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Abstract We propose a 0.935-approximation algorithm for MAX 2SAT and a 0.863-approximation algo-
rithm for MAX DICUT. The approximation ratios improve upon the recent results of Zwick, which are
equal to 0.93109 and 0.8596434254 respectively. Also proposed are derandomized versions of the same ap-
proximation ratios. We note that these approximation ratios are obtained by numerical computation rather
than theoretical proof.

The algorithms are based on the SDP relaxation proposed by Goemans and Williamson but do not use
the ‘rotation’ technique proposed by Feige and Goemans. The improvements in the approximation ratios
are obtained by the technique of ‘hyperplane separation with skewed distribution function on the sphere.’
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1. Introduction

In this paper we propose approximation algorithms for the optimization problems called
MAX 2SAT and MAX DICUT. The MAX 2SAT problem is described as follows. Given
n boolean variables x1, x2, . . . , xn, m clauses C1, C2, . . . , Cm each consisting of two literals
(either a boolean variable xi or its negation ¬xi), and nonnegative weights w1, w2, . . . , wm

associated with clauses, the MAX 2SAT is the problem of finding an assignment of true
or false to xi’s that maximizes the total weight of satisfied clauses. The MAX 2SAT is
formulated as follows:

(ST) maximize
∑

s:Cs is satisfied
ws subject to xi ∈ {True, False}.

The MAX DICUT problem is described as follows. We are given a complete directed
graph D = (V,A) with vertex set V = {1, 2, . . . , n} and arc set A = {(i, j) ∈ V ×V | i 6= j},
and a nonnegative arc weight wij for each arc (i, j) ∈ A. An arc subset A′ ⊆ A is called a
dicut if it can be represented as A′ = {(i, j) ∈ A | i ∈ U and j ∈ V \ U} for some vertex
subset U ⊆ V . The weight of a dicut A′ is the sum of the weights of arcs contained in
A′. The MAX DICUT is the problem of finding a dicut that maximizes its weight, and is
formulated as follows:

(DI) maximize
∑

i∈U, j∈V \U
wij subject to U ⊆ V.

Both MAX 2SAT and MAX DICUT are NP-hard [4], and this fact motivates researches on
algorithms for finding an approximate solution. As is well-known, Goemans and Williamson [5]
proposed a novel algorithmic scheme of randomized polynomial-time algorithms that applies
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to these problems as well as MAX CUT problem. Their algorithmic scheme is based on a
combination of Semi-Definite Programming (SDP) relaxation and random hyperplane sep-
aration. Their approximation ratios are 0.87856 for MAX 2SAT, and 0.79607 for MAX
DICUT. Feige and Goemans [2] proposed approximation algorithms with the approxima-
tion ratios 0.93109 for MAX 2SAT and 0.859387 for MAX DICUT. Their algorithms are
based on two ideas. First, some constraints introduced by Feige and Lovász in [3] are added
to the SDP relaxation. Second, the solution obtained by SDP relaxation is modified by the
‘rotation’ technique. The approximation ratios of their algorithms are obtained through
numerical computation. With a refinement of the rotation technique, Zwick [10] improved
the approximation ratios to 0.9310900680 for MAX 2SAT and 0.8596434254 for MAX DI-
CUT. It is also shown that those approximation ratios are nearly the best attainable by any
rotation technique.

In this paper, we propose randomized/derandomized approximation algorithms without
rotation technique whose approximation ratios are 0.935 for MAX 2SAT and 0.863 for MAX
DICUT, where the latter was reported in a conference paper [8]. Our algorithms solve the
SDP relaxation problems proposed by Goemans and Williamson with the constraints used
in Feige and Goemans’ algorithms. The improved approximation ratios are obtained by
using a skewed distribution function on the sphere. We note that these approximation
ratios are obtained by numerical computation rather than theoretical proof. The possibility
of using hyperplane separation technique with skewed distribution is suggested by Feige and
Goemans [2], and the contribution of the present paper lies in the following:

• pointing out the difficulty that the probability distribution resulting from the suggested
method of skewed distribution depends on the dimension n,

• identifying a class of distribution functions for which the dependence on the dimension
n can be given in explicit formulae,

• selecting a good distribution function within that class to achieve good approximation
ratio,

• constructing derandomized algorithms by applying the derandomization technique of
Mahajan and Ramesh [7].

The derandomized algorithms thus constructed coincide with the derandomized algorithms
obtained by Mahajan and Ramesh on the basis of the randomized algorithms of Goemans
and Williamson. As an important implication of this fact, we obtain improved bounds on
the approximation ratios of Mahajan and Ramesh’s derandomized algorithms, i.e., 0.935 for
MAX 2SAT and 0.863 for MAX DICUT.

In Section 2, we briefly review the SDP relaxation and hyperplane separation. In
Section 3, we describe the outline of our algorithm. In Section 4, we discuss some rela-
tions between the skewed distribution functions on the 2-dimensional sphere and on the
n-dimensional sphere. In Section 5, we describe a numerical method used for finding a good
distribution function defined on the 2-dimensional sphere. In Section 6, we show how to
derandomize our algorithm.

2. Semi-Definite Programming Relaxation

Here we describe SDP relaxations of MAX 2SAT and MAX DICUT, and review the hyper-
plane separation technique.

First, we formulate the MAX 2SAT problem as an integer programming problem. Let vi

be a {−1, 1}-variable associated with xi and vi+n be a {−1, 1}-variable associated with ¬xi.
Let C be the set of index pairs of clauses, i.e., C = {(i, j)|∃s : Cs = (xi ∨ xj)} ∪ {(i, j)|∃s :
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Cs = (xi ∨ ¬xj−n)} ∪ {(i, j)|∃s : Cs = (¬xi−n ∨ xj)} ∪ {(i, j)|∃s : Cs = (¬xi−n ∨ ¬xj−n)},
and wij be the weight associated with the clause corresponding to (i, j) ∈ C. The following
problem is equivalent to the original problem (ST).

(ST’) maximize (1/4)
∑

(i,j)∈C

wij(3 + v0vi + v0vj − vivj),

subject to v0 = 1, vi + vi+n = 0 (∀i ∈ {1, . . . , n}),
vi ∈ {−1, 1} (∀i ∈ {1, . . . , n, n+ 1, . . . , 2n}).

In the paper [5], Goemans and Williamson relaxed the above problem by replacing
each variable vi ∈ {−1, 1} with a vector on the n-dimensional unit sphere vi ∈ Sn, where

Sn
def.
= {v ∈ Rn+1 | ||v|| = 1}. The idea of this relaxation can be traced back to Lovász [6].

With some additional valid constraints used in [2, 3], we obtain the following relaxation
problem:

(ST) maximize (1/4)
∑

(i,j)∈C

wij(3 + v0 · vi + v0 · vj − vi · vj),

subject to v0 = (1, 0, . . . , 0)>, vi + vi+n = 0 (∀i ∈ {1, . . . , n}),
vi ∈ Sn (∀i ∈ {1, . . . , n, n+ 1, . . . , 2n}),

v0 · vi + v0 · vj + vi · vj ≥ −1 (∀(i, j)),
−v0 · vi − v0 · vj + vi · vj ≥ −1 (∀(i, j)),
−v0 · vi + v0 · vj − vi · vj ≥ −1 (∀(i, j)),

v0 · vi − v0 · vj − vi · vj ≥ −1 (∀(i, j)).

As is well-known, the above problem can be transformed to a semidefinite programming
problem [5], which can be solved within any given gap ε in polynomial time by using an
interior point method [1, 9].

The MAX DICUT problem can also be formulated as an integer programming problem:

(DI’) maximize (1/4)
∑

(i,j)∈A

wij(1 + v0vi − v0vj − vivj),

subject to v0 = 1, vi ∈ {−1, 1} (∀i ∈ V ).

Similarly, we can obtain the following relaxation problem:

(DI) maximize (1/4)
∑

(i,j)∈A

wij(1 + v0 · vi − v0 · vj − vi · vj),

subject to v0 = (1, 0, . . . , 0)>, vi ∈ Sn (∀i ∈ V )

v0 · vi + v0 · vj + vi · vj ≥ −1 (∀(i, j)),
−v0 · vi − v0 · vj + vi · vj ≥ −1 (∀(i, j)),
−v0 · vi + v0 · vj − vi · vj ≥ −1 (∀(i, j)),

v0 · vi − v0 · vj − vi · vj ≥ −1 (∀(i, j)),

which can be formulated again as a semidefinite programming problem.

Hereafter, we focus on the MAX DICUT problem while leaving to the reader the neces-
sary adaptation to the MAX 2SAT problem.
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The hyperplane separation technique by Goemans and Williamson may be described as
follows. Let (v1,v2, . . . ,vn) be an optimal solution to DI. We generate a vector r uniformly
on Sn and construct the vertex-subset

U = {i ∈ V | sign(r · v0) = sign(r · vi)}
and the corresponding dicut

A = {(i, j) ∈ A | i ∈ U and j 6∈ U}.
We denote the expected weight of the dicut A by E(U). Then the linearity of the expectation
implies that

E(U) =
∑

(i,j)∈A

wijPr[sign(r · v0) = sign(r · v̄i) ∧ sign(r · v0) 6= sign(r · v̄j)]

=
∑

(i,j)∈A

wij

(
1

2
Pr[sign(r · v0) = sign(r · v̄i)]

+
1

2
Pr[sign(r · v0) 6= sign(r · v̄j)]− 1

2
Pr[sign(r · v̄i) = sign(r · v̄j)]

)

=
∑

(i,j)∈A

wij

(
1

2
(1− arccos(v0 · v̄i)

π
)

+
1

2

arccos(v0 · v̄j)

π
− 1

2
(1− arccos(v̄i · v̄j)

π
)

)

=
∑

(i,j)∈A

wij
arccos(vi · vj) + arccos(v0 · vj)− arccos(v0 · vi)

2π
.

To estimate approximation ratio, we must pay attention to the arrangement of {v0,vi,vj}.
So we think the 3-dimensional linear subspace including {v0,vi,vj} and treat these vectors
as 3-dimensional vectors in that subspace. Let α be defined by

α
def.
= min

(vi,vj) ∈ Ω

(1/2π)(arccos(vi · vj) + arccos(v0 · vj)− arccos(v0 · vi))

(1/4)(1 + v0 · vi − v0 · vj − vi · vj)
,

where

Ω
def.
=





(vi,vj) ∈ S2 × S2

∣∣∣∣∣∣∣∣∣

v0 · vi + v0 · vj + vi · vj ≥ −1,
−v0 · vi − v0 · vj + vi · vj ≥ −1,
−v0 · vi + v0 · vj − vi · vj ≥ −1,

v0 · vi − v0 · vj − vi · vj ≥ −1




,

and v0 = (1, 0, 0)>. Then the approximation ratio of the algorithm can be estimated by

E(U) ≥ α · (optimal value of (DI)) ≥ α · (optimal value of (DI)).

Namely, the expected weight E(U) of the dicut generated by the algorithm is greater than
or equal to α times the optimal value of (DI). It is known [5] that α > 0.79607.

3. Hyperplane Separation by Skewed Distribution on Sphere

Goemans and Williamson’s algorithm generates a separating hyperplane at random. Our
algorithm generates a separating hyperplane with respect to a distribution function defined
on Sn which is skewed towards v0 but uniform in any direction orthogonal to v0.
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Given the n-dimensional sphere Sn, we define the class of skewed distribution function
Fn by

Fn
def.
=



f : Sn → R+

∣∣∣∣∣∣

∫

Sn

f(v) ds = 1, f(v) = f(−v) (∀v ∈ Sn),

[v0 · v = v0 · v′ ⇒ f(v) = f(v′)] (∀v,∀v′ ∈ Sn)



 .

Let f ∈ Fn be a skewed distribution function defined on Sn. For any pair (vi,vj) ∈ Sn, we
define

p(vi,vj | f)
def.
=

∫

Sn

1

4
(1 + sign(r · v0) · sign(r · vi))(1− sign(r · v0) · sign(r · vj))f(r)ds

which is equal to the probability that an arc (i, j) is contained in a dicut obtained by
hyperplane separation technique based on f .

Then the expectation of the weight of the dicut with respect to a feasible solution
(v1,v2, . . . ,vn) of DI based on the distribution function f is

∑
(i,j)∈Awij p(vi,vj | f).

When we use a skewed distribution function f ∈ Fn defined on Sn, the approximation
ratio can be estimated by the distribution function f̂ defined by projection of a vector on Sn

to the linear subspace spanned by {v0,vi,vj}. To be concrete, let H be the 3-dimensional

linear subspace including {v0,vi,vj} and define the distribution function f̂ ∈ F2 by

f̂(v′) def.
=

∫

T (v′)
f(v) ds,

where
T (v′) def.

= {v ∈ Sn | the projection of v to H is parallel to v′}.
Here we note that the distribution function f̂ is independent of the 3-dimensional subspace
H, since H contains v0 and f is uniform in any directions orthogonal to v0. For any
distribution function g ∈ F2 we define

αg
def.
= min

(vi,vj) ∈ Ω

p(vi,vj | g)
(1/4)(1 + v0 · vi − v0 · vj − vi · vj)

,

where we note that p(vi,vj | g) is defined on S2 = H ∩ Sn. Then the approximation ratio
of the algorithm using skewed distribution function f ∈ Fn is bounded by α

f̂
from below.

To construct an algorithm with a good approximation bound, we need to find f ∈ Fn

such that the induced distribution g = f̂ ∈ F2 has a large value of αg. We decompose our
task into two subtasks:
(i) to identify a subclass of F2 consisting of g that can be induced from some f ∈ Fn,
(ii) to find a function g ∈ F2 with large αg.
In connection to (i) above, we observe that, when n > 2, not every distribution function
g ∈ F2 has a distribution function f ∈ Fn satisfying f̂ = g. For example, it is easy to show
that there does not exist any distribution function f ∈ F3 such that

f̂(v) =

{
1/(2

√
2π) (−0.5 ≤ v0 · v ≤ 0.5),

0 (otherwise).

In Section 4, we propose a class of functions in F2 such that a corresponding skewed distri-
bution function exists for any sphere Sn with n ≥ 3. In Section 5, we describe a numerical
method for finding a good skewed distribution function in F2.
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4. Main Theorem

This section affords the main technical results of this paper.
For any function f ∈ Fn, we can characterize f by the function Pf : [0, π/2] → R+

defined by

Pf (θ)
def.
= f(v)|cos θ=|v0·v|.

The following theorem, along with the corollary, gives a convenient class of skewed
distribution function in Fn.
Theorem 1 Let f ∈ Fn be a skewed distribution function with n ≥ 2 such that Pf can be
represented as

Pf (θ) =
1

a

∞∑

k=0

ak cosk θ.

Then the function P
f̂
(φ) can be described as

P
f̂
(φ) =

1

a

∞∑

k=0

S(k+n)(1)

S(k+2)(1)
ak cosk φ,

where a is a constant used for normalizing the total probability to 1 and S(m)(r) is the area
of the m dimensional sphere whose radius is equal to r.
Proof. First, we recall well-known formulae:

Γ(0) = 1, Γ(
1

2
) =

√
π, Γ(x+ 1) = xΓ(x),

∫ π
2

0
sinp x cosq x dx =

Γ(p+1
2

)Γ( q+1
2

)

2Γ(p+q+2
2

)
, S(n)(r) =

2π
n+1

2

Γ(n+1
2

)
rn.

When we fix φ and dφ, we have the following:

2π sinφP
f̂
(φ)dφ

=
∫ 1

0
Pf (arccos(r cosφ))(2πr sinφ)

(
S(n−3)

(√
1− r2

))

(√
1− r2 cos2 φ√

1− r2
r

dφ

cosφ

) (
cosφ√

1− r2 cos2 φ

)
dr.

Thus we have

P
f̂
(φ) =

∫ 1

0
Pf (arccos(r cosφ))S(n−3)

(√
1− r2

)
r2 dr√

1− r2
.

On replacing r by sinα and Pf (θ) by (1/a)
∑∞

k=0 ak cosk θ, we can describe P
f̂
(φ) as

P
f̂
(φ) =

∫ π
2

0

(
1

a

∞∑

k=0

ak sink α cosk φ

)
2π

n−2
2

Γ(n−2
2

)
cosn−3 α sin2 α dα

=
1

a

∞∑

k=0

2π
n−2

2

Γ(n−2
2

)
ak cosk φ

∫ π
2

0
sink+2 α cosn−3 α dα

=
1

a

∞∑

k=0

2π
n−2

2

Γ(n−2
2

)
ak cosk φ

Γ(k+3
2

)Γ(n−2
2

)

2Γ(n+k+1
2

)

=
1

a

∞∑

k=0

Γ(k+3
2

)

2π
k+3
2

2π
n+k+1

2

Γ(n+k+1
2

)
ak cosk φ

=
1

a

∞∑

k=0

S(k+n)(1)

S(k+2)(1)
ak cosk φ.
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The above theorem immediately implies the following.
Corollary 1 Let g ∈ F2 be a distribution function such that Pg can be represented as

Pg(φ) =
1

b

∞∑

k=0

bk cosk φ

with bk ≥ 0. Then, for any n ≥ 2, there exists a distribution function f ∈ Fn satisfying
f̂ = g and

Pf (θ) =
1

b

∞∑

k=0

S(k+2)(1)

S(k+n)(1)
bk cosk θ,

where b is a constant used for normalizing the total probability to 1.
The following theorem, along with the corollary, extends the class of tractable distribu-

tion functions.
Theorem 2 Let f ∈ Fn be a distribution function such that Pf can be represented as

Pf (θ) = (1/a)
∑

t∈T

at cost θ

with a finite set T of nonnegative real numbers. Then the distribution function f̂ satisfies

P
f̂
(φ) = (1/a)

∑

t∈T

ctat cost φ,

where a is a normalization constant and

ct =
2π

n−2
2

Γ(n−2
2

)

∫ π
2

0
sint+2 α cosn−3 α dα

for each t ∈ T .
Proof. We can prove this in a similar way to the proof of Theorem 1.

This theorem implies the following.
Corollary 2 Let g ∈ F2 be a distribution function such that Pg can be represented as

Pg(φ) = (1/b)
∑

t∈T

bt cost φ

with a finite set T of positive real numbers and bt ≥ 0 for t ∈ T . Then there exists a
distribution function f ∈ Fn satisfying f̂ = g and

Pf (θ) = (1/b)
∑

t∈T

dtbt cost θ

where b is a normalization constant and

dt =


 2π

n−2
2

Γ(n−2
2

)

∫ π
2

0
sint+2 α cosn−3 α dα



−1

for each t ∈ T .
The above corollaries imply that if we have a good distribution function g ∈ F2 satis-

fying that Pg(φ) is a finite sum of nonnegative power of cosφ, then we can construct an
approximation algorithm for MAX DICUT whose approximation ratio is greater than or
equal to αg.

A method of generating a distribution with the property required in Corollary 2 is
described in Section 6.
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5. Numerical Search for Good Distribution

We consider distribution functions t ∈ F2 satisfying Pg(φ) = (1/b) cos1/β φ, where β ∈
{1.00, 1.05, . . . , 2.00}, to find that the distribution function with

Pg(φ) = cos(1/1.3) φ

yields the approximation ratio greater than 0.935 for MAX 2SAT, and that with

Pg(φ) = cos(1/1.95) φ

gives the approximation ratio greater than 0.863 for MAX DICUT.
For each function Pg(φ), we calculate the approximation ratio αg as follows. We discretize

the 2-dimensional sphere S2, choose every pair of points (vi,vj) from the set

{
(x, y, z)> ∈ S2

∣∣∣∣∣
∃η, ∃ξ ∈ {−32π/64,−31π/64, . . . , 32π/64}
x = cos η, y = sin η cos ξ, z = sin η sin ξ,

}
,

and calculate the value

p(vi,vj | g)
(1/4)(1 + v0 · vi − v0 · vj − vi · vj)

.

Next, we choose the minimum, 2nd minimum and 3rd minimum pairs of points. For each
pair (v∗i ,v

∗
j) of the chosen three pairs, we make the grid size finer and check every pair of

points (vi,vj) satisfying that

vi ∈




(x, y, z) ∈ S2

∣∣∣∣∣∣∣

∃η, ∃ξ ∈ {−64π/4096,−63π/4096, . . . , 64π/4096}
x = cos(η∗i + η), y = sin(η∗i + η) cos(ξ∗i + ξ),
z = sin(η∗i + η) sin(ξ∗i + ξ)




,

and

vj ∈




(x, y, z) ∈ S2

∣∣∣∣∣∣∣

∃η, ∃ξ ∈ {−64π/4096,−63π/4096, . . . , 64π/4096}
x = cos(η∗j + η), y = sin(η∗j + η) cos(ξ∗j + ξ),
z = sin(η∗j + η) sin(ξ∗j + ξ)




,

where

v∗i = (cos η∗i , sin η
∗
i cos ξ∗i , sin η

∗
i sin ξ∗i )

>

and

v∗j = (cos η∗j , sin η
∗
j cos ξ∗j , sin η

∗
j sin ξ∗j )

>.

For each pair of points (vi,vj) we calculate the value p(vi,vj|g) by numerical integration.
Here we note that we have determined some polynomials with up to three terms and

found that the approximation ratios are less than previous results.

6. Derandomization

Our randomized algorithm is amenable to the derandomization technique of Mahajan and
Ramesh. To explain this we first describe how to generate a random vector that follows a
distribution of the form specified in Corollary 2.
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Let X0, . . . , Xn be independent random variables, each being a standard normal variate
with the density function 1√

2π
e−x2/2. Let Z be a random variable, independent ofX0, . . . , Xn,

such that the density function is represented as

1

a

∑

t∈T

at|z|te−z2/2

with a finite set T of positive real numbers and coefficients at ≥ 0 for t ∈ T .

Then the distribution function f : Sn → R of r = (Z,X0, . . . , Xn)/
√
Z2 +X2

0 + · · ·+X2
n

satisfies the conditions of Fn described in Section 3. From the above definitions,

∫
2π sinφP

f̂
(φ)dφ =

1

2πa

∑

t∈T

at

∫ ∫ ∫
|z|te−z2/2e−(x2

i +x2
j )/2dzdxidxj.

By replacing (xi, xj) with (r cosψ, r sinψ), we have

=
1

a

∑

t∈T

at

∫ ∫
|z|te−z2/2re−r2/2dzdr

and by replacing r with z cosφ,

=
1

a

∑

t∈T

at

∫ ∫
|z|tz2 tanφ(1 + tan2 φ)e−z2 tan2 φ/2dzdφ

=
1

a

∫ {∑

t∈T

at
sinφ

cos3 φ
dφ

∫ ∞

−∞
|z|t+2e−z2/(2 cos2 φ)dz

}

=
1

a

∫ {∑

t∈T

at
sinφ

cos3 φ
cost+3

√
2

t+3
dφ

2
∫ ∞

0
(

z√
2 cosφ

)t+2e−(z/
√

2 cos φ)2 dz√
2 cosφ

}

=
1

a

∫
sinφ

∑

t∈T

ctat cost φ dφ,

where
ct = 2(t+5)/2

∫ ∞

0
zt+2e−z2

dz

is a constant. From these equations, we obtain

P
f̂
(φ) =

1

2πa

∑

t∈T

ctat cost φ.

It is emphasized that the index set T and the coefficients at with t ∈ T can be chosen
to yield a good destribution, and any choice of {at | t ∈ T} leads a distribution function to
which Corollary 2 is applicable.

Then it is not difficult to observe that the derandomization scheme of Mahajan and
Ramesh, with some modifications, can be applicable to our randomized algorithms. Namely,
we first fix Z and then fix each variable step by step by calculating expectation with condi-
tional probabilities.

This derandomization procedure yields a derandomized algorithm with the approxima-
tion ratio bounded by α

f̂
. The bound α

f̂
is naturally dependent on the chosen distribution
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specified by {at | t ∈ T}. An interesting finding here is that the resulting derandomized
algorithm itself is independent of the chosen distribution, and coincides with the one pro-
posed by Mahajan and Ramesh. This implies, in particular, that we have obtained improved
bounds on the approximation ratios, 0.935 for MAX 2SAT and 0.863 for MAX DICUT, for
the algorithms of Mahajan and Ramesh.

7. Conclusion

In this paper, we have proposed an approximation algorithm for MAX 2SAT problem whose
approximation ratio is 0.935, and one for MAX DICUT problem whose approximation ratio
is 0.863. Our algorithm solves the SDP relaxation problem proposed by Goemans and
Williamson with additional valid constraints by using hyperplane separation technique based
on skewed distribution functions f ∈ Fn satisfying that P

f̂
(θ) = cos(1/1.3) φ and P

f̂
(θ) =

cos(1/1.95) φ. We have derandomized our algorithms with the observation that the above
distribution function is not needed in the derandomized algorithms.

The authors are grateful to Kazuo Murota for his help in preparing the manuscript.
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Science and Technology of Japan.
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