∗
1 X > u∗01 and L4 : U∗

2 Y − V ∗
2 X > u∗02 will

be added to the problem in step 1-1. Figure 3 denotes that if these constraints are imposed
to the problem, the points 3, 5 and 7 will be omitted. Hence, some efficient solutions may
be lost.

Example 4: Consider the following 0-1 MOLP problem:

Max 4w1 − 3w2 + 5w3 + w4

Max 2w1 + 7w2 − w3 − w4

s.t. 2w1 + 5w2 − w3 + 2w4 ≤ 10
4w1 + 3w2 + 5w3 − 4w4 ≤ 12
−2w1 + 4w2 + 7w3 + w4 ≤ 15
w1, w2, w3, w4 ∈ {0, 1}.

Stage 0, step 0-1 : By solving P1 and P2, the set G
′′

is identified.

P1) Max 4w1 − 3w2 + 5w3 + w4 P2) Max 2w1 + 7w2 − w3 − w4

s.t. 2w1 + 5w2 − w3 + 2w4 ≤ 10 s.t. 2w1 + 5w2 − w3 + 2w4 ≤ 10
4w1 + 3w2 + 5w3 − 4w4 ≤ 12 4w1 + 3w2 + 5w3 − 4w4 ≤ 12
−2w1 + 4w2 + 7w3 + w4 ≤ 15 −2w1 + 4w2 + 7w3 + w4 ≤ 15
w1, w2, w3, w4 ∈ {0, 1}. w1, w2, w3, w4 ∈ {0, 1}.

The optimal solutions of P1 and P2 are W1 = (1, 0, 1, 1) and W2 = (1, 1, 0, 0) respectively.

Therefore, G
′′

=
{ (

10
0

)
,

(
1
9

) }
.

Step 0-2: By evaluating the members of G
′′

by model (5), the members of Go and the
supporting hyperplanes on the T (Go) are specified.

Max Q1 = 10u11 + u01 Max Q2 = u12 + 9u22 + u02

s.t. 10u11 + u01 ≤ 0 s.t. 10u12 + u02 ≤ 0
u11 + 9u21 + u01 ≤ 0 u12 + 9u22 + u02 ≤ 0
u11, u21 ≥ 1 u12, u22 ≥ 1

The results of evaluation have been presented in Table 4.
So, we have Go =

{ (
10
0

)
,

(
1
9

) }
and y1 + y2− 10 = 0, y1 + y2− 10 = 0. The equation of the

above hyperplane in terms of wj(j = 1, 2, 3, 4) is as follows:
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Table 4: The results of evaluation
variable DMU1 DMU2

u∗1p 1 1
u∗2p 1 1
u∗0p -10 -10
Q∗

p 0 0

result efficient efficient

y1 + y2 − 10 = (4w1 − 3w2 + 5w3 + w4) + (2w1 + 7w2 − w3 − w4)− 10 = 0,
6w1 + 4w2 + 4w3 − 10 = 0.

Iteration (1)
Stage 1, step 1-1: In this step, the following problem must be solved:

Max 6w1 + 4w2 + 4w3

s.t. 6w1 + 4w2 + 4w3 > 10
2w1 + 5w2 − w3 + 2w4 ≤ 10
4w1 + 3w2 + 5w3 − 4w4 ≤ 12
−2w1 + 4w2 + 7w3 + w4 ≤ 15
w1, w2, w3, w4 ∈ {0, 1}.

The alternative optimal solutions of the above problem are W3 = (1, 1, 1, 1) and W4 =
(1, 1, 1, 0) which both are the efficient solutions of the problem.

Stage (2), step 2-1: Y3 =
(

7
7

)
and Y4 =

(
6
8

)
are the vectors corresponding to W3 and W4

respectively. Hence,
G1 = Go ∪

{
Y3, Y4

}
=

{ (
10
0

)
,

(
1
9

)
,
(

7
7

)
,
(

6
8

) }
.

Step 2-2: The results of the evaluation of G1’s members have been presented in Table 5.

Table 5: The results for example 4
variable DMU1 DMU2 DMU3 DMU4

u∗1p 2.333 1 1 1
u∗2p 1 5 1 1
u∗0p -23.33 -46 -14 -14
Q∗

p 0 0 0 0

The equations of the supporting hyperplanes on T (G1) are as follows:

2.333y1 + y2 − 23.33 = 0
y1 + 5y2 − 46 = 0
y1 + y2 − 14 = 0

and the equations of them in terms of wj(j = 1, 2, 3, 4) are as follows:

11.332w1 + 0.001w2 + 10.665w3 + 1.333w4 − 23.33 = 0
14w1 + 32w2 − 4w4 − 46 = 0

6w1 + 4w2 + 4w3 − 14 = 0

Iteration (2)
Stage 1 , step 1-1: In this step, the following problem must be solved:
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Max 6w1 + 4w2 + 4w3

s.t. 6w1 + 4w2 + 4w3 > 14− t1M
14w1 + 32w2 − w4 > 46− t2M
11.332w1 + 0.001w2 + 10.665w3 + 1.333w4 > 23.33− t3M
2w1 + 5w2 − w3 + 2w4 ≤ 10
4w1 + 3w2 + 5w3 − 4w4 ≤ 12
−2w1 + 4w2 + 7w3 + w4 ≤ 15
t1 + t2 + t3 ≤ 2
w1, w2, w3, w4, t1, t2, t3 ∈ {0, 1}.

The above problem is infeasible, so the algorithm is terminated and the efficient solutions
are as: W1 = (1, 0, 1, 1),W2 = (1, 1, 0, 0),W3 = (1, 1, 1, 1),W4 = (1, 1, 1, 0).

Example 5: The following 0-1 MOLP problem is an adaptation of an example from [8]:

Max 3w1 + 6w2 + 5w3 − 2w4 + 3w5

Max 6w1 + 7w2 + 4w3 + 3w4 − 8w5

Max 5w1 − 3w2 + 8w3 − 4w4 + 3w5

s.t. −2w1 + 3w2 + 8w3 − w4 + 5w5 ≤ 13
6w1 + 2w2 + 4w3 + 4w4 − 3w5 ≤ 15
4w1 − 2w2 + 6w3 − 2w4 + w5 ≤ 11
w1, w2, w3, w4, w5 ∈ {0, 1}.

Stage 0, step 0-1: By solving the problems corresponding to objective functions of the
example 5 (problems P1, P2 and P3), we will have G

′′
= {(14, 17, 10)T , (11, 2, 16)T}.

Step 0-2: By evaluating the members of G
′′

by model (5), the set Go and the supporting
hyperplane on T (Go) are determined as Go = {(14, 17, 10)T , (11, 2, 16)T} and y1 +y2 +3y3−
61 = 0.
The equation y1 + y2 + 3y3 − 61 = 0 in terms of wj(j = 1, 2, 3, 4, 5) is as

24w1 + 4w2 + 33w3 − 11w4 + 4w5 − 61 = 0.

Iteration (1)
Stage 1, step 1-1: In this step, we solve the following problem:

Max 14w1 + 10w2 + 17w3 − 3w4 − 2w5

s.t. −2w1 + 3w2 + 8w3 − w4 + 5w5 ≤ 13
6w1 + 2w2 + 4w3 + 4w4 − 3w5 ≤ 15
4w1 − 2w2 + 6w3 − 2w4 + w5 ≤ 11
24w1 + 4w2 + 33w3 − 11w4 + 4w5 > 61
w1, w2, w3, w4, w5 ∈ {0, 1}.

The above problem is infeasible. So, the algorithm is terminated. W1 = (1, 1, 1, 0, 0) and
W2 = (1, 0, 1, 0, 1) are the efficient solutions of the example 5.
As it can be seen, the suggested method obtains the efficient solutions of the example 5 in
one iteration while the Liu’s method obtains the same solutions in three iterations.

5. Conclusion

This paper presents a method for solving 0-1 MOLP problem. In the proposed method
for finding the efficient solutions of 0-1 MOLP problem, full enumeration is not used. In
each iteration of the suggested algorithm, at least one efficient solution is found. Since the
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number of feasible solutions is finite, the algorithm is convergent. The examples 1, 2, 3 and
5 illustrate the advantage of our method in comparison with Liu’s method. The existence
of the convexity constraint in the additive model without input, which is used in this paper
for evaluating constructed DMUs, may eliminate some efficient solutions of the problem.
This deficiency should be studied in the future. A modified version of this algorithm can be
used for solving integer MOLP problem.
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