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Abstract In this paper, we propose a mathematical model for an optimal hostage rescue problem. Suppose
that a person is taken as a hostage and that a decision has to be made from among three alternatives:
storm for rescue, wait up to the next point in time for an opportunity to present itself or take an action of
negotiation which might save the situation. Here, it is assumed that the action of negotiation can only be
taken once and its effectiveness completely vanishes thereafter. The objective is to find an optimal decision
rule so as to maximize the probability of the hostage not being killed.
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1. Introduction

Hostage events frequently occur in many places all over the world for different reasons.
Typical examples in recent years include:

1. A 44-year-old, knife-wielding man, took a female receptionist hostage at the Kyoto bu-
reau of NHK in Japan on January 18, 2002. He barricaded himself in the building and
demanded to speak to Prime Minister Junichiro Koizumi by telephone. Police officers
stormed the site after four and a half hours, rescued the hostage and arrested the man [4].

2. Two Chechens hijacked a Russian airliner and enforced the flight with 167 passengers to
land in the Saudi Arabian City of Medina on March 15, 2001. They demanded halting
the genocide in Chechnya and sitting at the negotiating table to find a peaceful solution
to the conflict. Saudi security forces stormed the hijacked Russian plane the next day,
freeing remaining hostages. However, three people - a flight attendant, a hijacker and a
passenger - were killed with several others injured [5].

3. A Myanmar man wielding a toy pistol stormed into the secure area of an airport in H.K.
on July 31, 2000, and took a cleaning woman hostage, forced the woman to board a
Cathay Pacific Boeing 747 scheduled to fly to Paris and England. He surrendered after
two and a half hours [6].

4. A Spanish man hijacked a domestic Iberia Air Lives flight with 131 people on board on
June 23, 1998, and demanded to be flown to Tel Aviv. However, a four-hour standoff
ended when he surrendered peacefully to police after speaking to his psychiatrist [7].

In view of such a situation, a successful rescue of hostages has become an urgent issue to
be tackled worldwide. In order to solve the problem, we think that the most important
decision for the person in charge of a crisis settlement is the timing of hostage rescue
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operation, together with taking into account the safety of hostages, the demands of the
perpetrators, and the repercussions of success or failure in a rescue attempt, and so on. The
purpose of this paper is to propose a mathematical model for an optimal hostage rescue
problem by using the concept of a sequential stochastic decision process and examine the
properties of an optimal rescuing rule.

Up to the present, the author has examined a model for solving the problem in [2] where
two decision alternatives, storming for rescue or waiting up to the next point in time, were
available. However, as seen in many hostage events, negotiators can take various actions
to deal with the perpetrator(s); for example, persuading the perpetrator(s) to surrender by
subjecting him to a relative’s voice, or submitting to his demands to be flown to another
country, or providing a means of escape, paying the ransom, releasing his comrades in prison,
and so on. Therefore, it is necessary to include such an action of negotiation in our rescue
decision, i.e., we should make a rescue decision from among three alternatives: storm for
rescue, wait up to the next point in time, or take an action of negotiation. The author has
already proposed a basic model in [3] where such an action of negotiation can only be taken
once and its effectiveness lasts up to the deadline. In this new paper we propose another
model where such an action of negotiation can only be taken once and its effectiveness
completely vanishes thereafter.

Unfortunately, concerning hostage rescue problems, with the exception of the author’s
two papers [2] [3], we have been unable to find any reference material utilizing a mathemat-
ical approach.

2. Model

The process in the sequential decision problem dealt with in this paper is defined as discrete-
time model with a finite planning horizon. Let us number the points in time backward from
the final point in time on the horizon, time 0, as 0, 1, · · ·, and so on. Further, let the
time internal between two successive points, say times t and t − 1, be called the period
t. Here, we assume that storming for rescue is the only course of action at the deadline
(time 0), prompted by some reason, say, the hostage’s health condition, the degree of the
perpetrator(s) desperation, and so on.

In this model, we suppose that one person is taken as a hostage at any given point in
time t, and a decision has to be made from among three alternatives: storm for rescue,
wait up to the next point in time for an opportunity to present itself or take an action of
negotiation which might save the situation. For simplicity, by S, W and A let us denote the
above three decisions, respectively. Further, let us assume that the action of negotiation can
only be taken once and it is effective only at that time, i.e., the effectiveness of the action
of negotiation completely vanishes thereafter.

Suppose that the action of negotiation has not yet been taken up to time t. Let p (0 <
p < 1) be the probability of the hostage being killed if the decision S is made, and let q
and r (0 < q < 1, 0 ≤ r < 1 and 0 < q + r < 1) be the probabilities of the hostage
being, respectively, killed and released if the decision W is made; accordingly, 1− q− r is the
probability of the hostage being neither killed nor released; let λ = 1 − q − r (0 < λ < 1).
Now, noting the fact that taking an action of negotiation will influence the probabilities q
and r to a greater or lesser degree, in this model let us assume that if an action of negotiation
is taken, then the q and r thus far change into q′ and r′, respectively, and that the q′ and
r′ return again to q and r thereafter; let λ′ = 1 − q′ − r′ (0 < q′ < 1, 0 ≤ r′ < 1, and
0 < λ′ < 1). Here, the cases of p = 0, p = 1, q = 0, q = 1, r = 1, q′ = 0, q′ = 1, r′ = 1,
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q + r = 1 and q′ + r′ = 1 make the problem trivial. Accordingly, all are excluded from
the definition of the model. The flow chart of decision in this model can be depicted as in
Figure 1.
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Figure 1: Flow chart of decision.

The objective here is to find the optimal decision rule so as to maximize the probability
of the hostage not being killed.

3. Optimal Equation

Let S be the probability of the hostage not being killed at any time if the decision S is made.
Then, we have

S = 1− p. (3.1)

Suppose that an action of negotiation has not yet been taken up to time t. In this case, let
Wt (At) is the maximum probability of the hostage not being killed from times t to 0 (the
deadline) if the decision W (A) is made, and further, let vt be the maximum probability of
the hostage not being killed, starting from time t ≥ 0. Then, we get

v0 = S, (3.2)
vt = max{S, Wt, At}, t ≥ 1. (3.3)

Suppose that an action of negotiation has already been taken up to time t. In this case,
let W ′

t is the maximum probability of the hostage not being killed from times t to 0 if the
decision W is made, and further, let v′t be the maximum probability of the hostage not being
killed, starting from time t ≥ 0. Then, we obtain

v′0 = S, (3.4)
v′t = max{S, W ′

t}, t ≥ 1. (3.5)

Therefore, the Wt, At and W ′
t for t ≥ 1 can be expressed as follows:

Wt = r + λvt−1, (3.6)
At = r′ + λ′v′t−1, (3.7)
W ′

t = r + λv′t−1. (3.8)
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Note that the expression Eq.(3.6) should be written as Wt = q × 0 + r × 1 + λvt−1, we can
see that the implication of Eq.(3.6). Similarly, Eqs.(3.7) and (3.8) can be also interpreted.

Here, for convenience in the later discussions, let us define

W0 = A0 = W ′
0 = S, (3.9)

U = r + λS, (3.10)
U ′ = r′ + λ′S. (3.11)

Then, Eqs.(3.3) and (3.5) also hold for t = 0, and from Eqs.(3.6) to (3.8) we have

W1 = W ′
1 = U, (3.12)

A1 = U ′. (3.13)

From Eq.(3.12) we see that U is the maximum probability of the hostage not being killed
from times 1 to 0, provided that the decision W is made at time 1 whether or not the action
of negotiation has been taken up to time 1. From Eq.(3.13) we see that U ′ is the maximum
probability of the hostage not being killed from times 1 to 0, provided that the decision A

is made at time 1.

4. Preliminaries

Lemma 4.1. Both vt and v′t are nondecreasing in t for t ≥ 0, and all of Wt, At and W ′
t

are nondecreasing in t for t ≥ 1. Further, they converge to finite numbers v, v′, W , A and
W ′, respectively, as t →∞.

Proof. From Eqs.(3.2) to (3.5) we have v1 ≥ S = v0 and v′1 ≥ S = v′0. Suppose vt−1 ≥
vt−2 and v′t−1 ≥ v′t−2. Then, Wt ≥ Wt−1, At ≥ At−1 and W ′

t ≥ W ′
t−1 from Eqs.(3.6) to

(3.8). Thus, vt = max{S, Wt, At} ≥ max{S, Wt−1, At−1} = vt−1 and v′t = max{S, W ′
t} ≥

max{S, W ′
t−1} = v′t−1. Accordingly, the monotonicities of vt and v′t in t hold. Further, the

monotonicities of Wt, At and W ′
t in t also hold from Eqs.(3.6) to (3.8). Now, since vt, v′t,

Wt, At and W ′
t are all bounded because they are all probabilities, it follows that their limits

as t →∞ exist. ¤
Lemma 4.2. Let U > S. Then,

(a) v′t = W ′
t for t ≥ 0;

(b) vt = max{Wt, At} for t ≥ 1;

(c) for t ≥ 1 we have At = r′ + λ′W ′
t−1, W ′

t = r + λW ′
t−1 and

W ′
t = r(1− λt−1)/(1− λ) + λt−1U ; (4.1)

(d) W ′ = r/(1− λ);

(e) W ′
t is strictly increasing in t for t ≥ 1;

(f) suppose that a certain t◦ (t◦ ≥ 1) exists such that vt◦ = At◦, then

1. if r/q ≥ r′/q′, then vt = Wt for t ≥ t◦ + 1;

2. if r/q < r′/q′, then vt = At for t ≥ t◦.
Proof. (a , b) Noting Eqs.(3.4) and (3.9), we have v′0 = W ′

0. From Lemma 4.1., Eq.(3.12)
and the assumption we get W ′

t ≥ W ′
1 = U > S and Wt ≥ W1 = U > S for t ≥ 1. Then,

v′t = W ′
t for t ≥ 1 due to Eq.(3.5), and vt = max{Wt, At} for t ≥ 1 due to Eq.(3.3).

(c , d) Using Eqs.(3.7), (3.8) and (a), we obtain At = r′ + λ′W ′
t−1 and W ′

t = r + λW ′
t−1

for t ≥ 1. Further, from Eq.(3.12) we get W ′
t = r(1 + λ + · · · + λt−2) + λt−1W ′

1 = r(1 −
λt−1)/(1− λ) + λt−1U for all t ≥ 1. Thus, from this we have W ′ = r/(1− λ) as t →∞.
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(e) From Lemma 4.1. and Eq.(3.12) we have U = W ′
1 ≤ W ′

t ≤ W ′ for t ≥ 1, i.e.,
W ′

1 ≤ W ′. If W ′
1 = W ′, then W ′

t = U for t ≥ 1. Thus, from this, Eqs.(3.8) and (3.10) we get
v′t−1 = S. Accordingly, S ≥ W ′

t−1 ≥ U from Eq.(3.5) and the result above, which contradicts
the assumption U > S. Consequently, it must be W ′

1 < W ′. Further, from W ′
1 < W ′ and (d)

we have r− (1−λ)W ′
1 > 0. Thus, noting (c), we get W ′

2−W ′
1 = r− (1−λ)W ′

1 > 0. Suppose
W ′

t−1 −W ′
t−2 > 0. Then, r − (1− λ)W ′

t−2 > 0. Therefore, W ′
t −W ′

t−1 = r − (1− λ)W ′
t−1 =

λ(r − (1− λ)W ′
t−2) > 0. Accordingly, W ′

t is strictly increasing in t.
(f) Suppose vt◦ = At◦ with t◦ ≥ 1. Then, Wt◦+1 = r + λAt◦ from Eq.(3.6).
(f1) Suppose r/q ≥ r′/q′. Then, from (c) we have

Wt◦+1 = r + λAt◦ = r + λ(r′ + λ′W ′
t◦−1) = r + r′λ + λλ′W ′

t◦−1, (4.2)

At◦+1 −Wt◦+1 = (r′ + λ′W ′
t◦)− (r + λAt◦)

= r′ + λ′(r + λW ′
t◦−1)− r − λ(r′ + λ′W ′

t◦−1) = r′q − rq′ ≤ 0, (4.3)

hence At◦+1 ≤ Wt◦+1. Further, from (b) we have vt◦+1 = Wt◦+1. Suppose vt−1 = Wt−1 for
t > t◦ + 1. Then, noting Eqs.(3.6) and (4.2), we have

Wt = r + λWt−1 = r(1 + λ + · · ·+ λt−t◦−2) + λt−t◦−1Wt◦+1

= r(1 + λ + · · ·+ λt−t◦−2) + λt−t◦−1(r + r′λ + λλ′W ′
t◦−1)

= r(1− λt−t◦)/(1− λ) + r′λt−t◦ + λ′λt−t◦W ′
t◦−1, t > t◦ + 1. (4.4)

Now, from (c) we get

W ′
t−1 = r + λW ′

t−2 = r(1− λt−t◦)/(1− λ) + λt−t◦W ′
t◦−1, t > t◦ + 1,

and further, using this and (c), we immediately obtain

At = r′ + λ′W ′
t−1 = r′ + rλ′(1− λt−t◦)/(1− λ) + λ′λt−t◦W ′

t◦−1, t > t◦ + 1. (4.5)

Therefore, it follows from Eqs.(4.4) and (4.5) that

At −Wt = (r′q − rq′)(1− λt−t◦)/(1− λ) ≤ 0, t > t◦ + 1,

i.e., At ≤ Wt. Thus, vt = Wt for t > t◦ + 1 due to (b). Accordingly, vt = Wt for t ≥ t◦ + 1.
(f2) Suppose r/q < r′/q′. Then, it follows from vt◦ = At◦ that the assertion holds for

t = t◦. Suppose vt−1 = At−1 for t > t◦. Then, noting (c) and Eq.(3.6), we obtain

At −Wt = (r′ + λ′W ′
t−1)− (r + λAt−1)

= r′ + λ′(r + λW ′
t−2)− r − λ(r′ + λ′W ′

t−2) = r′q − rq′ > 0,

i.e., At > Wt. Thus, vt = At for t > t◦ from (b). Accordingly, vt = At for t ≥ t◦. ¤

5. Analysis

In this section, we examine the properties of the optimal decision rule for the model, clas-
sifying combinations of the parameters, p, q, r, q′ and r′ into the following three cases:

Case 1 :

{
S ≥ U,

S > U ′,
Case 2 :

{
U ′ ≥ S,

U ′ ≥ U,
Case 3 :

{
U > S,

U > U ′,

which exclusively and exhaustively include all the combinations of the parameters. The
three cases mean the following: Suppose that the process starts from time 1. Then, the
cases 1, 2 and 3 imply that, storming for rescue, taking an action of negotiation and waiting
up to the time 0 are optimal, respectively.
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5.1. Case of S ≥ U and S > U ′

Theorem 5.1. Let S ≥ U and S > U ′. Then, vt = v′t = S for t ≥ 1.

Proof. Suppose S ≥ U and S > U ′. Then, v1 = v′1 = S from Eqs.(3.3), (3.5), (3.12) and
(3.13). Suppose vt−1 = v′t−1 = S. Then, from Eqs.(3.6) to (3.8), (3.10) and (3.11) we get
Wt = W ′

t = r + λS = U and At = r′ + λ′S = U ′. Thus, vt = v′t = S for t ≥ 1 due to
Eqs.(3.3) and (3.5). ¤
5.2. Case of U ′ ≥ S and U ′ ≥ U

Theorem 5.2. Let U ′ ≥ S and U ′ ≥ U .
(a) Suppose that U ≤ S. Then, v′t = S and vt = At for all t ≥ 1.
(b) Suppose that U > S. Then,

1. if r/q < r′/q′, then vt = At for t ≥ 1;
2. if r/q ≥ r′/q′, then v1 = A1 and vt = Wt for t ≥ 2.

Proof. Let U ′ ≥ S and U ′ ≥ U . Then, v1 = A1 from Eqs.(3.3), (3.12) and (3.13).
(a) Suppose U ≤ S. (i) From Eqs.(3.5) and (3.12) we have v′1 = S. By induction starting

with this, it can be proven that v′t = S for t ≥ 1 holds from Eqs.(3.5), (3.8) and (3.10). (ii)
Using v′t = S for t ≥ 1, Eqs.(3.7), (3.11) and the assumption U ′ ≥ S, we get

At = r′ + λ′v′t−1 = r′ + λ′S = U ′ ≥ S, t ≥ 1. (5.1)

Further, since v1 = A1, it follows that the assertion vt = At holds for t = 1. Suppose
vt−1 = At−1. Then, vt−1 = U ′ due to Eq.(5.1), and hence Wt = r+λU ′ from Eq.(3.6). Thus,
noting Eqs.(5.1) and (3.10), we have

At −Wt = U ′ − (r + λU ′) = (1− λ)U ′ − r ≥ (1− λ)S − r = S − U ≥ 0, t ≥ 1.

Accordingly, vt = At for t ≥ 1 due to Eqs.(3.5) and (5.1).
(b1) Suppose U > S and r/q < r′/q′. Then, from v1 = A1 and Lemma 4.2. (f2) with

t◦ = 1 we have vt = At for t ≥ 1.
(b2) Suppose U > S and r/q ≥ r′/q′. Then, from v1 = A1 and Lemma 4.2. (f1) with

t◦ = 1 we have vt = Wt for t ≥ 2. ¤
5.3. Case of U > S and U > U ′

In this case, we first define the symbol δ and parameter t
δ
, and further, give a lemma. They

will be used in Theorem 5.3. stated later.

δ = −(r′ − r)/(λ′ − λ), λ′ 6= λ, (5.2)

t
δ

= {t | W ′
t−1 < δ ≤ W ′

t}, t
δ
≥ 2 (5.3)

if it exists. It is clear from Lemma 4.2. (e) that the t
δ

is unique if it exists.
Lemma 5.1.

(a) If U > S and U > U ′, then Wt = W ′
t for t ≥ 1.

(b) If U > U ′ and λ′ > λ, then δ > 0.
(c) If U > S, λ′ > λ and δ < W ′, then r/q < r′/q′.

Proof. (a) Suppose U > S and U > U ′. Then, from Eqs.(3.3), (3.12) and (3.13) we have
v1 = W1 = W ′

1. Suppose vt−1 = Wt−1 = W ′
t−1. Then, Wt = r + λW ′

t−1 = W ′
t for t ≥ 1 due

to Eq.(3.6) and Lemma 4.2. (c).
(b) Since U > U ′, we have −(λ′ − λ)S > r′ − r due to Eqs.(3.10) and (3.11). Then, the

assumption λ′ > λ yields r′ < r due to S > 0. Thus, δ > 0 from Eq.(5.2).
(c) Suppose U > S. Then, from Lemma 4.2. (d) and Eq.(5.2) we get δ −W ′ = (rq′ −

r′q)/(1−λ)(λ′−λ). Thus, the assertion is true due to the assumption λ′ > λ and δ < W ′. ¤
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Theorem 5.3. Let U > S and U > U ′.

(a) Suppose that λ′ ≤ λ. Then, vt = Wt for t ≥ 1.

(b) Suppose that λ′ > λ. Then, δ > 0. Further,

1. if W ′ ≤ δ, then vt = Wt for t ≥ 1;

2. if U < δ < W ′, then there exists a unique t
δ

(t
δ
≥ 2) such that vt = Wt for

1 ≤ t ≤ t
δ

and vt = At for t > t
δ
;

3. if δ ≤ U , then v1 = W1 and vt = At for t ≥ 2.

Proof. Let U > S and U > U ′. Then, v1 = W1 from Eqs.(3.3), (3.12) and (3.13).
(a) Suppose λ′ ≤ λ. Then, from Lemmas 5.1. (a), 4.2. (c), 4.1., Eqs.(3.12) and (3.10) we

have

At −Wt = At −W ′
t = (r′ + λ′W ′

t−1)− (r + λW ′
t−1)

= (λ′ − λ)W ′
t−1 + r′ − r ≤ (λ′ − λ)U + r′ − r

< (λ′ − λ)S + r′ − r = U ′ − U < 0, t ≥ 2.

Hence, vt = Wt for t ≥ 2 due to Lemma 4.2. (b). Accordingly, vt = Wt for t ≥ 1.
(b) Suppose λ′ > λ. Then, from Lemma 5.1. (b) we get δ > 0.
(b1) Suppose W ′ ≤ δ. Then, W ′

t ≤ δ for all t ≥ 1 due to Lemma 4.1.. Hence, from
Eq.(5.2) we get (λ′ − λ)W ′

t−1 + r′ − r ≤ 0 for t ≥ 2. From this, Lemmas 5.1. (a) and 4.2. (c)
we can obtain

At −Wt = At −W ′
t = (λ′ − λ)W ′

t−1 + r′ − r ≤ 0, t ≥ 2.

Hence, vt = Wt for t ≥ 2 due to Lemma 4.2. (b). Accordingly, vt = Wt for t ≥ 1.
(b2) Suppose U < δ < W ′. Then, from Lemma 5.1. (c) we have r/q < r′/q′, and from

Eq.(3.12) we have W ′
1 < δ < W ′. Therefore, it is from Lemma 4.2. (e) and Eq.(5.3) that

there must exist a unique t
δ

(t
δ
≥ 2). Hence, W ′

t < δ for 1 ≤ t < t
δ

and W ′
t ≥ δ for t ≥ t

δ
,

i.e., W ′
t−1 < δ for 2 ≤ t ≤ t

δ
and W ′

t ≥ δ for t ≥ t
δ
. From these and Eq.(5.2) we get

(λ′ − λ)W ′
t−1 + r′ − r < 0, 2 ≤ t ≤ t

δ
, (5.4)

(λ′ − λ)W ′
t + r′ − r ≥ 0, t ≥ t

δ
. (5.5)

Using Lemmas 5.1. (a), 4.2. (c) and Eq.(5.4), we obtain

At −Wt = At −W ′
t = (λ′ − λ)W ′

t−1 + r′ − r < 0, 2 ≤ t ≤ t
δ
.

Hence, vt = Wt = W ′
t for 2 ≤ t ≤ t

δ
due to Lemma 4.2. (b). Accordingly, vt = Wt for

1 ≤ t ≤ t
δ
. Further, from Eq.(3.6) we have Wt

δ
+1 = r + λW ′

t
δ
. Noting Lemma 4.2. (c) and

Eq.(5.5), we get At
δ
+1 − Wt

δ
+1 = (λ′ − λ)W ′

t
δ

+ r′ − r ≥ 0. Hence, vt
δ
+1 = At

δ
+1 due to

Lemma 4.2. (b). Therefore, it is from r/q < r′/q′ and Lemma 4.2. (f2) with t◦ = t
δ
+ 1 that

vt = At for t ≥ t
δ
+ 1, i.e., t > t

δ
.

(b3) Suppose δ ≤ U . Then, δ ≤ U = W ′
1 ≤ W ′

t for t ≥ 1 due to Lemma 4.1.. Hence,
W ′

t−1 ≥ δ for t ≥ 2. Further, from Eq.(5.2) we have (λ′ − λ)W ′
t−1 + r′ − r ≥ 0 for t ≥ 2.

Thus, from this, Lemmas 5.1. (a) and 4.2. (c) we get

At −Wt = At −W ′
t = (λ′ − λ)W ′

t−1 + r′ − r ≥ 0, t ≥ 2.

Accordingly, vt = At for t ≥ 2 Lemma 4.2. (b). ¤
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6. Conclusions

Note that an action of negotiation has not yet been taken at time t when the hostage taking
occurs. Accordingly, by the definition of model, at that time t, it is sufficient to consider
only vt. Once the action of negotiation is taken at a certain time t′ (t′ ≤ t), it is sufficient
to consider only v′t′′ for t′′ ≤ t′ thereafter so long as the hostage is not released. Therefore,
from Theorems 5.1., 5.2., 5.3. and Lemma 4.2. (a), it is seen that this model reveal that any
one of the following five decisions is optimal.
DE-A Storm for rescue immediately.

DE-B Take an action of negotiation, and if the hostage is not released up to the next time,
i.e., time t− 1, then storm for rescue at time t− 1.

DE-C Take an action of negotiation, and if the hostage is not released up to the next time,
i.e., time t− 1, then wait from time t− 1 to the deadline.

DE-D Wait up to the deadline.

DE-E Wait up to time 1 and take an action of negotiation at time 1, and if the hostage is
not released up to the deadline, then storm for rescue at the deadline.

Further, after analyzing Theorems 5.1., 5.2., 5.3. and Lemma 4.2. (a), we can exhaustively
prescribe the optimal decision rules of this model by using the above five decisions as follows.
Optimal Decision Rule 6.1.

(a) Suppose that S ≥ U and S > U ′. Then, DE-A is optimal for t ≥ 1 (see Theo-
rem 5.1.).

(b) Suppose that U ′ ≥ S and U ′ ≥ U .

1. Suppose that U ≤ S. Then, DE-B is optimal for t ≥ 1 (see Theorem 5.2. (a)).

2. Suppose that U > S. Then,

i. if r/q < r′/q′, then DE-C is optimal for t ≥ 1 (see Theorem 5.2. (b1) and
Lemma 4.2. (a));

ii. if r/q ≥ r′/q′, then DE-B is optimal for t = 1 and DE-E is optimal for t ≥ 2
(see Theorem 5.2. (b2)).

(c) Suppose that U > S and U > U ′.

1. Suppose that λ′ ≤ λ. Then, DE-D is optimal for t ≥ 1 (see Theorem 5.3. (a)).

2. Suppose that λ′ > λ. Then,

i. if W ′ ≤ δ, then DE-D is optimal for t ≥ 1 (see Theorem 5.3. (b1));

ii. if U < δ < W ′, then there exists a unique t
δ

(t
δ
≥ 2), and hence DE-D is

optimal for 1 ≤ t ≤ t
δ

and DE-C is optimal for t > t
δ

(see Theorem 5.3. (b2)
and Lemma 4.2. (a));

iii. if δ ≤ U , then DE-D is optimal for t = 1 and DE-C is optimal for t ≥ 2 (see
Theorem 5.3. (b3) and Lemma 4.2. (a)).

Here, we will introduce the concept of myopic property used in later discussion.
In general, an optimal decision rule of a sequential decision process depends on time

t. However, for some cases, the optimal decision becomes independent of time t although
such cases are rare. In these cases, the optimal decision rule for any time t is the same as
that for time 1. This implies that it is optimal to behave always as if only a single period
of planning horizon remains; in other words, it is optimal to behave always as if the next
point in time is the deadline. This property is usually called as the myopic property [1]. We
may note that it is quite a singular property.

In this paper we adopt a definition of myopic property that differs from the conventional
one mentioned above. By T let us denote a given set of time t for a specified optimal decision
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rule, if it is optimal to behave for all t ∈ T as if only τ periods remain up to the deadline,
then let the optimal decision rule be said to be a τ -myopic property on T . Accordingly,
it follows that the conventional definition of the myopic property is ‘1-myopic property on
T = {1, 2, · · ·}’.

Now, in order to make the Optimal Decision Rule 6.1. more understandable, let us
summarize it as in Table 1. In the table, let DE-XT imply that DE-X is optimal for all t for
which the statement T (referring to a time t when the hostage event occurs) is true.

Table 1: Summary of optimal decision rules.

S ≥ U , S > U ′ DE-At≥1 : 1-myopic on [1, 2, · · ·)
U ≤ S DE-Bt≥1 : 1-myopic on [1, 2, · · ·)

U ′ ≥ S, U ′ ≥ U

r/q < r′/q′ DE-Ct≥1 : 1-myopic on [1, 2, · · ·)
U > S

r/q ≥ r′/q′
DE-Bt=1
DE-Et≥2 : 2-myopic on [2, 3, · · ·)

λ′ ≤ λ DE-Dt≥1 : 1-myopic on [1, 2, · · ·)
W ′ ≤ δ DE-Dt≥1 : 1-myopic on [1, 2, · · ·)

U > S, U > U ′ U < δ < W ′
DE-D1≤t≤t

δ
: 1-myopic on [1, t

δ
]

λ′ > λ DE-Ct>t
δ

: (t
δ
+ 1)-myopic on [t

δ
+ 1, t

δ
+ 2, · · ·)

δ ≤ U

DE-Dt=1
DE-Ct≥2 : 2-myopic on [2, 3, · · ·)

Note : t
δ

can be calculated by using Eqs.(4.1) and (5.3).

It should be noted in Table 1 that
A. For a certain space of parameters, there exists at most one critical point in time at which

the optimal decision changes from one to another. It is either 1 or t
δ
.

B. In order to demonstrate how to interpret the contents of the table, let us take one of the
cells as example.

If U > S, U > U ′, λ′ > λ and U < δ < W ′, then DE-D1≤t≤t
δ
, DE-Ct>t

δ
is optimal.

This implies that: when a hostage event occurs at time t, and the combination of p, q,
r, q′ and r′ satisfies such the condition that U > S, U > U ′, λ′ > λ and U < δ < W ′, we
first calculate t

δ
by using Eqs.(4.1) and (5.3). If 1 ≤ t ≤ t

δ
, then DE-D is optimal and

1-myopic on [1, t
δ
]; if t > t

δ
, then DE-C is optimal and (t

δ
+ 1)-myopic on [t

δ
+ 1, t

δ
+ 2,

· · ·).
C. As seen in Table 1, the optimal decision rule of this model has the myopic property that

we defined.

7. Future Studies

Taking different real hostage situations into account, we feel that there is a need to modify
the model from the following viewpoints:
1. We should consider the case where the effectiveness of an action of negotiation decreases

gradually after it was taken.

2. In real hostage events, several acts of negotiation are available, in which the problem
therefore arises as to when and what action of negotiation should be taken.

3. The author examined the case with more than one hostage in [2], which should be
generalized by introducing simple or multiple actions of negotiation.

4. In many real cases, the perpetrator(s) operate with confused motives. This causes the
probabilities p, q, and r to change randomly from one minute to the next. This consid-
eration leads us to the model in which p, q, r, q′, and r′ are random variables with a
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known or unknown distribution function. When it is unknown, we can and must update
its unknown parameters by using Bayes’ theorem.

5. In many real cases, the deadline is not always definite; in other words, it should be
regarded as a random variable. A model with this assumption should be examined in
the future.

6. In order for our models to be more realistic and effective, the probabilities p, q, r, q′,
and r′ must be measured and known in advance for each hostage crisis. Although such a
measurement would be a very difficult task, it should be tackled through the united efforts
of researchers in different fields, say, statisticians, psychologists, sociologists, political
scientists, engineers, and so on.

Acknowledgements

The author would like to express her gratitude to Associate Professor Seizo Ikuta of the
University of Tsukuba and the corresponding referees for their constructive suggestions and
comments. The author would also like to thank the Rotary Yoneyama Memorial Foundation,
Inc., Japan for its support.

References

[1] D. P. Heyman and M. J. Sobel: Stochastic Models in Operations Research (McGraw-Hill
Book Company, 1982).

[2] F. Shi: An optimal hostage rescue problem. European Journal of Operational Re-
search (in press).

[3] F. Shi: Optimal hostage rescue problem where an action can only be taken once –
case where its effectiveness lasts up to the deadline –. Discussion Paper Series, No. 947
(Institute of Policy and Planning Sciences, University of Tsukuba, Japan, 2001).

[4] Man takes NHK staff hostage. The Japan Times (January 19, 2002).

[5] Hijacked Russian jet lands in Saudi city. The Japan Times (March 16, 2001);
Saudis storm hijacked plan. The Japan Times (March 17, 2001).

[6] Man takes hostage in H.K. airport. The Japan Times (August 2, 2000).

[7] Domestic Spanish flight hijacker surrenders to police. The Japan Times (June 24, 1998).

Fengbo Shi
School of Business
Zhongshan University
135 Xin gang xi Road, Guangzhou
Guangdong Province 510275, China
E-mail: s fengbo@hotmail.com

c© Operations Research Society of JapanJORSJ (2003) 46-1




