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Abstract The class of POPs (Polynomial Optimization Problems) over cones covers a wide range of
optimization problems such as 0-1 integer linear and quadratic programs, nonconvex quadratic programs
and bilinear matrix inequalities. This paper presents a new framework for convex relaxation of POPs over
cones in terms of linear optimization problems over cones. It provides a unified treatment of many existing
convex relaxation methods based on the lift-and-project linear programming procedure, the reformulation-
linearization technique and the semidefinite programming relaxation for a variety of problems. It also
extends the theory of convex relaxation methods, and thereby brings flexibility and richness in practical use
of the theory.

Keywords: Optimization, convex relaxation, noncovex program, quadratic program,
semidefinite program, second order cone program

1. Introduction

Various convex relaxation methods have been studied intensively and extensively in recent
years. For 0-1 integer LPs (Linear Programs), a lift-and-project LP procedure by Balas-
Ceria-Cornuéjols [1], the RLT (Reformulation-Linearization Technique) by Sherali-Adams
[17] and an SDP (Semidefinite Programming) relaxation method by Lovász-Schrijver [12]
were regarded as their pioneering works. They had been modified, generalized and ex-
tended to various problems and methods; the RLT [18, 19] for 0-1 mixed integer polynomial
programs, the SCRM (Successive Convex Relaxation Method) [7, 8] for QOPs (Quadratic
Optimization Problems), the SDP relaxation [9, 10]1 of polynomial programs, and SOCP
(Second Order Cone Programming) relaxations [5, 6] for QOPs. These methods share the
following basic idea.

(i) Add (redundant) valid inequality constraints to a target optimization problem in the
n-dimensional Euclidean space Rn.

(ii) Lift the problem with the additional inequality constraints in Rn to an equivalent
optimization problem in a symmetric matrix space; the resulting problem is an LP with
additional rank-1 and positive semidefinite constraints on its matrix variables.

(iii) Relax the rank-1 constraint (and positive semidefinite constraint in cases of the RLT
and the lift-and-project LP procedure) so that the resulting feasible region is convex.

(iv) Project the relaxed lifted problem in the matrix space back to the original Euclidean
space Rn.

∗Research supported by Kosef R004-2001-000-00200 and the intramural research grant of Ewha women’s
university 2002.
1Lasserre called his relaxation presented in these papers the LMI (Linear Matrix Inequality) relaxation, but
we call it the SDP relaxation because the latter name is more popular than the former.
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126 M. Kojima, S. Kim & H. Waki

In some special cases such as the max cut problem [3] or some classes of 0-1 QOPs
[6, 15, 23, 24, 26], (i) is not included, but it is necessary in general. In fact, (i) is a key
issue in the papers [1, 5, 7–10, 12, 17–19] mentioned above; they employ various techniques
of constructing effective valid inequality constraints to strengthen their convex relaxations.
Lasserre’s SDP relaxation method [9] is very powerful as a theoretical result in the sense that
optimal values of fairly general polynomial programs having a compact feasible region can be
approximated as closely as desired by solving a finite sequence of SDP relaxations. However,
as we require higher accuracy for approximate optimal values, the size of SDP relaxations to
be solved increases rapidly. This creates a major difficulty in applying the SDP relaxation
method even to medium scale problems. Practically, computing better bounds for optimal
values efficiently (inexpensively) is a critical and important issue, specifically when convex
relaxation is utilized in the branch and bound method. Related to this issue, Kim-Kojima
[5] recently showed that their SOCP relaxation is a reasonable compromise between the
effectiveness of the SDP relaxation and the low computational cost of the lift-and-project
LP relaxation. Some comparison among the techniques employed in [9], [12] and [17] was
reported in [11].

The purpose of this article is to present a general and flexible framework for convex
relaxation methods for POPs (polynomial optimization problems) over cones. This new
framework is a slight extension of the existing framework for polynomial programs [9, 10, 18,
19]. However, it not only provides a unified treatment of various existing convex relaxation
methods mentioned above, but also leads to their further extensions using LOPs (Linear
Optimization Problems) over cones [16]; in particular, it highlights SOCP relaxations [5, 6,
14] of POPs over cones, and bring richness in the theory and practice of convex relaxations
of nonconvex programs.

In Section 2, we begin with a POP over cones in the Euclidean space; the problem can
be either a target problem itself to be solved or the one that we have derived from a 0-1 LP,
a QOP or a polynomial program by adding some valid polynomial constraints over cones as
in (i). (See the problem (1) below for an example of a POP over cones.) Then, instead of (ii)
and (iii), we just relax the problem by an LOP over cones in a higher dimensional Euclidean
space. This is described in the latter part of Section 2. The linearization technique used
there is the same as the one in the lift-and-project LP procedure [1] and the RLT [17–19].

We should emphasize that adding valid polynomial constraints over cones to an opti-
mization problem to be solved is essential to have tighter convex relaxations. An important
feature of the new framework is flexibility and variety in constructing valid constraints,
which can be polynomial SDP constraints, polynomial SOCP constraints or even more gen-
eral polynomial constraints over cones. In Sections 3 and 4, we discuss how we construct
such constraints in detail.

In Section 5, we show how our convex relaxation by LOPs over cones works on the
problem (1) below.

maximize −2x1 + x2

subject to x1 ≥ 0, x2 ≥ 0, x2
1 + (x2 − 1)2 − 1 ≥ 0,

∥∥∥∥
(

x1 + 1
x2

)∥∥∥∥ ≤ 2.



 (1)

Here x1 and x2 denote real variables. See Figure 1 in Section 5. This problem is used as an
illustrative example of POPs over cones throughout the paper.

Section 6 is devoted to the theory of the convex relaxation of POPs over cones. Based
on the duality theorem of LOPs over cones, we present a sufficient condition for the convex
relaxation to attain a given bound for the objective values of a POP over cones. This
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part is regarded as a generalization of Theorem 4.2 (b) of [9] where Lasserre presented
a characterization of bounds attained by his SDP relaxation for the objective values of a
polynomial program. We also generalize a characterization of the SDP relaxation given by
Fujie-Kojima [2] (see also [7]) for QOPs to POPs over cones.

2. Polynomial Optimization Problems over Cones and Their Linearization

Let K be a closed convex cone in the m-dimensional Euclidean space Rm, f0(x), f1(x), . . . ,
fm(x) polynomials in real variables x1, x2, . . . , xn, x = (x1, x2, . . . , xn)T a variable vector
in Rn, and f(x) = (f1(x), f2(x), . . . , fm(x))T ∈ Rm a system of polynomials. We are
concerned with the POP (Polynomial Optimization Problem) over the cone K:

maximize f0(x) subject to x ∈ F ≡ {x ∈ Rn : f(x) ∈ K}. (2)

In our succeeding discussions, we often deal with the cases where K is represented as
the Cartesian product of closed convex cones Ki ⊂ Rmi (i = 1, 2, . . . , k) such that K =
K1×K2× · · ·×Kk, where we assume that

∑k
i=1 mi = m. The POP in such cases is written

as
maximize f0(x) subject to x ∈ F ≡ {x ∈ Rn : f i(x) ∈ Ki (i = 1, 2, . . . , k)}. (3)

Here each f i(x) ∈ Rmi denotes a system of polynomials in real variables x1, x2, . . . , xn.
The nonnegative orthant R`

+ and the cone S`
+ of ` × ` symmetric positive semidefinite

matrices are popular closed convex cones which have been used in LPs (Linear Programs)
and SDPs (Semidefinite Programs), respectively. We identify the space S` of `×` symmetric
matrices with the `(`+1)/2-dimensional Euclidean space in our succeeding discussion; hence
we regard the positive semidefinite matrix cone S`

+ in S` as a closed convex cone in R`(`+1)/2.
We also consider the p-order cone

N 1+`
p ≡ {v = (v0, v1, v2, . . . , v`)

T ∈ R1+` :
∑̀
i=1

|vi|p ≤ vp
0}.

Here p ≥ 1. Following the convention, we use the notation

N 1+`
∞ ≡ {v = (v0, v1, v2, . . . , v`)

T ∈ R1+` : |vi| ≤ v0 (i = 1, 2, . . . , `)}.
Among the (1 + `)-dimensional p-order cones N 1+`

p (p ≥ 1), we are particularly interested
in the case where p = 2 and the case where p = +∞. The former is corresponding to
the second order cone, and LOPs over second order cones are known as SOCPs (Second
Order Cone Programs). In the latter, v ∈ N 1+`

∞ is characterized as a system of linear
inequalities −v0 ≤ vi ≤ v0 (i = 1, 2, . . . , `). For example, we can rewrite lower and upper
bound constraints bi ≤ vi ≤ b̄i (i = 1, 2, . . . , `) as




1(
2v1 − (b̄1 + b1)

)
/
(
b̄1 − b1

)
(
2v2 − (b̄2 + b2)

)
/
(
b̄2 − b2

)
...(

2v` − (b̄` + b`)
)
/
(
b̄` − b`

)



∈ N 1+`

∞ .

Here −∞ < bi < b̄i < +∞ (i = 1, 2, . . . , `). More general p-order cones were used in [22]
where Xue and Ye proposed interior-point methods for minimization of a sum of p-norms.
It should be noted that N 1+`

p ⊂ N 1+`
q if 1 ≤ p ≤ q.
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A good example which shows a difference between polynomial programs [9, 10, 19, 21]
and POPs over cones is a BMI (Bilinear Matrix Inequality): Find x = (x0, x1, x2, . . . , xp)

T ∈
R1+p and y = (y0, y1, y2, . . . , yq)

T ∈ R1+q satisfying
∑p

i=0

∑q
j=0 Aijxiyj ∈ S`

+, x0 = 1 and y0 =

1, where Aij ∈ S` (i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q). We can rewrite the BMI as a POP
over cones:

maximize λ subject to

p∑
i=0

q∑
j=0

Aijxiyj − λI ∈ S`
+ and 1− λ ≥ 0,

where I denotes the `× ` identity matrix; the BMI has a solution if and only if the maximal
objective value of the POP over cones above is nonnegative. In their paper [7], Kojima-
Tunçel dealt with this problem as a special case of the conic quadratic inequality represen-
tation. If we take n = 2, k = 4,

g0(x) = −2x1 + x2, g1(x) = x1, g2(x) = x2,

g3(x) = x2
1 + x2

2 − 2x2, g4(x) =




2
x1 + 1

x2


 ,

K1 = K2 = K3 = R+ (the cone of nonnegative numbers),

K4 = N 3
2 (the 3-dimensional second order cone),

we can rewrite the problem (1) as a POP

maximize g0(x) subject to gj(x) ∈ R+ (j = 1, 2, 3), g4(x) ∈ N 3
2. (4)

Let us illustrate how we create valid polynomial constraints over cones in the example
(4) above. First we observe that

g5(x) ≡ x1x1 ∈ R+, g6(x) ≡ x1x2 ∈ R+, g7(x) ≡ x2x2 ∈ R+ (5)

are valid polynomial constraints over the cone R+ of nonnegative numbers for the problem
(4). We consider the pair of constraints g1(x) ∈ R+ and g4(x) ∈ N 3

2 over cones in the
problem (4). Another constraint is obtained by “multiplying” them as

g8(x) ≡ g1(x)g4(x) ∈ N 3
2. (6)

Similarly we can derive valid constraint

g9(x) ≡ g2(x)g4(x) ∈ N 3
2. (7)

By adding the valid constraints in (5), (6) and (7) to the problem (4), we obtain a POP
over cones

maximize g0(x)
subject to gj(x) ∈ R+ (j = 1, 2, 3, 5, 6, 7), gk(x) ∈ N 3

2 (k = 4, 8, 9),

}
(8)

which is equivalent to the original problem (1).
Now we return to the general POP (2), and show how we linearize it. Let Z+ denote

the set of nonnegative integers. For every variable vector x = (x1, x2, . . . , xn)T ∈ Rn and
every a = (a1, a2, . . . , an) ∈ Zn

+\{0}, we use the notation xa for the term xa1
1 xa2

2 · · ·xan
n .
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Then we can write any polynomial f(x) in the variables x1, x2, . . . , xn in the form f(x) =
γ +

∑
a∈A c(a)xa for some finite subset A of Zn

+\{0} and some c(a) ∈ R (a ∈ A). We call A
the support of the polynomial f(x). Replacing each xa of the polynomial f(x) by a single
variable ya ∈ R, we define a linearization F ((ya : a ∈ A)) of f(x) as F ((ya : a ∈ A)) =
γ +

∑
a∈A c(a)ya. Here (ya : a ∈ A) denotes a vector consisting of real variables ya (a ∈ A).

We can naturally extend the definition of the linearization F ((ya : a ∈ A)) of a polynomial
f(x) to a system of polynomials f(x) = (f1(x), f2(x), . . . , fm(x)).

Let F0((ya : a ∈ A)) and F ((ya : a ∈ A)) denote the linearizations of the polynomial
f0(x) and the polynomial system f(x), respectively. Here we assume for simplicity of
notation that all polynomials f0(x), f1(x), . . . , fm(x) share a common support A; if the
term xa does not appear in a polynomial for some a ∈ A, then we let the corresponding
coefficient c(a) of the term xa zero. A linearization of the POP (2) is

maximize F0((ya : a ∈ A)) subject to F ((ya : a ∈ A)) ∈ K. (9)

Since F0 and F are linear functions in variables ya (a ∈ A), the problem (9) forms an LOP
over the cone K. By construction, we know that the LOP (9) serves as a convex relaxation
of the POP (2) over cones. In fact, for any feasible solution x of the POP (2) over K,
(ya : a ∈ A) = (xa : a ∈ A) gives a feasible solution of the LOP (9) over K at which the
objective value of the function F0((ya : a ∈ A)) takes the same objective value f0(x) as the
POP (2) over K.

Similarly we can derive a linearization of the POP (3)

maximize F0((ya : a ∈ A)) subject to F i((ya : a ∈ A)) ∈ Ki (i = 1, 2, . . . , k). (10)

Here F0((ya : a ∈ A)) and F i((ya : a ∈ A)) mean the linearizations of the polynomial f0(x)
and the polynomial system f i(x) (i = 1, 2, . . . , k), respectively. When each cone Ki is either
the nonnegative orthant of the Euclidean space, a positive semidefinite matrix cone, or a
second order cone, interior-point methods can be applied to solve the LOP (10) effectively.

The linearization of the POP (8) leads to an SOCP

maximize −2y10 + y01

subject to y10 ∈ R+, y01 ∈ R+, y20 + y02 − 2y01 ∈ R+,
y20 ∈ R+, y11 ∈ R+, y02 ∈ R+,


2
y10 + 1

y01


 ∈ N 3

2,




2y10

y20 + y10

y11


 ∈ N 3

2,




2y01

y11 + y01

y02


 ∈ N 3

2,





(11)

which serves as a convex relaxation of the POP (1).

3. Universally Valid Polynomial Constraints over Cones

Given a POP of the form (3) over cones, there are two types of valid polynomial constraints
over cones which we can add to the original constraints for strengthening a resulting convex
relaxation. The one is a uvp-constraint (universally valid polynomial constraint) over a cone
that can be added to any POPs. We say that f(x) ∈ K ⊂ R` is a uvp-constraint if it holds
for every x ∈ Rn. The other is a polynomial constraint over a cone that is a consequence of
some of original polynomial constraints over cones and some uvp-constraints. The former
holds for every x ∈ Rn, while the latter holds for all feasible solutions of the original problem
but not necessarily for all x ∈ Rn. This section contains some representative and useful
examples of valid polynomial constraints of the first type, and the next section the second
type.
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3.1. Positive semidefinite matrix cones

Let u be a mapping fromRn into R` whose jth component uj is a polynomial in x1, x2, . . . , xn.
Then the ` × ` symmetric matrix u(x)u(x)T is positive semidefinite for any x ∈ Rn;
u(x)u(x)T ∈ S`

+. Thus we can add the polynomial constraint u(x)u(x)T ∈ S`
+ over cones

to any POP over cones.
The popular SDP relaxation of nonconvex QOPs in the variable vector x ∈ Rn is derived

by taking u(x) = (1, x1, x2, . . . , xn)T . In this case, the constraint u(x)u(x)T ∈ S1+n
+ is

written as 


1 x1 x2 · · · xn

x1 x1x1 x1x2 · · · x1xn
...

...
...

. . .
...

xn xnx1 xnx2 · · · xnxn


 ∈ S1+n

+ , (12)

and the corresponding linearization yields the standard positive semidefinite constraint for
nonconvex QOPs. See, for example, [2, 7].

Specifically we have 


1 x1 x2

x1 x1x1 x1x2

x2 x2x1 x2x2


 ∈ S3

+,

when n = 2. We can add this positive semidefinite constraint to the POP (8). The corre-
sponding linearization becomes




1 y10 y01

y10 y20 y11

y01 y11 y02


 ∈ S3

+, (13)

which we can add to the SOCP relaxation (11) of the POP (8).
In his paper [9, 10], Lasserre (implicitly) used a family of stronger uvp-constraints over

positive semidefinite matrix cones than the standard positive semidefinite constraint of the
form (12). He took u(x) = ur(x) to be the column vector consisting of a basis for real-valued
polynomials of degree r

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x

2
2, x2x3, . . . , x

2
n, . . . , x

r
1, . . . , x

r
n. (14)

The linearization of the matrix ur(x)(ur(x))T is often called the moment matrix. See
(15) below for the case that n = 2 and r = 2. Although the class of uvp-constraints
ur(x)(ur(x))T ∈ S`

+, where ` denotes the dimension of the vector ur(x), may be theoreti-
cally powerful enough to attain better bounds for optimal values and/or the exact optimal
values of a wide class of polynomial programs as shown in Theorem 4.2 of [9], other types of
uvp-constraints are of importance in practice mainly because SDPs with large scale positive
semidefinite matrix variables are difficult to solve.

When n = 2 and r = 2, the constraint u2(x)(u2(x))T ∈ S6
+ becomes




1
x1

x2

x2
1

x1x2

x2
2




(
1 x1 x2 x2

1 x1x2 x2
2

)

c© Operations Research Society of JapanJORSJ (2003) 46-2
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≡




1 x1 x2 x2
1 x1x2 x2

2

x1 x2
1 x1x2 x3

1 x2
1x2 x1x

2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2

x2
1 x3

1 x2
1x2 x4

1 x3
1x2 x2

1x
2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2



∈ S6

+,

which we can add to the problem (8), and its linearization is




1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04



∈ S6

+, (15)

which can be used for the SOCP relaxation (11) of the problem (8).

3.2. Second order cones

This section presents another class of uvp-constraints over cones. Let f 1 and f 2 be mappings
from Rn into R` whose components are polynomials in x1, x2, . . . , xn. By the Cauchy-

Schwartz inequality, we see that
(
f 1(x)T f 2(x)

)2 ≤ (
f 1(x)T f 1(x)

) (
f 2(x)T f 2(x)

)
holds.

We can rewrite this inequality as a constraint over N 3
2:




f 1(x)T f 1(x) + f 2(x)T f 2(x)
f 1(x)T f 1(x)− f 2(x)T f 2(x)

2f 1(x)T f 2(x)


 ∈ N 3

2.

To derive another useful uvp-constraints, we consider a trivial relation

f(x)f(x)T − f(x)f(x)T ∈ S`
+ (16)

for a mapping f from Rn into R` whose components are polynomials in x1, x2, . . . , xn. Let
C be an arbitrary `× ` symmetric positive semidefinite matrix, L a p× ` matrix satisfying
C = LT L, where 1 ≤ p ≤ `. Then the inequality (Lf(x))T (Lf(x)) ≤ (

f(x)T Cf(x)
)

is

true for any x ∈ R`. We can convert this inequality to




1 + C • f(x)f(x)T

1−C • f(x)f(x)T

2Lf(x)


 ∈ N 2+p

2 , (17)

which forms a uvp-constraint over N 2+p
2 , and we obtain




1 + C •H((ya : a ∈ A))
1−C •H((ya : a ∈ A))

2LF ((ya : a ∈ A))


 ∈ N 2+p

2 (18)

as its linearization. Here H((ya : a ∈ A)) and F ((ya : a ∈ A)) denote the linearizations of
f(x)f(x)T and f(x), respectively, and A •B stands for the inner product of two matrices
A, B ∈ Sp; A •B =

∑p
i=1

∑p
j=1 AijBij.

c© Operations Research Society of JapanJORSJ (2003) 46-2
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Notice that any polynomial constraint over a second order cone

(
h0(x)
h(x)

)
∈ N 1+`

2 ,

can be rewritten as (
h0(x) h(x)T

h(x) h0(x)I

)
∈ S1+`

+ ,

where hi(x) denotes a polynomial in x1, x2, . . . , xn (i = 0, 1, 2, . . . , `), h(x) the polynomial
system (h1(x), h2(x), . . . , h`(x))T ∈ R` and I the `× ` identity matrix. Specifically we can
rewrite (16) as a valid polynomial inequality over S1+`

+

(
1 f(x)T

f(x) f(x)f(x)T

)
∈ S1+`

+ . (19)

As for the linearization of the constraint above, we obtain

(
1 F ((ya : a ∈ A))T

F ((ya : a ∈ A)) H((ya : a ∈ A))

)
∈ S1+`

+ . (20)

Then we may regard (18) as a further relaxation of (20). In view of the effectiveness of
convex relaxations, adding the valid constraint (17) over N 2+p

2 does not result in a stronger
convex relaxation than adding the valid constraint (19). Concerning their computational
costs, however, (18) is much cheaper than (20). This fact was presented in the paper [5] for
a special case in which f(x) = (x1, x2, . . . , xn)T ∈ Rn was taken.

4. Deriving Valid Polynomial Constraints over Cones

4.1. Kronecker products of positive semidefinite matrix cones

For every pair of an `× ` matrix A and an m ×m matrix B, we use the notation A ⊗B
for their Kronecker product. It is well-known that ν is an eigenvalue of the `m× `m matrix
A⊗B if and only if ν is represented as the product of an eigenvalue λ of A and an eigenvalue
µ of B (see, for example, [4]). Hence, if A and B are positive semidefinite then so is their
Kronecker product A⊗B.

Suppose that the POP (3) has two constraints over positive semidefinite matrix cones

f i(x) ∈ Ki ≡ Smi
+ and f j(x) ∈ Kj ≡ Smj

+ . (21)

Here we assume that every component of mappings f i : Rn → Smi and f j : Rn → Smj

is a polynomial in x1, x2, . . . , xn. In view of the discussion above, if x ∈ Rn satisfies the
constraint (21) then it satisfies

f i(x)⊗ f j(x) ∈ Smimj

+ . (22)

As a result, we can add (22) to the POP (3) as a valid polynomial constraint over Smimj

+ .
We describe two special cases of interests as follows. The first one is the simplest case

of the constraints (21) for mi = mj = 1. In this case, both Smi
+ and Smj

+ become the set R+

of nonnegative numbers. It follows that (21) and (22) can be rewritten as

fi(x) ≥ 0 and fj(x) ≥ 0
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and

fi(x)fj(x) ≥ 0,

respectively. A higher order polynomial inequality can always be derived in this way from
two polynomial inequalities in the problem (3). This is an essential technique used in the
RLT [17–20].

Let us show the second case, which played an essential role in the papers [9, 10]. We let
ur(x) denote the column vector consisting of a basis given in (14) for real-valued polynomials
of degree r, for some positive integer r. Take mi = 1, f j(x) = ur(x)(ur(x))T and mj to be
the dimension of the vector ur(x). Then (21) and (22) become

fi(x) ≥ 0 and ur(x)(ur(x))T ∈ Smj

+

and

fi(x)ur(x)(ur(x))T ∈ Smj

+ ,

respectively.

4.2. Hadamard products of p-order cones (p ≥ 1)

We use the symbol ◦ to denote the Hadamard product of two vectors v and w in R1+`,
v ◦w = (v0w0, v1w1, v2w2, . . . , v`w`)

T , and to indicate the Hadamard product of two closed
convex cones V and W in R1+`, V ◦ W = {v ◦w : v ∈ V , w ∈ W}. If 1 ≤ p ≤ q ≤ +∞,
then N 1+`

p ◦ N 1+`
q ⊂ N 1+`

p . In fact, if z = v ◦w ∈ N 1+`
p ◦ N 1+`

q then

∑̀
j=1

|zj|p =
∑̀
j=1

|vjwj|p

≤ wp
0

∑̀
j=1

|vj|p (since |wj| ≤ w0 (j = 1, 2, . . . , `))

≤ (w0v0)
p (since v ∈ N 1+`

p )

= zp
0 .

Hence N 1+`
p ◦ N 1+`

q ⊂ N 1+`
p . Recall that N 1+`

p ⊂ N 1+`
q when 1 ≤ p ≤ q ≤ +∞.

Suppose that Ki = N 1+`
p and Kj = N 1+`

q hold for some p and q such that 1 ≤ p ≤ q ≤
+∞ in problem (3); either or both of p and q can be +∞. Then f i(x) ◦ f j(x) ∈ N 1+`

p

provides a valid polynomial constraint for the problem (3).

It should be also noted that the cone N 1+`
q is symmetric with respect to the coordinates

1, 2, . . . , `. Thus, for any permutation (s1, s2, . . . , s`) of (1, 2, . . . , `),

f i(x) ◦ (
(f j(x))0, (f j(x))s1 , (f j(x))s2 , . . . , (f j(x))s`

)T ∈ N 1+`
p

remains a valid polynomial constraint for the POP (3).

If h(x) ∈ R+ and f j(x) ∈ N 1+`
p , then we have h(x)f j(x) ∈ N 1+`

p . This relation is
straightforward, and can be also derived from the above discussion if we take

f i(x) = (h(x), h(x), . . . , h(x))T ∈ R1+`
+ .
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4.3. Linear transformation of cones

Any feasible solution x of the POP (3) satisfies

T (f 1(x), f 2(x), . . . , f j(x)) ∈ K0 (23)

if T is a linear mapping from Rm1×Rm2×· · ·×Rmj into Rm0 satisfying T (K1×K2×· · ·×Kj) ⊂
K0. Here j ≥ 1 and K0 stands for a closed convex cone in Rm0 . Thus (23) serves as a
valid polynomial constraint over K0 for the POP (3). As a result, we can add (23) to the
POP (3) or replace some of the constraints f i(x) ∈ Ki (i = 1, 2, . . . , j) by (23) before
producing other candidates of valid polynomial constraints over cones for the POP (3). If
we compare the linearization of the constraint (23) with the set of the linearizations of the
original constraints f i(x) ∈ Ki (i = 1, 2, . . . , j), however, the former is weaker than the
latter; therefore we gain nothing for the effectiveness of convex relaxation. The purpose of
applying a linear transformation to the constraints of the POP (3) is to create a smaller size
or more tractable valid polynomial constraint over a cone combining some constraints of the
POP (3) to save the computational cost. Recall that we have derived the uvp-constraint
(17) and its linearization (18) by applying a linear transformation Y ∈ S` → C •Y ∈ R to
the uvp-constraint (16) over S`

+.

4.4. Quadratic convexity

Let Q ∈ Sn
+, q ∈ Rn and γ ∈ R. We can transform a convex quadratic inequality xT Qx +

qT x + γ ≤ 0 to a linear constraint over the second order cone N 2+p
2


1− qT x− γ
1 + qT x + γ

2Lx


 ∈ N 2+p

2 ,

where Q = LT L indicates a factorization of Q for some p × n matrix L. Conversions
like this are often used when we transform a quadratically constrained convex quadratic
program into an SOCP to which interior-point methods can be applied effectively. In this
subsection, we emphasize another advantage of this conversion. That is, after obtaining
valid constraints over second order cones, we can apply the technique using the Hadamard
product presented in Section 4.2 to create valid higher order polynomial constraints over
second order cones.

We now consider the inequality constraint

xT Qx− h1(x)h2(x) ≤ 0, h1(x) ≥ 0 and h2(x) ≥ 0. (24)

Here we assume that the n×n symmetric matrix Q is positive semidefinite, and that h1(x)
and h2(x) are polynomials in x1, x2, . . . , xn. Since Q is positive semidefinite, we can find
a p × n matrix L such that Q = LT L. Then (24) turns to be an equivalent polynomial
second order cone constraint 


h1(x) + h2(x)
h1(x)− h2(x)

2Lx


 ∈ N 2+p

2 .

4.5. Adding valid polynomial inequality constraints from numerical computa-
tion

Let e(x) be a polynomial in real variables x1, x2, . . . , xn and x = (x1, x2, . . . , xn)T ∈ Rn. We
consider a valid polynomial inequality constraint of the form

λ− e(x) ≥ 0 (25)
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for the POP (3). Here λ ∈ R serves as a parameter to be chosen such that the constraint
(25) is valid inequality constraint for the POP (3). This leads to another POP

maximize e(x) subject to F ≡ {x ∈ Rn : f i(x) ∈ Ki (i = 1, 2, . . . , k)}. (26)

If λ is not less than the optimal value λ∗ of this problem, then (25) provides a valid inequality
constraint for the POP (3). Ideally we want to choose the optimal value λ∗ itself for λ. The
computation of λ∗ is usually as difficult as the original POP (3). Therefore, we apply convex
relaxation to the POP (3), and formulate a LOP over cones

maximize E((ya : a ∈ A)) subject to F i((ya : a ∈ A)) ∈ Ki (i = 1, 2, . . . , k). (27)

Here E((ya : a ∈ A)) means the linearization of the polynomial e(x). Let λ̂ be the optimal
value of the relaxed LOP (27). Obviously λ∗ ≤ λ̂, and it follows that (25) with λ = λ̂ is
surely a valid inequality constraint for the POP (3).

Adding a single valid inequality constraint (25) may not be enough to strengthen the
convex relaxation of the POP (3). In general, it is necessary to generate multiple valid
inequality constraints of the type λ̂i − ei(x) ≥ 0 with different polynomials ei(x) and their
upper bounds λ̂i over F , and then apply the techniques given in the previous subsections
to them and some of the original polynomial constraints of the POP (3) to create new valid
polynomial constraints over cones.

The discussion above leads to the idea of a successive convex relaxation of the feasible
region F of the POP (3) [1, 7, 8, 12]. We assume below that the objective function f0(x)
of the POP (3) is a linear function. Then, the maximal objective value of the POP (3)
coincides with the maximal value of f0(x) over the convex hull c.hull(F) of F . As a result,
computing (an approximation of) the maximal objective value of the POP (3) is reduced
to a tractable description (of an approximation) of the convex hull c.hull(F) of F . Suppose
that we have a description Pq of the feasible region of the POP (3) at the qth iteration.
Each member of Pq is a pair of a polynomial system h(x) and a closed convex cone H;
specifically P0 = {(f i,Ki) : i = 1, 2, . . . , k}, and we can rewrite the POP (3) as

maximize f0(x) subject to h(x) ∈ H ((h(x),H) ∈ P0).

In each iteration, we compute valid inequality constraints for the feasible region F of the
POP (3) with the description Pq by solving relaxed problems as presented above. Then
we refine the description Pq of F by incorporating the newly computed valid inequality
constraints into the description Pq to generate a better description Pq+1 of F . Here “better”
means that the convex relaxation

Cq ≡ {x ∈ Rn : H ((ya : a ∈ A)) ∈ H ((h(x),H) ∈ Pq)}

shrinks; ideally to the convex hull c.hull(F) of F such that Cq ⊃ Cq+1 and ∩∞q=0Cq =c.hull(F).
Some existing successive convex relaxation methods use linear functions for ei(x)’s, and

quadratic valid inequalities of the form
(
λ̂i − ei(x)

)(
λ̂j − ej(x)

)
≥ 0 are generated and

added to Pq. See [1, 7, 8, 12] for more details.

5. A Numerical Example

We investigate and compare three different convex relaxations of the problem (1), an SDP
relaxation, an SOCP relaxation and a combination of them. See Figure 1.
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10 x1=y10

x
2

Feasible region
1

Cut by the SDP relaxation

Cut by the SOCP relaxation

1.5

(0.3863,1.4416)
T

1.5

(0.3170,1.1830)
T

=y
01

Figure 1: Problem (1): n = 2, m = 4 and the optimal value 0.0000.

We transform the problem (1) to a QOP

Maximize −2x1 + x2

subject to x1 ≥ 0, x2 ≥ 0, x1x2 ≥ 0,
x2

1 + x2
2 − 2x2 ≥ 0, x2

1 + x2
2 + 2x1 − 3 ≤ 0.

Here we have added a valid quadratic constraint x1x2 ≥ 0. The standard application of the
SDP relaxation to this QOP leads us to an SDP

Maximize −2y10 + y01

subject to y10 ≥ 0, y01 ≥ 0, y11 ≥ 0,
y20 + y02 − 2y01 ≥ 0, y20 + y02 + 2y10 − 3 ≤ 0,

y ≡



1 y10 y01

y10 y20 y11

y01 y11 y02


 ∈ S3

+,





(28)

which has an approximate optimal solution

ysdp ≡




1 y
sdp
10 y

sdp
01

y
sdp
10 y

sdp
20 y

sdp
11

y
sdp
01 y

sdp
11 y

sdp
02


 =




1.0000 0.0000 1.5000
0.0000 0.3830 0.0000
1.5000 0.0000 2.6170


 ,

and an approximate optimal value −2y
sdp
10 + y

sdp
01 = 1.5000.

Now we consider an SOCP relaxation of the problem (1). Recall that we have converted
the problem (1) into a POP (8) over cones R+ and N 3

2 by adding some valid constraints
given in (5), (6) and (7) to (1), and that we have derived an SOCP relaxation (11) of the
POP (8). we obtain an approximate optimal solution by solving the SOCP (11)

ysocp ≡



1 y
socp
10 y

socp
01

y
socp
10 y

socp
20 y

socp
11

y
socp
01 y

socp
11 y

socp
02


 =




1.0000 0.3863 1.4416
0.3863 0.3863 0.0000
1.4416 0.0000 2.4969


 ,

and an approximate optimal value −2y
socp
10 +y

socp
01 = 0.6691. Comparing the optimal value

1.5000 of the SDP relaxation (28) with the optimal value 0.6691 of the SOCP relaxation
(11), we know that the SOCP relaxation provides a better bound for the optimal value
0.0000 of the original problem (1). It is easily verified that:
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• The optimal solution ysdp of the SDP (28) does not satisfy the constraint



2y10

y20 + y10

y11


 ∈ N 3

2

of the SOCP (11),

• The optimal solution ysocp of the SOCP (11) does not satisfy the positive semidefinite
constraint

y ≡



1 y10 y01

y10 y20 y11

y01 y11 y02


 ∈ S3

+

of the SDP (28).
This suggests to combine the SDP and SOCP relaxations to get a tighter bound for the
optimal objective value. Indeed if we add the positive semidefinite constraint above to the
SOCP (11), the resulting SOCP-SDP problem attains a better bound 0.5490 at y10 = 0.3170
and y01 = 1.1830. See Figure 1. We conclude that both SDP and SOCP relaxations are
important in this example.

6. Characterization of the Linearization of POPs over Cones

Throughout this section, we deal with the POP of the form (2) over the closed convex
cone K ⊂ Rm, and we present characterization of the upper bound that is attained by its
linearization (9) for its optimal objective value.

6.1. Basic theory

We denote each fj(x) in (2) as fj(x) = γj +
∑

a∈A cj(a)xa, and its linearization as Fj((ya :
a ∈ A)) = γj +

∑
a∈A cj(a)ya. Here γj ∈ R, and we assume that γ0 = 0. Let

F ((ya : a ∈ A)) = (F1((ya : a ∈ A)), . . . , Fm((ya : a ∈ A)))T .

Then, the linearization of the POP (2) is defined as an LOP over the cone K:

maximize
∑
a∈A

c0(a)ya subject to F ((ya : a ∈ A)) ∈ K, (29)

which is a convex relaxation of the POP (2). Moreover, let γ = (γ1, . . . , γm)T ∈ Rm,
c(a) = (c1(a), . . . , cm(a))T ∈ Rm (a ∈ A), and let 〈·, ·〉 be any inner product in Rm. For
the succeeding discussions, we also present the dual of the LOP (29)

minimize 〈γ, v〉 subject to v ∈ G, (30)

where G = {v ∈ K∗ : c0(a) + 〈c(a), v〉 = 0 (a ∈ A)}, where K∗ denote the dual cone of K,
i.e., K∗ = {v ∈ Rm : 〈z, v〉 ≥ 0 ∀z ∈ K}. Then we know that

the supremum objective value of the POP (2)
≤ the supremum objective value of the primal LOP (29)
≤ 〈γ, v〉 at any v ∈ G.



 (31)

We define the Lagrangian function

L(x, v) = f0(x) + 〈v, f(x)〉
= 〈γ, v〉+

∑
a∈A

(c0(a) + 〈v, c(a)〉) xa

for every x ∈ Rn and every v ∈ K∗.
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The lemma below characterizes the bound ζ = 〈γ, v〉 in the last line of (31).
Lemma 6.1.

(i) A pair of v ∈ K∗ and ζ ∈ R satisfies

L(x, v) = ζ for every x ∈ Rn (32)

if and only if v ∈ G and ζ = 〈γ, v〉.
(ii) Suppose that there exist v ∈ K∗ and ζ ∈ R satisfying the identity (32). Then the

objective value of the primal LOP (29) is bounded by ζ from above.

Proof: The assertion (i) follows from the observation that (32) holds if and only if

〈γ, v〉 = ζ and c0(a) + 〈c(a), v〉 = 0 (a ∈ A)

hold. The assertion (ii) follows from (31).

From the lemma, we see that

inf
v∈K∗ sup

x∈Rn
L(x, v) ≤ inf

v∈G
sup

x∈Rn
L(x, v) = inf

v∈G
〈γ, v〉.

This shows that the upper bound given by the Lagrangian dual of the POP (2) for the
optimal value of the POP (2) is at least as effective as the one by the dual LOP (30). In
general, there is a gap between these two upper bounds. For example, consider a problem

maximize x4 − x2 subject to − x4 + 1 ≥ 0.

The Lagrangian dual of this problem

inf
v ∈ R+

sup
x ∈ R

x4 − x2 + v(−x4 + 1)

attains the upper bound +1 for the optimal value 0 of the problem, while the linear relaxation

maximize y4 − y2 subject to − y4 + 1 ≥ 0

forms an unbounded linear program; hence its dual is infeasible.
The theorem below provides a sufficient condition for the primal LOP (29) to attain the

supremum objective value of the POP (2).

Theorem 6.2. Let ζ∗ < ∞ be the supremum objective value of the POP (2). Suppose that
the relation (32) holds for ζ = ζ∗ and some v = v∗ ∈ K∗. Then v∗ is an optimal solution
of the dual LOP (30) and the identities

ζ∗ = the supremum objective values of the primal LOP (29)

= the optimal value of the dual LOP (30) at the optimal solution v∗

hold.

Proof: In general,

ζ∗ = sup

{∑
a∈A

c0(a)xa : f(x) ∈ K
}

≤ sup

{∑
a∈A

c0(a)ya : F ((ya : a ∈ A)) ∈ K
}

≤ inf {〈γ, v〉 : v ∈ G} .
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On the other hand, we know in view of Lemma 6.1 that v∗ is a feasible solution of the
dual LOP (30) with the objective value ζ∗. Therefore the conclusion follows.

The theorem below characterizes the supremum objective value of the primal LOP (29)
under the existence of an interior feasible solution of the POP (2).

Theorem 6.3. Assume that there is an x̄ ∈ Rn such that f(x̄) lies in the interior of K
and that the objective values of the primal LOP (29) is bounded from above. Let ζ denote
the supremum objective values of (29). Then there exists v ∈ K∗ satisfying (32).

Proof: Let (ȳa : a ∈ A) = (x̄a : a ∈ A). Then F ((ȳa : a ∈ A)) = f(x̄), which lies in
the interior of the cone K. By the duality theorem (see, for example, [16]), there exists
an optimal solution v of the dual LOP (30) with the objective value ζ = 〈γ, v〉. Thus the
desired result follows from Lemma 6.1.

6.2. Convex relaxations of the feasible region of the POP (2)

Let AL = {a ∈ A :
∑n

i=1 ai = 1} and AN = {a ∈ A :
∑n

i=1 ai ≥ 2}. AL and AN stand
for the subsets of the support A corresponding to the linear terms and the nonlinear terms,
respectively and A = AL ∪ AN . We consider the projection F̂ of the feasible region of the
primal LOP (29) on the x-space

F̂ = {x = (ya : a ∈ AL) ∈ Rn : F ((ya : a ∈ A)) ∈ K for some (ya : a ∈ AN)}.

Then we may regard F̂ as a convex relaxation of the feasible region F of the original POP
(2). Characterization of F̂ is given in this subsection. Such characterization is meaningful
when the objective function f0(x) of the POP (2) is a linear function

∑
a∈AL c0(a)xa because

its convex relaxation of (29) can be rewritten as

maximize
∑

a∈AL

c0(a)xa subject to x ∈ F̂ .

Theoretically, we may assume without loss of generality that the objective function of the
POP (2) is linear; otherwise replace the nonlinear objective function f0(x) by xn+1 and
f0(x)− xn+1 ≥ 0 to the constraint.

Let

L = {v ∈ K∗ : 〈v, f(x)〉 is linear in x}∗
= {v ∈ K∗ : 〈v, c(a)〉 = 0 (a ∈ AN)}∗

or equivalently L∗ = {v ∈ K∗ : 〈v, c(a)〉 = 0 (a ∈ AN)}. Then G ⊂ L∗; hence if v ∈ K∗
satisfies (32) then v ∈ L∗. We now introduce another convex relaxation of the feasible
region of the POP (2):

F̃ ≡ {x ∈ Rn : f(x) ∈ L}. (33)

Note that each x ∈ F̃ is characterized as

〈v, f(x)〉 ≡ 〈γ, v〉+
∑

a∈AL

〈v, c(a)〉xa ≥ 0 for every v ∈ L∗ ⊂ K∗.

Hence F̃ is represented in terms of an infinite number of linear inequalities.

Theorem 6.4.

(i) F̂ ⊂ F̃ .
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(ii) Assume that there is an x̄ ∈ Rn such that f(x̄) lies in the interior of K. Then the

closure of F̂ coincides with F̃
Proof: (i) Suppose that x = (ya : a ∈ AL) ∈ F̂ . Then there exists a (ya : a ∈ AN)
such that F ((ya : a ∈ A)) ∈ K. Then, for every v ∈ L∗ ⊂ K∗, we see that 〈v, f(x)〉 =

〈v, F ((ya : a ∈ A))〉 ≥ 0. Hence x ∈ F̃ .

(ii) We have shown above that F̂ ⊂ F̃ . Since F̃ is closed, we know that the closure of

F̂ is contained in F̃ . Hence it suffices to show that the closure of F̂ contains F̃ . Assume
on the contrary that there is an x̃ ∈ F̃ which does not lie in the closure of F̂ . Then, by
the separation theorem (see, for example [13]), there exist c̃(a) ∈ R (a ∈ AL) and ζ̃ ∈ R
such that

∑

a∈AL

c̃(a)x̃a > ζ̃ ≥
∑

a∈AL

c̃(a)xa for every x ∈ F̂ . (34)

Now, replace the objective function f0(x) of the POP (2) and the primal LOP (29) by

the linear function
∑

a∈AL

c̃(a)xa and apply Theorem 6.3. Then there exists a v ∈ L∗

such that
∑

a∈AL

c̃(a)xa + 〈v, f(x)〉 = ζ for every x ∈ Rn. Here ζ = sup

x∈cF

∑

a∈AL

c̃(a)xa.

Therefore
∑

a∈AL

c̃(a)x̃a ≤
∑

a∈AL

c̃(a)x̃a + 〈v, f(x̃)〉 = ζ ≤ ζ̃ . This contradicts to the first

strict inequality in (34).

The result above is an extension of Theorem 2.1 of Fujie-Kojima [2] for QOPs to POPs

over cones. Also the relation F̂ ⊂ F̃ played an essential role in the convergence analysis of
the Kojima-Tunçel [7, 8] successive convex relaxations of nonconvex sets.

6.3. Application to Lasserre’s SDP relaxation

We derive Theorem 4.2 (b) of [9], one of the main results shown by Lasserre as a special
case of Theorem 6.2. Consider a polynomial program of the form

maximize f0(x) subject to f̃j(x) ≥ 0 (j = 1, 2, . . . , m). (35)

Here we assume that f0(x) and f̃j(x) are polynomials in x1, x2, . . . , xn of degree at most ω0

and ωj (j = 1, 2, . . . , m). Let ω̃j = dωj/2e and choose a nonnegative integer N not less than
ω0/2 and ω̃j (j = 1, 2, . . . , m). Define

ur(x) = the column vector consisting of a basis for real-valued

polynomials of degree r given in (14),

`j = the dimension of the column vector uN−ω̃j(x) (j = 1, 2, . . . , m),

`m+1 = the dimension of the column vector uN(x),

Kj = S`j

+ (j = 1, 2, . . . , m + 1),

f j(x) = f̃j(x)uN−ω̃j(x)
(
uN−ω̃j(x)

)T ∈ S`j (j = 1, 2, . . . , m),

fm+1(x) = uN(x)
(
uN(x)

)T ∈ S`m+1

+ .

Then we can derive

maximize f0(x) subject to f j(x) ∈ Kj (j = 1, 2, . . . , m + 1) (36)
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as a POP over K = K1 ×K2 × · · · × Km+1, which is equivalent to the polynomial program
(35), and its linearization

maximize F0((ya : a ∈ A))
subject to F j((ya : a ∈ A)) ∈ Kj (j = 1, 2, . . . , m + 1),

}
(37)

where F0((ya : a ∈ A)) and F j((ya : a ∈ A)) denote the linearization of f0(x) and
f j(x) (j = 1, 2, . . . , m + 1), respectively. We note that the LOP (37) is corresponding to
“the LMI problem” (4.5) of Lasserre [9], but any problem corresponding to (36) was not
described in [9] explicitly.

Since the dual K∗j of each Kj = S`j

+ is itself, the Lagrangian function is

L(x, V 1, V 2, . . . , V m+1) = f0(x) +
m+1∑
j=1

V j • f j(x)

for every x ∈ Rn and V j ∈ S`j

+ (j = 1, 2, . . . , m + 1).

Let ζ ∈ R. Suppose that the identity

L(x, V 1, V 2, . . . , V m+1) = ζ for all x ∈ Rn. (38)

holds for some V j ∈ S`j

+ (j = 1, 2, . . . , m). Then we know by Lemma 6.1 that
(V 1, V 2, . . . , V m+1) is a feasible solution of the dual LOP of (37). We represent each

V j ∈ S`j

+ as V j =

`j∑

k=1

λjkwjkw
T
jk, where wjk denotes an eigenvector of V j and λjk the

eigenvalue of V j associated with wjk. Then

L(x, V 1, . . . , V m+1)

= f0(x) +
m∑

j=1




`j∑

k=1

λjkwjkw
T
jk


 •

(
f̃j(x)uN−ω̃j(x)

(
uN−ω̃j(x)

)T
)

+

(
`m+1∑

k=1

λm+1,kwm+1,kw
T
m+1,k

)
• uN(x)

(
uN(x)

)T

= f0(x) +
m∑

j=1

f̃j(x)




`j∑

k=1

λjk(w
T
jku

N−ω̃j(x))2


 +

`m+1∑

k=1

λm+1,k(w
T
m+1,ku

N(x))2.

Letting

tj(x) =

`j∑

k=1

(
√

λjkw
T
jku

N−ω̃j(x))2 (j = 1, 2, . . . , m),

q(x) =

`m+1∑

k=1

(
√

λm+1,kw
T
m+1,ku

N(x))2,

we obtain L(x, V 1, V 2, . . . , V m+1) = f0(x) +
∑m

j=1 f̃j(x)tj(x) + q(x), for some polynomial
q(x) of degree at most 2N and some polynomials tj(x) of degree at most 2N − ωj (j =
1, 2, . . . , m), all sums of squares.
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Conversely, suppose that the identity

f0(x) +
m∑

j=1

f̃j(x)tj(x) + q(x) = ζ for all x ∈ Rn (39)

holds for some polynomial q(x) of degree at most 2N and some polynomials tj(x) of degree
at most 2N − ωj (j = 1, 2, . . . , m), all sums of squares such that

q(x) =

`′m+1∑

k=1

(wT
m+1,ku

N(x))2 and tj(x) =

`′j∑

k=1

(wT
jku

N−ω̃j(x))2.

Let V j =

`′j∑

k=1

wjkw
T
jk (j = 1, 2, . . . , m + 1). Then L(x, V 1, V 2, . . . , V m+1) = ζ.

Let ζ ∈ R. We have shown that there exist V j ∈ S`j

+ (j = 1, 2, . . . , m+1) satisfying (38)
if and only if there exist a polynomial q(x) of degree at most 2N and polynomials tj(x) of
degree at most 2N −ωj (j = 1, 2, . . . , m), all sums of squares, satisfying (39). Consequently
we obtain the corollary below by Lemma 6.1 and Theorem 6.2.
Corollary 6.5. Let ζ∗ < ∞ be the supremum objective values of the POP (36) over the

cone K = S`1
+ ×S`2

+ × · · · × S`m+1

+ . Suppose that the identity (39) holds for ζ = ζ∗ and some
polynomial q(x) of degree at most 2N and some polynomials tj(x) of degree at most 2N−ωj

(j = 1, 2, . . . , m), all sums of squares. Then

ζ∗ = the supremum of the objective values of the primal LOP (37)

= the optimal value of the dual LOP of (37),

and if x∗ is an optimal solution of the POP (36), then (y∗a : a ∈ A) = ((x∗)a : a ∈ A) is an
optimal solution of (37). In addition, if (V 1, V 2, . . . , V m+1) is an optimal solution of the
dual LOP of (37), then

f0(x) +
m+1∑
j=1

V j • f j(x)

= f0(x) +
m∑

j=1

f̃j(x)




`j∑

k=1

λjk(w
T
jku

N−ω̃j(x))2


 +

`m+1∑

k=1

λm+1,k(w
T
m+1,ku

N(x))2

= ζ∗ for every x ∈ Rn

holds. Here wjk denotes an eigenvector of V j and λjk the eigenvalue of V j associated with
wjk.

The corollary above corresponds to Theorem 4.2 (b) of [9].

7. Concluding Remarks

We have presented a new framework for convex relaxation of POPs over cones in terms of
LOPs over cones. Although this framework is quite general and flexible, various important
theoretical and practical issues remain.

From a practical point of view, the new framework certainly provides various ways of
convex relaxation using LOPs over cones; in particular, the SOCP relaxation is likely to
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play a more important role. Further theoretical and numerical investigation is necessary to
resolve the issue of how we create inexpensive valid polynomial constraints over cones that
yield effective convex relaxation. Combining the branch-and-bound method into the new
framework is also an interesting approach to utilize the framework.

Exact optimal values of a few special cases [6, 25, 26] of QOPs can be attained by con-
structing a single SDP relaxation. For some other cases [3, 15, 23] of QOPs, approximate
optimal values generated through their SDP relaxations attain some guaranteed percentages
of their exact optimal values. However, a single application of SDP relaxation to a general
POP (or even a general QOP) neither attain the optimal value nor any guaranteed percent-
age of the optimal value. To get better bounds for the optimal value, it is necessary to use
convex relaxation techniques repeatedly or to incorporate convex relaxation into some other
optimization methods such as the branch-and-bound method. The former methodology in-
cludes the successive convex relaxation technique [1, 7, 8, 12] presented in Section 4.5, and
the RLT (Reformulation-Linearization Technique) [17, 20] which constructs a sequence or a
hierarchy of convex relaxation problems and then solves them sequentially (see also [9, 10]).
The new framework proposed in this paper covers those techniques.
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