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Abstract In this paper we deal with strong stability of stationary solutions of nonlinear positive semidefinite
programs. We prove two convergent properties of matrices sequences, and we give a sufficient condition
for strong stability under the Linear Independence Constraint Qualification (LICQ) and the transversality
condition.
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1. Introduction

In this section we introduce nonlinear positive semidefinite programs. For its definition we
prepare some notations:

R : the field of all real numbers,

R` : the ` dimensional Euclidean space,

M(m,n) : the set of all m× n real matrices,

M(n) : the set of all n× n real matrices,

S(n) : the set of all n× n symmetric real matrices,

S+(n) : the set of all n× n positive semidefinite symmetric real matrices,

S−(n) : the set of all n× n negative semidefinite symmetric real matrices,

Sr,s(n) : the set of all n× n symmetric real matrices with r positive eigenvalues

and s negative eigenvalues,

O(n) : the set of all n× n orthogonal real matrices,

D(n) : the set of all n× n diagonal real matrices,

Diag(γ1, · · · , γn) : an n× n diagonal matrix whose (i, i) component is γi (1 ≤ i ≤ n),

XT : the transposition of the matrix X,

A •B : the trace form of m× n matrices A = (aij) and B = (bij), i.e.,

A •B =
m∑

i=1

n∑

j=1

aijbij,

t+ = max{t, 0} for a real number t,

t− = min{t, 0} for a real number t,
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int(A) : the interior of a subset A of a topological space X,

c`(A) : the closure of a subset A of a topological space X,

A+B = {a+ b : a ∈ A, b ∈ B} for subsets A and B of a vector space V,

F = {(f, h) = (f, h1, · · · , h`) : f, h1, · · · , h` ∈ C2(S(n))},
where C2(S(n)) is the set of all functions on S(n) of C2 class.

Linear positive semidefinite programs (LSDP) are defined as follows:

Pro(1)(A, b,C)

∥∥∥∥∥∥∥

minimize C •X
subject to X ∈ S+(n)

Ai •X = bi (i = 1, · · · , `)




, (1)

where C,Ai ∈ S(n) (1 ≤ i ≤ `) and b = (b1, · · · , b`) ∈ R`.

LSDP has intensively been studied for this decade. For details, we recommend the
bibliography of the paper [8].

We identify functions on S(n) as those on M(n) satisfying f(X) = f(XT ) (∀X ∈
M(n)). In this situation, it is easily seen that DXf(X) ∈ S(n). We refer to the following
programs as nonlinear positive semidefinite programs (NSDP):

Pro(2)(f, h)

∥∥∥∥∥∥∥

minimize f(X)
subject to X ∈ S+(n),

hi(X) = 0 (i = 1, · · · , `).




, (2)

where (f, h) ∈ F .

In the paper [7] Kojima introduced for the first time the concept of strong stability
of nonlinear programs which have finite equality constraints hi(x) = 0 (i = 1, · · · , `) and
finite inequality constraints gj(x) ≥ 0 (j = 1, · · · ,m) with hi(x) and gj(x) twice continuous
differentiable functions on Rn and satisfying the so called Mangasarian-Fromovitz condition,
and gave an algebraic condition which is necessary and sufficient for strong stability by means
of Jacobian and Hessian matrices. However, since LSDP and NSDP do not have such finite
inequality constraints of C2 class, we cannot apply Kojima’s theory directly to LSDP and
NSDP.

Definition 1.1. Let X ∈ S+(n). The normal cone σ(X) of S+(n) at X is defined by
σ(X) = {G ∈ S(n) : (Y −X)•G ≤ 0 (∀Y ∈ S+(n))} and Rσ(X) denotes the affine space
spanned by σ(X).

Or and Er denote the r × r zero matrix and the r × r identity matrix respectively,
and O without index denotes the zero matrix of an appropriate size. For S ⊂ S(r) and

T ⊂ S(n − r), we define a set S × T =
{(

A O
O B

)
: A ∈ S,B ∈ T

}
. We abbreviate

{Or} × Sn−r(n) to Or × Sn−r(n). The next lemma is easily proved and we omit its proof.

Lemma 1.2. Let X ∈ S+(n). Then the following (i), (ii), and (iii) hold.

(i) σ(X) = {G ∈ S−(n) : G •X = 0}.
(ii) σ(PXP T ) = Pσ(X)P T = {PGP T : G ∈ σ(X)} holds for any P ∈ O(n).

(iii) Let X ∈ S+(n) and rankX = r. Suppose X = PΓP T , where P ∈ O(n) and
Γ = Diag(α1, · · · , αr, 0, · · · , 0) with α1, · · · , αr > 0. Then σ(X) = P (Or×S−(n−r))P T .
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According to Sylvester’s inertia law ([9]), for X,Y ∈ Sr,s(n), there exists a nonsingular
matrix G satisfying Y = GXGT . By taking a local coordinate system as in the proof
of Lemma 1.3 below, it is easily seen that Sr,s(n) is an (r+s)(2n−r−s+1)

2
dimensional C∞

submanifold of S(n). Denote by TXSr,s(n) the tangent space of the manifold Sr,s(n) at
X ∈ Sr,s(n) and by (TXSr,s(n))⊥ = {Z ∈ S(n) : Z • Y = 0 (∀Y ∈ TXSr,s(n))} the
orthogonal complementary space of TXSr,s(n) in S(n) with respect to the inner product
defined by the trace form. The next lemma plays an important role in proving Lemma 2.24.

Lemma 1.3. Let X ∈ Sr,0(n) and suppose that X = P
(

Γ11 O
O O

)
P T , where P ∈ O(n)

and Γ11 ∈ Sr,0(r). Then the following (i) and (ii) hold.

(i) TXSr,0 =

{
P

(
Ẏ 11 Ẏ

T

21

Ẏ 21 O

)
P T : Ẏ 11 ∈ S(r) and Ẏ 21 ∈M(n− r, r)

}
.

(ii) Rσ(X) = (TXSr,0)
⊥.

Proof: From the representation X as X = P
(

Γ11 O
O O

)
P T ,

W(X) =
{
P

(
Y 11 Y T

21

Y 21 Y 21Y
−1
11 Y T

21

)
P T : Y 11 ∈ Sr,0(r) and Y 21 ∈M(n− r, r)

}
is an open

neighborhood of X in Sr,0(n), which implies that Sr,0(n) is a smooth submanifold of S(n).
Since we can take (Y 11,Y 21) ∈ Sr,0(r)×M(n−r, r) as a local coordinate system of Sr,0(n)
around X, it is easily proved that

TXSr,0 =

{
P

(
Ẏ 11 Ẏ

T

21

Ẏ 21 O

)
P T : Ẏ 11 ∈ S(r) and Ẏ 21 ∈M(n− r, r)

}
.

Hence (TXSr,0)
⊥ = P (Or × S(n − r))P T holds. On the other hand, Rσ(X) = P (Or ×

S(n − r))P T holds immediately from Lemma 1.2, which implies the assertion of this
lemma.

2. Strong Stability of Stationary Solutions of the Program Pro(2)(f, h) under
the LICQ Condition

In this section we investigate strong stability of stationary solutions of the program Pro(2)(f, h).
We will prove some convergent properties of matrix sequences by the inequality estimate
which follows from Lemma 1.3, and by their means we will give a sufficient condition for
strong stability in the sense of Kojima for stationary solutions of Pro(2)(f, h) under the
LICQ condition.

Definition 2.1.

(1) Let Z ∈ S(n). We define Z+ ∈ S+(n) and Z− ∈ S−(n) as follows. First we
represent Z as Z = PΓP T with P ∈ O(n) and Γ = Diag(γ1, · · · , γn). Then define
Γ+ = Diag(γ+

1 , · · · , γ+
n ), Γ− = Diag(γ−1 , · · · , γ−n ), Z+ = PΓ+P T and Z− = PΓ−P T .

Those definitions of Z+ and Z− are independent of the representation Z = PΓP T .
In fact, if Q ∈ O(n) and M ∈ D(n) with QΓQT = M , then it is easily proved that
QΓ+QT = M+ and QΓ−QT = M− hold. This leads to the well-definedness of Z+ and
Z−.

(2) We define ρ+, ρ− : S(n) → S(n) by ρ+(Z) = Z+ and ρ−(Z) = Z−.

Define ‖X‖ =
√

X •X for X ∈ S(n). ‖ · ‖ is clearly a norm on S(n). The following
lemma is well-known and it characterizes Z+ and Z− ([9]).
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Lemma 2.2. Let Z ∈ S(n) and P ∈ O(n). Then following (i),(ii), and (iii) hold.

(i) (PZP T )+ = PZ+P T and (PZP T )− = PZ−P T .
Z+ ∈ S+(n),Z− ∈ S−(n) and Z+ •Z− = 0.

(ii) Z+ is a unique matrix Y ∈ S+(n) that minimizes ‖Y −Z‖.
(iii) Z− is a unique matrix Y ∈ S−(n) that minimizes ‖Y −Z‖.

From the lemma we can see that Z+ and Z− are continuous with respect to Z.

Definition 2.3. LetH = {(X,G) ∈ S(n)×S(n) : X ∈ S+(n) and G ∈ σ(X)}. Then from
Lemma 1.2, H = {(X,G) ∈ S(n) × S(n) : X ∈ S+(n) and G ∈ S−(n) and X •G = 0}.
We define η : H → S(n), ρ : S(n) → H by η(X,G) = X + G and η(Z) = (Z+,Z−).

Both ρ and η are continuous, and it is easily proved that ρ ◦ η = Id and η ◦ ρ = Id,
where Id’s denote the identity maps on appropriate spaces. The next lemma follows from
these relations.

Lemma 2.4. H and S(n) are homeomorphic to each other by ρ and η.

Remark 2.5. Let (X,G) ∈ H and Z = X + G. Since both (PZP T )+ = PXP T

and (PZP T )− = PGP T hold for P ∈ O(n), it is easily seen that X and G can be
simultaneously diagonalized, i.e., there exists P ∈ O(n) satisfying PXP T ,PGP T ∈ D(n).

Definition 2.6. Let (f, h) ∈ F . RDXh(X) denotes the affine space spanned by {DXhi(X) :
i = 1, · · · , `}. Then X̄ ∈ S+(n) is called a stationary solution of the program Pro(2)(f, h)
if −DXf(X̄) ∈ RDXh(X̄) + σ(X̄) holds. Also (X̄, Ḡ, λ̄) ∈ H ×R` is called a stationary
point of the program Pro(2)(f, h) if DXf(X̄)+

∑`
i=1 λ̄iDXhi(X̄)+Ḡ = O holds. Identifying

H× F with S(n) × F by Lemma 2.4, (Z̄, λ̄) ∈ S(n) ×R` is also called a stationary point
of the program Pro(2)(f, h) if (ρ(Z̄), λ̄) is a stationary point of the program Pro(2)(f, h).

We prepare some notations for the remainder of this paper. For (f, h) ∈ F , we define
φ(·, ·, ·; f, h) : S(n) × S(n) × R` → S(n) × R`, ψ(·, ·; f, h) = φ(·, ·, ·; f, h) ◦ (ρ × Id) :
S(n)×R` → S(n)×R`, Ω ⊂ S(n)×R` ×F , Ξ ⊂ S(n)×F and χ : Ω → Ξ as follows.

φ(X,G, λ; f, h) = (DXf(X) +
∑̀

i=1

λiDXhi(X) + G, h(X)),

ψ(Z, λ; f, h) = φ(Z+,Z−, λ; f, h)

= (DXf(Z+) +
∑̀

i=1

λiDXhi(Z
+) + Z−, h(Z+)),

Ω =

{
(Z, λ, f, h) ∈ S(n)×R` ×F :

(Z, λ) is a stationary point of
Pro(2)(f, h)

}

= {(Z, λ, f, h) ∈ S(n)×R` ×F : ψ(Z, λ, f, h) = (O,0)},
where 0 denotes the zero vector of R`,

Ξ = {(X, f, h) ∈ S(n)×F : X is a stationary solution of Pro(2)(f, h)},
χ(Z, λ, f, h) = (Z+, f, h), i.e., χ : Ω → Ξ is a natural projection.

Remark 2.7. It is easily seen that (X̄, Ḡ, λ̄) ∈ H×R` is a stationary point of the program
Pro(2)(f, h) if and only if φ(X̄, Ḡ, λ̄; f, h) = (O,0), and that (Z̄, λ̄) ∈ S(n) × R` is a
stationary point of the program Pro(2)(f, h) if and only if ψ(Z̄, λ̄; f, h) = (O,0).
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Let eij ∈ M(n) be the elementary matrix whose (i, j)-component is 1 and other com-
ponents are all 0’s. Then the Jacobian matrix of f ∈ C2(S(n)) can be represented as

DXf(X) =
n∑

i=1

n∑

j=1

Dxij
f(X)eij ∈ S(n),

and the Hessian matrix of f can be represented as

D2
Xf(X) =

n∑

p=1

n∑

q=1

n∑

i=1

n∑

j=1

DxpqDxij
f(X)epq ⊗ eij ∈ S(n)⊗ S(n),

where ⊗ denotes the Kronecker product ([3]). In this situation, for symmetric matrices
A = (apq) and Y = (yij), we obtain

A •D2
Xf(X) =

n∑

p=1

n∑

q=1

n∑

i=1

n∑

j=1

apqDxpqDxij
f(X)eij ∈ S(n), and

A •D2
Xf(X) • Y =

n∑

p=1

n∑

q=1

n∑

i=1

n∑

j=1

apqyijDxpqDxij
f(X) ∈ R.

The norms ‖DXf(X)‖ and ‖D2
Xf(X)‖ are induced by the trace form, i.e.,

‖DXf(X)‖ =

√√√√
n∑

i=1

n∑

j=1

|Dxij
f(X)|2, and

‖D2
Xf(X)‖ =

√√√√
n∑

p=1

n∑

q=1

n∑

i=1

n∑

j=1

|DxpqDxij
f(X)|2.

For f ∈ C2(S(n)) and a subset B ⊂ S(n), a norm ‖f‖B is defined by

‖f‖B = sup{|f(X)|, ‖DXf(X)‖, ‖D2
Xf(X)‖ : X ∈ B}.

For (f, h) ∈ F and a subset B ⊂ S(n), a norm ‖ · ‖B is defined by

‖(f, h)‖B = max{‖f(X)‖B , ‖hi(X)‖B : 1 ≤ i ≤ `}.
We denote by FB the space F with ‖ · ‖B-topology.

In general, given a normed vector space V with its norm ‖ ·‖, we define a closed ball and
an open ball by Bδ(x) = {y ∈ V : ‖y− x‖ ≤ δ} and int(Bδ(x)) = {y ∈ V : ‖y− x‖ < δ} for
x ∈ V and a positive real number δ > 0.

Definition 2.8. ([7]) Let X̄ ∈ S+(n) be a stationary solution of Pro(2)(f̄ , h̄). X̄ is said to
be strongly stable if there exists δ∗ > 0 satisfying the following statement (*).

(*) For any real number δ with 0 < δ ≤ δ∗, there exists a real number α(δ) > 0 such
that, for all (f, h) ∈ F satisfying ‖(f, h)− (f̄ , h̄)‖

Bδ∗ (X̄)< α(δ), Pro(2)(f, h) has a unique

stationary solution in Bδ(X̄).

Remark 2.9. In the above statement (*), if we take α(δ) satisfying 0 < α(δ) ≤ α(δ∗) , we
see that Pro(2)(f, h) has a unique stationary solution X in Bδ∗(X̄) and that X ∈ Bδ(X̄)
for all (f, h) ∈ F satisfying ‖(f, h)− (f̄ , h̄)‖

Bδ∗ (X̄)< α(δ).

From this remark, the above definition of strong stability is readily rephrased as follows.
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Definition 2.10. Let X̄ ∈ S+(n) be a stationary solution of Pro(2)(f̄ , h̄). X̄ is said to be
strongly stable if there exist a neighborhood U = Bδ∗(X̄) of X̄ in S(n) and a neighborhood
V of (f̄ , h̄) in FU such that the natural projection pr : Ξ

⋂
(U × V ) → V is bijective and

pr−1 : V → Ξ
⋂

(U × V ) is continuous at (f̄ , h̄).

Next we introduce another stability which is a little stronger in its definition than strong
stability.

Definition 2.11. Let X̄ ∈ S+(n) be a stationary solution of Pro(2)(f̄ , h̄). X̄ is said to
be strictly strongly stable if there exist a neighborhood U = Bδ∗(X̄) of X̄ in S(n) and a
neighborhood V of (f̄ , h̄) in FU such that the natural projection pr : Ξ

⋂
(U × V ) → V is a

homeomorphism.

We will investigate relations between these stabilities for a while. The next condition is
called the Mangasarian-Fromovitz condition.

Condition 2.12.

(i) DXhi(X) (1 ≤ i ≤ `) are linearly independent.
(ii) There exists W ∈ S(n) satisfying

(a) DXhi(X) •W = 0 (1 ≤ i ≤ `)
(b) G •W > 0 (∀G ∈ σ(X) : G 6= O).

Proposition 2.13. Under Condition 2.12, strong stability is equivalent to strictly strong
stability.

Proof: Strictly strong stability obviously implies strong stability. We prove only the
converse below. Let X̄, f̄ , h̄, pr, U, V be as in Definition 2.10. Since pr : Ξ

⋂
(U × V ) → V

is bijective, for any (f, h) ∈ V there exists a unique element X ∈ U such that (X, f, h) ∈
Ξ. Then define τ(f, h) = X, i.e., we define τ : V → U by a relation pr−1(f, h) =
(τ(f, h), f, h) (∀(f, h) ∈ V ). Take a relatively compact neighborhood U0 of X̄ = τ(f̄ , h̄)
with c`(U0) ⊂ U . Because of the continuity of τ at (f̄ , h̄), there exists a neighborhood V0

of (f̄ , h̄) in FU satisfying V0 ⊂ V and τ(V0) ⊂ U0. In the below we will prove that pr−1 is
continuous on V0.

On the contrary suppose there should exist (f, h) ∈ V0 where pr−1 is not continuous.
Then we may assume that there exists a sequence (X(k), f (k), h(k)) ∈ Ξ

⋂
(U0×V0) satisfying

lim
k→∞

(f (k), h(k)) = (f, h) in FU and that the sequence X(k) does not converge to X =

τ(f, h). Choose a sequence (Z(k), λ(k), f (k), h(k)) ∈ Ω such that Z(k)+ = X(k). Since c`(U0)
is compact, taking a subsequence we may assume that lim

k→∞
Z(k)+ = lim

k→∞
X(k) exists =

X̂ ∈ c`(U0) ⊂ U . We have to consider the following two cases (a) and (b).
(a): In case that {(Z(k), λ(k)) : k = 1, 2, · · ·} is a bounded set of S(n) × R`, taking a
subsequence we may assume that lim

k→∞
(Z(k), λ(k)) exists = (Z, λ). Then (Z, λ, f, g) ∈

Ω
⋂

((ρ+)−1(U)×R` × FU) is easily proved, which means X̂ = Z+ = τ(f, g) = X. This
contradicts X̂ 6= X.
(b): In case that {(Z(k), λ(k)) : k = 1, 2, · · ·} is not a bounded set of S(n) × R`, taking
a subsequence we may assume lim

k→∞
‖(Z(k)−, λ(k))‖ = ∞. Taking a subsequence again,

we may assume lim
k→∞

(Z(k)−, λ(k))

‖(Z(k)−, λ(k))‖ exists = (Z−, λ) 6= (O,0). It is easily seen that

Z− ∈ σ(Z+). Since (Z(k), λ(k), f (k), h(k)) ∈ Ω, it follows that

DXf
(k)(Z(k)+) +

∑`
i=1 λ

(k)
i DXh

(k)
i (Z(k)+) + Z(k)−

‖(Z(k)−, λ(k))‖ = O.
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Taking a limit we have
∑`

i=1 λiDXhi(Z
+) + Z− = O, which contradicts Condition 2.12.

We have proved the continuity of τ and pr−1 at (f, h).
Hirabayashi et al.[5] pointed out that Condition 2.12 holds for every strongly stable

point when linearly constrained nonlinear programs are concerned. We refer to the part (i)
of Condition 2.12 as Condition 2.14.

Condition 2.14. DXhi(X) (1 ≤ i ≤ `) are linearly independent.

Under Condition 2.14, N (h) = {X ∈ S(n) : hi(X) = 0 (1 ≤ i ≤ `)} is an (n(n+1)
2

− `)
dimensional C2 submanifold of S(n).

Condition 2.15. Suppose that Condition 2.14 holds. Let X ∈ Sr,0(n)
⋂N (h). Denote

tangent spaces of manifolds N (h), Sr,0(n), and S(n) at X by TXN (h), TXSr,0(n), and
TXS(n) respectively. If TXN (h)+TXSr,0(n) = TXS(n) is satisfied, then we state that N (h)
and Sr,0(n) intersect transversally at X ([2][11]).

Since the orthogonal complementary space of TXSr,0(n) is Rσ(X) from Lemma 1.3,
Condition 2.15 is equivalent to that RDXh(X)

⋂
Rσ(X) = {O}. It is easily seen that

a pair of Conditions 2.14 and 2.15 is stronger than Condition 2.12 and takes a role in
the program Pro(2)(f, h) as the LICQ condition does in the setting of the paper [7]. We
assume Conditions 2.14 and 2.15 throughout in the remainder of this paper. Under these
two conditions, any stationary solution corresponds to a unique stationary point. In fact,
we can prove the next proposition. In order to prove Proposition 2.17, we need the next
lemma whose proof is easy.

Lemma 2.16. Let A = (aij) ∈ M(n) and Γ = Diag(γ1, · · · , γn). Suppose that there exist
indices p, q such that γp 6= γq. Then AΓ = ΓA implies apq = aqp = 0.

Proposition 2.17. Under Conditions 2.14 and 2.15, for any subset U ⊂ S(n),
χ : Ω

⋂
((ρ+)−1(U)×R` ×FU) → Ξ

⋂
(U ×FU) is a homeomorphism.

Proof: Since χ is bijective, it suffices to prove the continuity of χ−1 with respect
to (Z+, f, h). Therefore we will prove that Z− and λ are continuous with respect to

(Z+, f, h) in the below. Let k = (n−r)(n−r+1)
2

and Grass(k, S(n)) be a Grassmannian
manifold which consists of all linear subspaces of dimension k in S(n). Suppose that

(Z̄
+
, f̄ , h̄) ∈ Ξ

⋂
(U ×FU) and that X̄ = Z̄

+ ∈ Sr,0(n), i.e., rankX̄ = r. Let us represent

X̄ = Z̄
+

= P̄ Γ̄P̄
T

with Γ̄ = Diag(γ̄1, · · · , γ̄r, 0, · · · , 0) and P̄ ∈ O(n). Set γ̄r+1 = · · · =
γ̄n = 0. Define an open neighborhood U1(ε) of X̄ by U1(ε) = {PDiag(γ1, · · · , γn)P T : P ∈
O(n) and |γi − γ̄i| < ε (∀i = 1, · · · , n)}. Choose ε with 0 < ε < 1

2
min{γ̄i : 1 ≤ i ≤ r}.

Now suppose that PDiag(γ1, · · · , γn)P T ∈ U1(ε) for P ∈ O(n) with γ1 ≥ · · · ≥ γn.
Then γi 6= γj (1 ≤ ∀i ≤ r < ∀j ≤ n) follows from the definition of U1(ε). Therefore if
PDiag(γ1, · · · , γn)P T = QDiag(γ1, · · · , γn)QT , or equivalently Diag(γ1, · · · , γn)P T Q =
P T QDiag(γ1, · · · , γn) holds for P ,Q ∈ O(n), then we can derive from Lemma 2.16 that
P T Q ∈ O(r) × O(n − r). Hence P (Or × S(n − r))P T = Q(Or × S(n − r))QT . Define
two continuous distributions V and W on U1(ε), i.e., two continuous maps V : U1(ε) →
Grass(`, S(n)) and W : U1(ε) → Grass(k, S(n)) by

V X = RDXh(X), and
W X = P (Or × S(n− r))P T

=
{
P

(
O O
O C

)
P T : C ∈ S(n− r)

}

for X = PDiag(γ1, · · · , γn)P T ∈ U1(ε). Hence W X is well-defined and continuous with
respect to X ∈ U1(ε). It is easily seen that σ(X) ⊂ W X. Since V X = (TXN (h))⊥
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and W X= (TXSr,0(n))⊥, it is clear that V X

⋂
W X= (TXN (h) + TXSr,0(n))⊥. From

this relation we can deduce that V X̄+W X̄ is a direct sum. Therefore there exists a
neighborhood U2 ⊂ U1(ε) of X̄ where V X+W X is a direct sum, by continuity of V X

and W X with respect X. Hence we have a continuous map F : U2 × S(n) → S(n)
such that F (X, ·) : S(n) → S(n) is a linear map, F (X,Y ) ∈ W X(∀Y ∈ S(n)),
F (X,Y ) = O(∀Y ∈ V X) and F (X,Y ) = Y (∀Y ∈ W X). Since ψ(Z, λ; f, h) =
(O,0) for (Z, λ; f, h) ∈ Ω, −DXf(Z+) =

∑`
i=1 λiDXhi(Z

+) + Z− ∈V Z++σ(Z+) ⊂
V Z++W Z+ . Therefore Z− = F (Z+,−DXf(Z+)) is continuous with respect to (Z+, f, h)
and so is

∑`
i=1 λiDXhi(Z

+) = −DXf(Z+)−Z−. It is also easily shown that λ is contin-
uous with respect to (Z+, f, h).

Definition 2.18. We refer to (Z, λ) as a strongly stable stationary point of Pro(2)(f, h) if
and only if Z+ is a strongly stable stationary solution of Pro(2)(f, h). From Propositions
2.13 and 2.17 we can restate the strong stability as follows.

Let (Z̄, λ̄) ∈ S(n) be a stationary point of Pro(2)(f̄ , h̄). Under Conditions 2.14
and 2.15, (Z̄, λ̄) is strongly stable if and only if there exist a neighborhood U =

Bδ∗(Z̄
+
) of Z̄

+
in S(n) and V of (f̄ , h̄) in FU such that the natural projection

π : Ω
⋂

((ρ+)−1(U)×R` × V ) → V is a homeomorphism.

The next proposition gives a sufficient condition for strong stability from a little different
point of view, and it takes an important role in proving Theorem 2.21.

Proposition 2.19. Let (f̄ , h̄) ∈ F and (X̄, λ̄) ∈ S(n) × R` be a stationary point of

Pro(2)(f̄ , h̄). Suppose there exists a neighborhood U = Bδ∗(X̄
+
) of X̄

+
such that V =

{(f, h) ∈ F : ψ(·, ·; f, h) is one-to-one on (ρ+)−1(U) × R`} is a neighborhood of (f̄ , h̄) in
FU . Then (X̄, λ̄) is strongly stable.

Proof: Let ε be any positive real number with 0 < ε ≤ δ∗, and let Uε = int(Bε(X̄
+
)).

Since ψ(·, ·; f, h) is one-to-one on (ρ+)−1(U) × R`, it follows from the Brouwer’s invari-
ance theorem of domain ([6]) that ψ((ρ+)−1(Uε) × R`; f, h) is an open set in S(n) ×
R` which is homeomorphic to (ρ+)−1(Uε) × R`. Therefore ψ((ρ+)−1(Uε); f̄ , h̄) includes
Bδ0((O,0)) for some δ0 > 0 because ψ(X̄, λ̄; f̄ , h̄) = (O,0). Let K = ((ρ+)−1(Uε) ×
R`)

⋂
ψ(·, ·; f̄ , h̄)−1(Bδ0((O,0))). Since K is homeomorphic to Bδ0((O,0)), K is compact.

Define d(f, h) = inf{‖ψ(X, λ; f, h)‖ : (X, λ) ∈ K}, where ‖ · ‖ is the norm on S(n)×R`.
Since ψ(X, λ; f, h) is continuous with respect to (X, λ; f, h) ∈ (ρ+)−1(U)×R` ×FU and
K is compact, d(f, h) is continuous with respect to (f, h) ∈ FU . d(f̄ , h̄) = 0 follows from
ψ(X̄, λ̄; f̄ , h̄) = (O,0), which implies that there exists a positive real number δ > 0 such
that Vδ = {(f, h) ∈ F : ‖(f, h) − (f̄ , h̄)‖U < δ} ⊂ V and d(f, h) = 0 (∀(f, h) ∈ Vδ).
Suppose that (f, h) ∈ Vδ. Then, since d(f, h) = 0 and ψ(·, ·; f, h) is one-to-one on
(ρ+)−1(U) × R`, there exists a unique (X(f, h), λ(f, h)) ∈ (ρ+)−1(U) × R` such that
ψ(X(f, h), λ(f, h); f, h) = (O,0). Clearly (X(f, h), λ(f, h)) ∈ K. Therefore, X(f, h)+ ∈
Uε. We conclude that, for any positive real number ε with 0 < ε ≤ δ∗, there exists δ > 0
such that X(f, h)+ ∈ Uε and X(f, h)+ is a unique stationary point in U for (f, h) ∈ Vδ.
Therefore, (X̄, λ̄) is strongly stable by Definition 2.10 of the strong stability.

Definition 2.20. Let Z = PΓP T ∈ S−(n), where P ∈ O(n) and Γ = Diag(γ1, · · · , γn)
with γ1 = · · · = γs = 0 > γs+1, · · · , γn. Define a linear subspace V(Z) of S(n) by

V(Z) =
{
P

(
X11 XT

21

X21 O

)
P T : X11 ∈ S(s) and X21 ∈M(n− s, s)

}
.
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From Lemma 2.16, we see that V(Z) is independent of the representation Z = PΓP T ,
and hence is well-defined. We give a sufficient condition for strong stability in the following
theorem.

Theorem 2.21. Let L(X, λ; f, h) = f(X) +
∑`

i=1 λihi(X) and (Z̄, λ̄) be a stationary

point for Pro(2)(f̄ , h̄). Suppose that D2
XL(Z̄

+
, λ̄; f̄ , h̄) be positive definite on the space

Ker(DXh(Z̄
+
))

⋂V(Z̄
−
). Then (Z̄, λ̄) is strongly stable.

To prove this theorem we will prepare a series of lemmas.

Lemma 2.22. Suppose there exist two sequences Z(k),W (k) ∈ S(n) (k = 1, 2, · · ·) such

that lim
k→∞

Z(k) = lim
k→∞

W (k) = Z̄. If lim
k→∞

Z(k)+ −W (k)+

‖Z(k)+ −W (k)+‖ = A, then A ∈ V(Z̄
−
)

Proof: Represent Z̄ = P̄ Γ̄P̄
T

and Z(k) = T (k)Γ(k)T (k)T and W (k) = Q(k)M (k)Q(k)T ,
where P̄ ,T (k),Q(k) ∈ O(n) and Γ̄ = Diag(γ̄1, · · · , γ̄n),Γ(k) = Diag(γ

(k)
1 , · · · , γ(k)

n ),M (k) =

Diag(µ
(k)
1 , · · · , µ(k)

n ) with γ̄1 ≥ · · · ≥ γ̄s ≥ 0 > γ̄s+1 ≥ · · · ≥ γ̄n and γ
(k)
1 ≥ · · · ≥ γ(k)

n and

µ
(k)
1 ≥ · · · ≥ µ(k)

n . Clearly lim
k→∞

Γ(k) = lim
k→∞

M (k) = Γ̄ holds from the continuity of eigenval-

ues. Hence we may assume γ
(k)
i 6= γ

(k)
j , µ

(k)
i 6= µ

(k)
j , (i ≤ s < j) and 0 > γ

(k)
s+1 ≥ · · · ≥ γ(k)

n

and 0 > µ
(k)
s+1 ≥ · · · ≥ µ(k)

n .

By taking a subsequence, we may assume that lim
k→∞

T (k) = T̄ and lim
k→∞

Q(k) = Q̄ exist,

so that we have T̄ , Q̄ ∈ O(n) and T̄ Γ̄T̄
T

= Q̄Γ̄Q̄
T

= P̄ Γ̄P̄
T
. Since γ̄i 6= γ̄j (1 ≤ ∀i ≤ s <

∀j ≤ n), it follows from Lemma 2.16 that T̄
T
P̄ , Q̄

T
P̄ , Q̄

T
T̄ ∈ O(s)×O(n−s). Let C(k) =

T (k)T Q(k) =

(
C

(k)
11 C

(k)
12

C
(k)
21 C

(k)
22

)
and C̄ = T̄

T
Q̄ = lim

k→∞
C(k) =

(
C̄11 C̄12

C̄21 C̄22

)
=

(
C̄11 O
O C̄22

)
,

where C
(k)
11 ∈M(s), C

(k)
12 ∈M(s, n− s), C

(k)
21 ∈M(n− s, s), and C

(k)
22 ∈M(n− s).

It is clear that Z(k)+ = T (k)Γ(k)+T (k)T and W (k)+ = Q(k)M (k)+Q(k)T , where Γ(k)+ =
Diag(γ

(k)+
1 , · · · , γ(k)+

s , 0, · · · , 0) and M (k)+ = Diag(µ
(k)+
1 , · · · , µ(k)+

s , 0, · · · , 0). Now con-
sider the following limit

lim
k→∞

C(k)T Γ(k)+C(k) −M (k)+

‖Z(k)+ −W (k)+‖ = lim
k→∞

Q(k)(Z(k)+ −W (k)+)Q(k)T

‖Z(k)+ −W (k)+‖
= Q̄AQ̄

T

=
(

D11 D12

D21 D22

)
.

By block calculation of matrices, we have C(k)T Γ(k)+C(k) − M (k)+ =

(
X

(k)
11 X

(k)T
21

X
(k)
21 X

(k)
22

)
,

where
X

(k)
21 = C

(k)T
12 Diag(γ

(k)+
1 , · · · , γ(k)+

s )C
(k)
11 ,

X
(k)
22 = C

(k)T
12 Diag(γ

(k)+
1 , · · · , γ(k)+

s )C
(k)
12 .

}

Comparing these two equations, it is easily seen that X
(k)
22 = X

(k)
21 C

(k)−1
11 C

(k)
12 holds for

every sufficiently large k, from which we can derive D22 = D21C̄
−1
11 C̄12 = D21C̄

−1
11 O = O.

Since Q̄
T
P̄ ∈ O(s) × O(n − s) and A = P̄ (P̄

T
Q̄)(Q̄

T
AQ̄)(Q̄

T
P̄ )P̄

T
, it follows that

A ∈ V(Z̄
−
).

Lemma 2.23. Let X,Y ∈ S+(r). Then σ(X + Y ) = σ(X)
⋂
σ(Y ) holds.

Proof: Suppose G ∈ σ(X + Y ), i.e., G ∈ S−(n) and (X + Y ) • G = 0. Since
X ∈ S+(n) and Y ∈ S+(n) and G ∈ S−(n), X •G ≤ 0 and Y •G ≤ 0 hold. Therefore
(X + Y ) •G = 0 implies X •G = Y •G = 0, i.e., G ∈ σ(X)

⋂
σ(Y ). The converse can

be similarly proved.
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Lemma 2.24. Suppose there exist two sequences Z(k),W (k) ∈ S(n) (k = 1, 2, · · ·) such that

lim
k→∞

Z(k) = lim
k→∞

W (k) = Z̄. If lim
k→∞

‖Z(k)+ −W (k)+‖
‖Z(k)− −W (k)−‖ = 0 and lim

k→∞
Z(k)− −W (k)−

‖Z(k)− −W (k)−‖ = B,

then B ∈ Rσ(Z̄
+
).

Proof: Represent Z̄,W (k) such as Z̄ = P̄ Γ̄P̄
T
,W (k) = Q(k)M (k)Q(k)T , where P̄ ,Q(k) ∈

O(n) and Γ̄ = Diag(γ̄1, · · · , γ̄n),M (k) = Diag(µ
(k)
1 , · · · , µ(k)

n ) with γ̄1 ≥ · · · ≥ γ̄r >

0 ≥ γ̄r+1 ≥ · · · ≥ γ̄n and µ
(k)
1 ≥ · · · ≥ µ(k)

n . Clearly lim
k→∞

M (k) = Γ̄ and we may as-

sume µ
(k)
i > 0 (∀i ≤ r,∀k), which implies Rσ(W (k)+) ⊂ Q(k)(Or × S(n − r))Q(k)T .

By taking a subsequence, we may assume that lim
k→∞

Q(k) = Q̄. Then Q̄ ∈ O(n) and

Q̄Γ̄Q̄
T

= P̄ Γ̄P̄
T

hold. Since γ̄i 6= γ̄j (1 ≤ ∀i ≤ r < ∀j ≤ n), it follows from Lemma 2.16

that Q̄
T
P̄ ∈ O(r)×O(n− r).

Let ε(k) =
‖Z(k)+ −W (k)+‖
‖Z(k)− −W (k)−‖ . From the assumption, lim

k→∞
ε(k) = 0 holds. Using

Qk above represent Z(k)+ as Z(k)+ = Q(k)

(
K

(k)
11 K

(k)T
21

K
(k)
21 K

(k)
22

)
Q(k)T , where K

(k)
11 ∈ S(r),

K
(k)
21 ∈ M(n − r, r), and K

(k)
22 ∈ S(n − r). Since lim

k→∞

(
K

(k)
11 K

(k)T
21

K
(k)
21 K

(k)
22

)
= Q̄

T
P̄ Γ̄+P̄

T
Q̄,

we may suppose K
(k)
11 be positive definite. So we can calculate

Z(k)+ = Q(k)

(
K

(k)
11 K

(k)T
21

K
(k)
21 K

(k)
22

)
Q(k)T

= Q(k)

(
Er K

(k)−1
11 K

(k)T
21

O En−r

)T (
K

(k)
11 O

O K
(k)
22 −K

(k)
21 K

(k)−1
11 K

(k)T
21

)

(
Er K

(k)−1
11 K

(k)T
21

O En−r

)
Q(k)T ,

from which it follows H
(k)
22 = K

(k)
22 −K

(k)
21 K

(k)−1
11 K

(k)T
21 ∈ S+(n− r). Define

Ẑ
(k)+

= Q(k)

(
K

(k)
11 K

(k)T
21

K
(k)
21 K

(k)
21 K

(k)−1
11 K

(k)T
21

)
Q(k)T ∈ Sr,0(n), and

H (k) = Q(k)

(
Er K

(k)−1
11 K

(k)T
21

O En−r

)T (
O O
O H

(k)
22

) (
Er K

(k)−1
11 K

(k)T
21

O En−r

)
Q(k)T

= Q(k)
(

O O
O H

(k)
22

)
Q(k)T ∈ S+(n).

The equation Z(k)+ = Ẑ
(k)+

+ H(k) implies σ(Z(k)+) ⊂ σ(Ẑ
(k)+

) by virtue of Lemma
2.23.

Represent Z(k)− as Z(k)− = Q(k)

(
Y

(k)
11 Y

(k)T
21

Y
(k)
21 Y

(k)
22

)
Q(k)T . Then, from the above, we

readily get Z(k)− ∈ σ(Z(k)+) ⊂ σ(Ẑ
(k)+

). Since Rσ(Ẑ
(k)+

) = (T
Ẑ(k)+Sr,0(n))⊥ from

Lemma 1.3 and Sr,0(n) can be represented as a manifold W(Ẑ
(k)+

) around Ẑ
(k)+

as in
the proof of Lemma 1.3, we can prove

Rσ(Ẑ
(k)+

) =





Q(k)
(

Y 11 Y T
21

Y 21 Y 22

)
Q(k)T :

(
K̇11 K̇

T

21

K̇21 K̇22

)
•

(
Y 11 Y T

21

Y 21 Y 22

)
= 0

(∀K̇11 ∈ S(r),∀K̇21 ∈M(n− r, r))




, (3)
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where K̇22 = K̇21K
(k)−1
11 K

(k)T
21 + K

(k)
21 K

(k)−1
11 K̇

T

21 − K
(k)
21 K

(k)−1
11 K̇11K

(k)−1
11 K

(k)T
21 . From

(3) and Z(k)+ ∈ σ(Ẑ
(k)+

), we can derive

K̇11 • Y
(k)
11 −K

(k)
21 K

(k)−1
11 K̇11K

(k)−1
11 K

(k)T
21 • Y

(k)
22 = 0,

K̇21 • Y
(k)
21 + K̇21K

(k)−1
11 K

(k)T
21 • Y

(k)
22 = 0

}
. (4)

Write explicitly Z(k)+ −W (k)+ and Z(k)− −W (k)− as

Z(k)+ −W (k)+ = Q(k)

(
K

(k)
11 −Diag(µ1, · · · , µr) K

(k)T
21

K
(k)
21 K

(k)
22 −Diag(µ+

r+1, · · · , µ+
n )

)
Q(k)T ,

Z(k)− −W (k)− = Q(k)

(
Y

(k)
11 Y

(k)T
21

Y
(k)
21 Y

(k)
22 −Diag(µ−r+1, · · · , µ−n )

)
Q(k)T .





By the first equality above, we have the inequality ‖K(k)
21 ‖ ≤ ‖Z(k)+ −W (k)+‖. From

the equation (4), we can prove

lim
k→∞

|K̇11 • Y
(k)
11 |

‖Z(k)− −W (k)−‖ ≤ lim
k→∞

ε(k) |K̇11 • Y
(k)
11 |

‖Z(k)+ −W (k)+‖
= lim

k→∞
ε(k) |K(k)

21 K
(k)−1
11 K̇11K

(k)−1
11 K

(k)T
21 • Y

(k)
22 |

‖Z(k)+ −W (k)+‖
= M lim

k→∞
ε(k)‖Z(k)+ −W (k)+‖ = 0,

where M is an appropriate constant. It follows lim
k→∞

‖Y (k)
11 ‖

‖Z(k)− −W (k)−‖ = 0.

Similarly we can prove

lim
k→∞

|K̇21 • Y
(k)
21 |

‖Z(k)− −W (k)−‖ ≤ lim
k→∞

ε(k) |K̇21 • Y
(k)
21 |

‖Z(k)+ −W (k)+‖
≤ lim

k→∞
ε(k) |K̇21K

(k)−1
11 K

(k)T
21 • Y

(k)
22 |

‖Z(k)+ −W (k)+‖
≤ N lim

k→∞
ε(k) = 0,

where N is an appropriate constant. It also follows lim
k→∞

‖Y (k)
21 ‖

‖Z(k)− −W (k)−‖ = 0.

Therefore we can write lim
k→∞

Z(k)− −W (k)−

‖Z(k)− −W (k)−‖ = Q̄
(

O O
O ∗

)
Q̄

T
.

Since Q̄
T
P̄ ∈ O(r)×O(n− r), we have proved

lim
k→∞

Z(k)− −W (k)−

‖Z(k)− −W (k)−‖ = P̄ (P̄
T
Q̄

(
O O
O ∗

)
Q̄

T
P̄ )P̄

T
= P̄

(
O O
O ∗∗

)
P̄

T ∈ Rσ(Z̄
+
).

Proof of Theorem 2.21:
For any positive integer k, define

Vk =
{
(f, h) ∈ F : ψ(·, ·; f, h) is one-to-one on (ρ+)−1(B 1

k
(X̄

+
))×R`

}
.

Suppose that (Z̄, λ̄) is not a strongly stable stationary point for Pro(2)(f̄ , h̄). Then, from
Proposition 2.19, Vk is not a neighborhood of (f̄ , h̄) in F

B 1
k

(X̄+)
for any positive integer k.
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Hence there exists a sequence (f (k), h(k)) /∈ Vk(k = 1, 2, · · ·) satisfying lim
k→∞

‖(f (k)−f̄ , h(k)−
h̄)‖

B 1
k

(X̄+)
= 0. Therefore there exist a distinct pair of elements (Z(k), λ(k)), (W (k), µ(k)) ∈

(ρ+)−1(B 1
k
(X̄

+
))×R` such that ψ(Z(k), λ(k); f (k), h(k)) = ψ(W (k), µ(k); f (k), h(k)), i.e.,

DXL(Z(k)+, λ(k); f (k), h(k)) + Z(k)− = DXL(W (k)+, µ(k); f (k), h(k)) + W (k)−,
h(k)(Z(k)+) = h(k)(W (k)+).

}

By the mean value theorem, we can symbolically write

DXh
(k)(γ(k))(Z(k)+ −W (k)+) = 0,

(Z(k)+ −W (k)+) •DX
2L(α(k), ξ(k); f (k), h(k))

+(λ(k) − µ(k))DXh(β
(k)) + (Z(k)− −W (k)−) = O.




(5)

Taking a subsequence we may assume that

lim
k→∞

(Z(k)+ −W (k)+,Z(k)− −W (k)−, λ(k) − µ(k))

‖(Z(k)+ −W (k)+,Z(k)− −W (k)−, λ(k) − µ(k))‖ exists = (A,B,u) 6= (O,O,0).

Then from Lemma 2.22, it follows A ∈ V(Z̄
−
).

Since (Z(k)−−W (k)−) • (Z(k)+−W (k)+) = −Z(k)− •X(k)+−Z(k)− •W (k)+ ≥ 0, we have
A •B ≥ 0. Factoring the equation (5) by ‖(Z(k)−W (k), λ(k)− µ(k))‖ and taking a limit,
we get

A ∈ Ker(DXh(Z̄
+
))

⋂V(Z̄
−
) and A •D2

XL(Z̄
+
, λ̄; f̄ , h̄) + uDXh(Z̄

+
) + B = O. (6)

Suppose A = B = O. Then the equation (6) contradicts Condition 2.14. Suppose A = O.

Since B ∈ Rσ(Z̄
+
) follows from Lemma 2.24, the equation (6) contradicts Condition 2.15.

Suppose A 6= O. In this case A •D2
X,λL(Z̄

+
, λ̄; f̄ , h̄) •A = −uDXh(Z̄

+
) •A−A •B =

−A • B ≤ 0. This contradicts that D2
XL(Z̄

+
, λ̄; f̄ , h̄) is positive definite on the space

Ker(DXh(Z̄
+
))

⋂V(Z̄
−
). We have proved this theorem.

3. Conclusions

We have proved a sufficient condition for strong stability in the sense of Kojima for stationary
solutions of nonlinear positive semidefinite programs under the LICQ condition. For the
forthcoming study of strong stability, we would like to propose the following problem:

Problem 3.1. Give an algebraic condition that is necessary and sufficient for strong sta-
bility by means of Hessians, Jacobians, etc.
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