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Abstract Under the continuous-time framework with incomplete information on asset price processes, 
we show that the universal portfolio coincides with the optimal Bayes portfolio, which have been stud- 
ied intensively in the financial economics literature. That is, we can interpret the universal portfolio as 
simultaneously estimating the drift and controlling the portfolio. This result holds in the finite terminal- 
time setting of the investment horizon. Moreover, we investigate the asymptotic behavior of the universal 
portfolio along its original definition and obtain a result that in the long run, the universal portfolio with 
incomplete information converges to  the optimal portfolio with complete information. 

1. Introduction 
In this paper, we address the issue of how universal portfolios can be interpreted under the 
continuous-time framework that is familiar in the financial economics literature. Universal 
portfolios are initiated by Cover in 1991 [4], where the asset prices are observed as a sample 
path from unknown sources. If an investor were able to observe the entire sample path 
throughout the whole investment horizon a priori, he could obtain the best constant rebal- 
anced portfolio which achieves the best growth-rate of the portfolio value. This is a portfolio 
with hindsight information, and no one in the market can actually obtain such an ideal 
portfolio. Cover's idea is to construct a portfolio based on the available sample path that 
assures to asymptotically achieve the growth rate of the best constant rebalanced portfolio. 
Universal portfolios possess such a universal property for a very general class of discrete- 
time asset price processes [4, 51. Jamshidian extended the result to the continuous-time 
framework [19] and several other versions have been proposed [14, 2, 201. 

On the other hand, the dynamic portfolio selection problem in the continuous- t ime 
framework has been studied since Merton [30, 311. In his seminal work, asset price processes 
are assumed to follow certain stochastic differential equations and the objective for the 
investor is then set so as to maximize the expected utility from consumption and terminal 
wealth. This Merlon's problem has been extended in numerous ways [21, 71 and particularly 
the settings with incomplete information have been studied intensively [lo, 8, 13, 9, 23, 
11, 25, 26, 27, 24, 151. Under this setting, the drifts of the asset price processes are also 
described as stochastic differential equations that are unobservable. In [lo, 8, 13, 9, 11, 271, 
the optimal consumption and portfolio selection problem under the continuous-time setting 
is considered owing to the same continuous Bayesian updating scheme of Liptser-Shiryaev 
[28] and Separation Principle [12]. 

The aim of this paper is to provide the relation between the universal portfolio and 
the dynamic portfolio selection problem in the continuous-time framework with incomplete 
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information. Specifically, while the universal portfolio is oriented in the non-parametric ap- 
proach and shown to possess the universal property without the model assumption on asset 
price processes, we try to reveal its property by using the familiar continuous parametric 
model. The main result implies that the universal portfolio simultaneously and continu- 
ously estimates the drift parameter and controls the portfolio choice as a optimal Bayes 
portfolio. Here we remark that the universal portfolio can be applied only to the portfolio 
selection problem of maximizing the expected log-utility from terminal wealth. Although 
the property of the universal portfolios may seem rather limited one, Luenberger has re- 
cently shown that the portfolio selection model of maximizing the expected log-utility has 
a valid reasoning in the sense of tail preference when the investment horizon is long enough 

[29l- 
This paper is organized as follows. In section 2, our model is described and the optimal 

portfolio under complete information is derived, which corresponds to the best const ant 
rebalanced portfolio. In section 3, the information available to investors is restricted to 
be incomplete and the optimal Bayes portfolio and its asymptotic form are obtained. In 
section 4, the universal portfolio is defined and shown to be consistent with the optimal 
Bayes portfolio in its asymptotic form. Also, the asymptotic behavior of universal portfolios 
is investigated. 

2. The Optimal Portfolio under Complete Information 
We consider a market in which n risky assets and a risk-free asset are traded. We assume 
the following price processes for the risky assets and the risk-free asset, respectively: 

where So is constant, diag(St) is a diagonal matrix whose element is St, p. is a drift param- 
eter, and S = is a constant diffusion parameter. Here, Wt = (Wit, . . . , writ) de- 
notes an n-dimensional standard Brownian motion on the filtered probability space 
( aw ,  {FWf; t >. O}, q) where Fwvt is generated by 0 ({W,.; 0 $ u 5 0). ro is a constant. 
Superscript ' shows the transpose of matrices and vectors. In this section, it is supposed 
that investors have the following class of information: 

Information 1 (Complete Information) 
Both the J^wo-measurable drift parameter p. and diffusion parameter S being known, asset 
price processes follow the stochastic differential equation (1). 

We assume the investors' utility is expressed as the log-utility function 

u(x)  = logx (x > 0 )  . 

Then the investors having the log-utility continuously select the optimal portfolios within all 
the FWt-predictable portfolios. The portfolio selection is made within the following feasible 
region: 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



The instantaneous return of the portfolio value process is given by 

where 1 is a vector of ones. Along the above expression, the portfolio selection is made 
without constraints in the following discussion. 

In this paper, the objective of the investor is to select the optimal portfolio continuously. 
so as to maximize the expected utility from the terminal wealth. To achieve this, the 
investor's portfolio selection problem is stated as follows: 

maximize E [u (Vr (b,))] 
P, I b. - 1 subject to bt is fwSt-predictable process . 

To solve Problem Pi, define the value function at t as : 

Then the Hamilton-Jacobi-Bellman (HJB) equation is: 

1 
0 = maximize JV Vt {V, (p  - ro 1) + ro} + Ji + - J ~ ~ K ~  b"S,E' bt . 

b t 2 (4) 

By the first order condition, we can characterize the optimal solution: 

Finally we obtain the following theorem: 

Theorem 1 (The optimal portfolio under complete information) 
Under Complete Information 1, the optima1 portfolio for Problem Pi is given by the constant 
portfolio 

I -1 b* = (SS) ( p - r 0 l )  . (6) 

Proof. As in [30, 31, 61, the value function of Eq. (3) is conjectured as 

Here the function of time, f(t) ,  is given as a solution to the p.d.e. of Eq. (4), in which b,' 
of Eq. (5) is substituted for bt and Eq. (7) for the value function. The boundary condition 
is f(T) = 1. Then we have f i  = -1 in Eq. (5) to complete the proof. I3 

This result, i-e. the optimal portfolio choice of the log-utility investor is complete myopia, 
is well-known in the literature [l, 32, 301. We repeat it here, however, to use this optimal 
portfolio b* in defining universal portfolios in the later section. 
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3. The Optimal Bayes Portfolio under Incomplete Information 
In this section, we assume investors only have incomplete information on the drift parameter 
p in Eq. (1). This situation is more close to the practical market than the one with Complete 
Information 1. Under this setting, we investigate how log-utility investors' optimal portfolio 
select ion would change. 

The drift ft in Eq. (1) is now a random vector on (fly, &, u(')) such that induced measure 

( (k), I?^)) for each k E 2. Then we vlk) o ft- I  by ft is multivariate normal distribution N mo 

can construct a sequence of the filtered probability space set { (fi, {Ft ; t 2 O}, P^) ; k  > 1 } 
such that f2 = ftp x &, Ft = v f w t  and V '̂ = uv'-̂  @q. We formally state the following 
class of incomplete information. 

Information 2 (Incomplete Information) 
Investors asymptotically have diffuse prior distribution information for the drift parameter 
p. That is, we consider the limit o f  probability measure sequence ' ~ ( ~ 1 ,  such that each prior 
distribution induced by p follows N (mp , N (mo, kr0)  for each k > 1, where my ) 
and To are given constant vector and covariance matrix. 

They are only provided with the information Qi c 6 generated by a realized asset price 
process o f  Eq. (I): 

Remark 1 
The information Qt is enough to derive EX' exactly, since the Doob-Meyer decomposition 
o f  the quadratic process (dSt/St)(dSt/St)' yields the finite process SS't. 

Remark 2 
We postulate the reason why we introduce a sequence o f  filtered probability spaces. To 
estimate the drift p by the Bayesian updating, one should set a suitable prior distribution. 

In our model, the prior is set as  N m * )  I?") = N (?no, kFo) ( k  > 1). As k  becomes large ( 0 3 0 )  
enough, i.e. asymptotically, we can make investors to have diffuse prior information for p, 
in the sense that the differential entropy o f  the prior is infinite. Since it is well known that 
i f  p follows the multivariate normal distribution N(m,  F) with the density 

a 1 , exp (-5 1 (z - mlf r-l (a; - m)) , ^ (qn lrii 

its differential entropy h(p) ph.9.4.1, 31 is given by: 

Then we can guarantee that the differential entropy o f  the prior distribution for p is asymp- 
totically infinite, since l /2 10~(2~re)~l!'~'l = k/2 l o g ( 2 ~ r e ) ~ l r ~ ~  + m as k + m. 

Now the log-utility investor is to maximize the expected utility from the terminal wealth 
under Incomplete Information 2: 

p 2  
maximize lirni,- Â£'('Â [u( Vr(b.) )] 

b. 

subject to bt is &-predictable process , 
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where B**)[-) is the expectation under the probability measure P^). 
We remark that Separation Principle [12, 131 holds when we are to solve Problem Pg. 

It  asserts that the inference for the drift and the dynamic control of the portfolio can 
be treated separately. For the former inference part, we utilize the continuous Bayesian 
updating formula of Liptser-Shiryaev [28]. The latter dynamic control part is essentially 
the same as the one in Section 2. By Separation Principle and the Bayesian formula, many 
authors treated the portfolio selection problem under incomplete information [lo, 8, 13, 9, 
11, 271. 
3.1. The inference part 

As we described in Remark 1, investors know the diffusion parameter SS' exactly, but do not 
know the %measurable drift parameter p. Hereafter, as noted in Remark 2, we consider 
the sequence of probability measure {P(*), k E Z} on the filtered probability space ({ft; t >. 
O}, a), where the prior distribution for p follows v̂ . Conditioned on the information Qt, 
the investors estimate p as follows: 

where -E^M denotes the expectation under P^) ,  4 )  is the estimation for p, and I?') 
is its estimation error. By assumption, we have E^)[lp14] = E(*) \\nI4\ Qa] < oo. Using 
infinitesimal observations dSt , we can improve the estimation for p and its error by Theorem 
12.7 in [28]: 

The continuous Bayesian updating formula for the estimation of p is given by Theorem 12.8 
in [28]: 

where I is an identity matrix. Next transform Eq. (1) into entirely observable s.d.e. 

where 

Then w,'*) is ft-measurable, and 
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Furthermore, (w(')) = (W), = t. Hence wik) is ft standard Brownian motion owing to 
. w 

Levy's theorem under the probability measure ?(*I. At the end of this subsection, we give 
the asymptotic form of the estimation ( l l ) ,  with respect to @'^, as : 

3.2. The dynamic control part 
After deriving the continuous Bayesian updating formula for p, we can treat Problem Ps as 
Problem Pi with Complete Information 1, owing to Separation Principle. The instantaneous 
return of the portfolio value process is now given as 

Define then the value function as follows: 

The HJB equation is: 

O = maximize JV% {bik)'(@ - r o l )  + ro}  + Jt + @'rik)' J~~ 
b y  

where t r ( - )  is the trace of matrices. Then by the first order condition, the optimal portfolio 
has the form of 

This bik)* will be called the optimal Bayes portfolio, hereafter. The first term corresponds 
to the tangency portfolio which is also selected in the single-period problem and the second 
term is so-called the hedge portfolio against changes in the opportunity set. 

Furthermore we are able to derive the optimal Bayes portfolio in closed-form, by the 
virtue of log-function. Also its asymptotic form is obtained. 

Theorem 2 (The asymptotically optimal Bayes portfolio) 
Under Incomplete Information 2 and with the observable s.d.e. 0, the optimal Bayes 
portfolio under P(*) is given by 

I 
Furthermore, bik)* converges to the asymptotically optimal Bayes  portfolio bl as k Ã‘ 00: 
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Proof. As in [31, 61, the value function of Eq. (14) is conjectured as 

/(t) and g(mw, t )  are given as solutions to the p.d.e. of Eq. (15), in which b y *  of Eq. 
(16) is substituted for bik) and Eq. (19) for the value function. The boundary condition is 
f (7') = 1 and g(mf', T) = 0. Then we have = -1 and Jvm = 0 in Eq. (16) to obtain 

JvvVt 

Eq. (17). Furthermore, since my -+ fit (as k -+ oo) from Eq. (13), b^* converges to b" 
with probability one. 0 

Seeing Eq. (17); the second term in Eq. (16) disappears. The optimal Bayes portfolio 
b ( )*  is the optimal portfolio b* under Complete Information 1, with mjk' is plugged-in for 
the true drift p. Hence the log-utility investors have no interest in hedging, that is, they 
use the estimated drift as if it were the completely known drift. 

4. Cont inuous-t ime Universal Portfolios 
In this section, we derive the universal portfolio in the continuous-time framework under 
Incomplete Information 2. We establish an interpretation of the universal portfolio in the 
Bayes' sense, which is discussed in the previous section. First we define the notion of 
universality posed by Cover [4]. 

Definition 1 (Universality) 
Under Incomplete Information 2, Gt-predictable portfolio b, is said to be universal, if  it has 
the property such that: 

1 VT(~*) lim sup - log - = 0 , 
T+oo T VT(be) 

where b* is the optimal portfolio with Complete Information 1, given by Eq. (6). 

Eq. (20) asserts the gap in the growth rate of the portfolio value between b* and be will 
vanish asymptotically. Since the pioneering work by Cover [4], various portfolios possessing 
universality are proposed [14, 201. In this paper, we adopt the definition for universal 
portfolios given by Cover [4] and Cover-Ordentlich [5]. 

Definition 2 (Universal portfolios) 
Define the universal portfolio at time t as 

where b is the portfolio constant through time and 

will be called the weighting density function. 

Remark 3 
Since V(b) > 0, then wt(b) > 0. From fbERn xut (b)db = 1, wt (b) can be regarded as  a 
density. Also wt(b) weights more to the constant portfolio which has achieved high portfolio 
growth by time t. As a result, the universal portfolio bt can be interpreted as the average 
of cons tan t portfolios, weighted by wt (b) . 
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The universal portfolio holds the property of Eq. (20) for very general (discrete) asset price 
processes [4) 51. In contrast) we conduct an analysis to grasp the weighting density function) 
wt (b ) ,  in the familiar continuous-time framework. As a result, the universal portfolio can be 
obtained as the expectation of constant portfolios, b, with respect to the measure wt (b)db 
. From this viewpoint) we state the following theorem: 

Theorem 3 (The conk inuous-t ime universal portfolio) 
Under Incomplete Information 2, the universal portfolio coincides with the asymptotically 
optimal Bayes portfolio : 

Proof. Given Vo, the 'value of portfolio constant through time is given as 

&(b) = Vo exp ro + b1 (bt - r o l )  - 
2 

where fit is given by Eq. (13)- Then the weighting density function is 

= exp [- { b  - (EX')-' (bt - rol )} '  (EE ' t )  { b  - (EEr)- l  ( f i t  - r o l ) } ]  (25) 

This implies that the weighting density function) wt (b )  , is proportional to the density of a 
multivariate normal distribution: 

Hence the universal portfolio it is given by its mean: 

This coincides with Eq. (18). 

This theorem implies the universal portfolio simultaneous~y estimates the drift parameter 
and controls the portfolio choice continuously, as the asymptotically optimal Bayes portfolio. 

Since the weighting density function) Eq. (221, can be regarded as the p.d.f. of a 
multivariate normal distribution, its mean and mode coincide with each other. Then taking 
the expectation with wt (b)db to obtain the universal portfolio is equivalent to maximizing 
wt(b) to obtain its mode. This portfolio also can be obtained by maximizing the constant 
portfolio value of Eq. (23). This is called the sample path-wzse optzmal po&foZzo (SPOP) 
proposed by Ishijima-Shirabwa [18]. One can easily check that SPOP is given by the 
asymptotically optimal Bayes portfolio b; of Eq. (18). This result holds in the problem 
setting with more constraints on portfolio weights [l8]. 

We proceed to analyze the asymptotic behavior of the universal portfolio. The purpose 
is to show the universality defined as Eq. (20). The following theorem assures that the 
universal portfolio converges to the optimal portfolio under Complete Information 1, and 
also the gap in growth rate between these two portfolios vanishes in the long run. 
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Theorem 4 (Convergence of the universal portfolio) 
In the long run T -+ m, the universal portfolio with Incomplete Information 2 converges to 
the optimal portfolio with Complete Information I .  That is : 

lirn bT = b* a s .  
T+m 

Moreover, the gap in growth rate between 6 and b* vanishes as T + 00: 

Proof. By the strong law of large numbers ([22], p.104), the estimates for the drift in 
asymptotic form of Eq. (13) converges to 

lirn jiT = p +  lirn E 
T+m T+m 

Then the universal portfolio converges to 

lirn bT = (EX')-' ( p  - r01) = b* . 
T+m 

We then evaluate the asymptotic growth rate of the universal portfolio: 

1 ,. 
lim - log VT (b.) = lim 

T + ~  T T + ~  { ($ lT itdt ) 'p  - 

Since lirn iT = b*, lirn - i t &  = b* and lirn - btEZ1btdt = b*'xxfb* . Taking 
T+m T+m T LT - T+m T LT 

A A 

the time change into consideration7 we get r '  6: xdWt = WTT a.s., where Wt is a standard 
J o  

Brownian motion; and TT = /T &:EEfbtdt. Also 
J o 

+m a s . .  Then 

from lim bT = b* # 0, lim TT = 
T+m T+m 

1 -  
lirn -WTt = b*'xz1b*o = 0 

TJ+m T1 

Hence, 

1 1 
lirn - 1ogvT(be) = b*'p - -b*'xxlb* . 

T+m ll 2 

On the other hand, the growth rate of b* is 

1 1 
lim - log VT(b*) = lirn !- { (b*lP - -b* '~Z 'b* 

T+m T T+m T 2 
1 t 1 

= b*'p- - b * ' ~ ~ ' b *  + lirn b* -EWT 
2 T+m T 

This completes the proof. El 

Compared to the universality of Definition ll this theorem explicitly guarantees that the 
universal portfolio asymptotically learns the optimal portfolio with Complete Information 
1. Concerning the asymptotically optimal Bayes portfoliol it coincides with the universal 
portfolio from Theorem 3, it also has the universal property of Theorem 4 in our model. 
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5. Conclusion 
Under the contin~ioi~s-time framework with inconlplete information on asset price processes, 
we have shown that the universal portfolio can be interpreted in the Bayed sense and 
analyzed its asymptotic behavior. The universal portfolio is originated in the heart of infor- 
mation theory [5]. On the other hand, the numerous works on dynamic portfolio selection 
problem under incomplete information has been studied intensively in the financial eco- 
nomics literature. Hence we have addressed the question of how two theories are connected, 
and given an answer for this to some extent. 
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