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Abstract This paper considers a continuous-time economic equilibrium model for deriving the economic 
premium principle of Buhlmann [2,  31 and Iwaki, Kijima and Morimoto [9]. In order to  do this, we construct 
a continuous-time consumpt~ion/portfolio model, and consider an equilibrium in a pureexchange economy. 
The state price density in equilibrium is obtained in terms of the Arrow-Pmtt index of absolute risk aversion 
for a representative agent. As special cases, power and exponential utility functions are examined, and we 
derive an endogenously decided equilibrium insurance premium in explicit form. 

1. Introduction 
This is a companion paper to Iwaki, Kijima and Morimoto [9], in which they derived the 
economic premium principle of Biihlnxann [2, 31 in a discrete-time multiperiod economic 
equilibrium model. In this paper, we show that a similar result holds in a continuous-time 
economic equilibrium model. 

In the classic risk theory, insurance premiums are calculated based on the expected loss 
under the physical probability measure. However, if an insurance product is exposed to 
financial risk, i.e., the product or its derivative is tradable in a market,' then the premium 
should be calculated so as to reflect the financial risk. One approach to consider financial 
risk is to use an economic equilibrium model. The pioneering work was done by BUmann 
[2]. He considered a single-period comurnption model in which each agent is characterized 
by his/her utility function and initial wealth, and the state price densit? is determined 
so as to achieve an equilibrium. Since then, several extensions have been made based on 
his model. Examples of such extension are found in Iwaki, Kijima and Morimoto [9] and 
references therein. 

Iwdsi, Kijima and Morimoto [9] take the line of Biihlmann [2,3] with some modifications 
and extensions. They consider a discrete-time multiperiod consumption/portfolio model in 
which each agent is characterized by his/her utility function and income and can znvest 
his/her wealth in both an insurance market as well as a financial market so as to maximize 
the expected, discounted total utility from consumption. Even in this standard economic 
model, a similar result to Biihlmann [2, 31 is derived. In particular, the state price density 
in an economic equilibrium is obtained in terms of the Arrow-Pratt index of absolute risk 
aversion for a representative agent. 

In this paper, we extend Biihlmann's model [2, 31 to a continuous-time setting with some 
modification. Since the risk to be insured is due to rare events which arrive only at discrete 

'One of examples of such products is ART (Alternative Risk 'Ikansfer) products (see Iwaki, Kijima and 
h4orimoto [9] for more details.). 

'See, e.g., Huang and Litzenberger [TI for the definition of the state price density. 
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points in time, the insurance risk will be well modeled by a continuou~time/discrete-state 
process such as a Poisson process. On the other hand, security prices can might be con- 
sidercd to change continuously, as a first approximation, the risk of security price has been 
usually modeled by a continuou~time/continuo~i~state model. One of the clisadvantages of 
the discrete-tirne model compared to the continuous-time rnodel is such that the difference 
bctwecn the insurancc risk and the security price risk bccomcs ambiguous. So, when cor~id- 
ering an economy which includes both insurance and securities, the continuous-time model 
might be better. Another advantage of the continuous-time model over the discrete-time 
model is such that we can analytically derive an insurance premium in the equilibrium, and 
it helps us interpret its economic implication more easily and clearly. In our continuous- 
time model, we also obtain a similar resillt to Biihlmann [2, 31. Furthermore, for power and 
exponential utility functions, closed form solutions of the state price density are given and 
we explicitly derive an endogenously decided insurance premium in the equilibrium. 

Our model can be thought of as an extension of the ordinary continuous-time financial 
model to include insurance losses. In the finance literature, continuous-time consump 
tion/portfolio models have been extensively used to obtain equili britun sec~xi ty prices ever 
since a seminal paper by Merton [13]. In late 'BOs, an efficient approach called the murtzngule 
method to tackle optimal com~pt ion /po~fo l io  selection problem appeared in Karatzas et 
a1. [lZ]. Instead of solving the HJB (Ha~l ton-Jacobi-Beha)  optimal equations of the 
dynamic programming, applying the martingale method to continuous-time or discrete- time 
multiperiod cons~pt ion/por t fo~o selection problems, we can solve multiperiod optimiza- 
tion problems just as if we solved single-period problems. hthermore,  we can interpret the 
economic implication of optimal solutions more easily. As to the martingale method, see 
Karatzas and Shreve [ll] and references therein. In this paper, we also adopt the martingale 
method to solve a continuous- time consumption/portfolio selection problem, and obtain the 
state price density in the kamework of a competitive equilibrium market of a pure exchange 
economy which includes insurance as well as financial securities. 

This paper is organized as follows. In the next section we formally state our continuous- 
time model. Section 3 contains our main results. In this section, it is shown that, under some 
technical conditions, an optimal cons~unption/por tfolio process for each agent exists and 
the state price density in equilibrium can be obtained under the market clearing condition. 
Based on the results, we derive our general economic premium principle. In Section 4 the 
special cases of power and exponential utility functions are examined. Finally, we state 
concluding remarks in Section 5. 

Throughout this paper, d the random variables considered are bounded almost surely 
(a.s. ) to avoid unnecessary teclmical difficulties. Equalities and inequali ties for random 
variables hold in the sense of a.s.; however, we omit the notation ass. for the sake of 
notational simplicity. 

2. The Model 

We consider a pure-exchange economy consisting of a finite number of agents, z = 1, '2; - , n 
say, who constitute buyers of insurance, insurance companies and reinsurance companies. 
In this economy it is assumed that every trade occurs continuously in the time interval 
7 sf [O;T], where T' > 0- Resolution of uncertainty of the economy is assumed to be 
described by evolution of an m-dimensional standard Brownian motion I3 = {B(t);  t E T }  
and a Poisson process N = {N(t);t E with intensity process A = {A(t); t 2 0) defined 
on a given probability space (Q3: P). The Poisson process represents arrivals of some 
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accidental events such as natural disasters, while the Brownian motion is the source of 
randomness other than such accidental events. For simplicity, we assume that I3 and N are 
independent. 

Let Ft = Fp V Fp, t E T ,  where F: = o{N(s);s 5 t} and .FF = o{B(s); s 5 t}. The 
P-augmentations of filtrations are denoted by FN = {F:; t E T}, IFB = {Fp; t E TI7 and 
E' = {.Ft;t E T}. Let Te = hf{t > 0; N(t) = f}, t = 1 , 2 7 - - - .  Clearly7 Te7 t = 1 , 2 , - - - ,  
are FN-stopping times, but not FB-stopping times. The conditional expectation operator 
given Ft is denoted by Et with E = Eo. Furthermore, we assume that the process N is a 
Cox process. That is, given the intensity process A and a stopping time TE-I, the conditional 
survival probability of r g  is given by 

In the economy, agent 2 is endowed ?lji(t) units of a single (perishable) commodity, and 
he/she encounters risk Xi(t) measured in units of the commodity at time t E T .  W l e  the 
quantities wi(t) and Xi(t) for t E (0: 2'1 are assumed to be nonnegative random variables, 
~ ~ ( 0 )  and Xi(0) are nonnegative constants. We call Zi(t) Ef wi(t) - Xi(t) the income for 
agent 2 at time t â 7 .  

is called the aggregated zncome at time t. We assume that evolution of the aggregated income 
process {Z(t); t â 7-1 is described by the SDE(Stochastic Differential Equation); 

where z is a strictly positive constant, and p = {p(t) Ef (t) , - - - ~ ~ ( t ) ) ~ ,  t T}, v = 
{ ~ ( t ) ,  t E T} and v = {v(t): t E r} are some F-predictable processes. Here and hereafter, 
T denotes the transpose. 

Next, we introduce an znsarance to the economy. Let p(t) denote the time-t premium- 
per-share of the insurance after paying sum insured at time t. We assume that the insurance 
pay p(t)b(t) a t  time t if and only if an accidental event, which represented by the process 
N, occurs at time t, where 6 = {6(t); t E T} is some F-predictable, positive process. We 
assume that the insurance premium process p = {p(t); t E T} follows the SDE; 

for some F-predictable, positive process a = {cr(t); t E 7). That is, we assume that once 
agents buy one unit of the insurance, agents are guaranteed capital accumulation at rate 
a,  and that if and only if some accident occurs, sum insured which is proportional to the 
purchase price is paid. 

One generalization of Biihham's model [2, 31 is to allow the agents to invest their 
wealth into a financial market consisting of the money market and m risky securities. We 
denote the time-t price of the money market account by Sa(t) whereas the time-t price of 
risky security j by Sj  ( t ) )  j = 1 , 2, - m. It is assumed that So(t) satisfies 

3As to some properties of the Cox process, see Iwaki, Kijima and Komoribayashi [8] and references 
therein. 
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where r = { r  ( t)  ; t 2 0) is an IF-predictable, positive .process which represents the risk-fiee 
interest rate, while the risky security prices Si(t) are defined by 

where = {&(t)  gf (op)(t)) - - - ~ $ ; ) ( t ) ) ~ ;  t E T )  and p ( j )  = { p ( j ) ( t ) ;  t E 7-) are F- 
predictable processes. In order to exclude arbitrage opportunities, we assume that a(t) < 
r ( t )  for each t E T.  

It should be noted that prices p(t)  and Sj ( t ) ,  j = 0: 1 2: - - - , m, are also measured in 
units of the commodity. FormaHy, our continuous-time insmmce/hancial market is dehed  
as follows. See Karatzas and Shreve [I 11 for the basic continuous-time financial market. 

Definition 2.1 The continuous- time insmance/hancial market consists of 
the filtered probability space (fi: F, IF, F')) 
the m-dimensional standard Brownian motion B, 
the Poisson process N with intensity process A, 
the set of income processes Zi ,  z = 1; - - - ) n with coeEcient processes u, p, and u, 
the risk-hee rate process r ,  
the paying-rate process 6 and accumalation-rate process a of the insurance, 
the set of mean rate of re twn  processes p'), j = 1, - - ) ?% 

and the set of volutiZity proces.yes cr(j): j = 1 ,  - - - : n-6- 

We refer to this market as 

Let ( t )  , (t) , and 9 y )  (t) , t E T, denote the number of shares in insurance, the number 
of shares in the money market, and the number of shares in risky security j ,  respectively, 
held by agent i at time t in the market M .  Hereafter, we call x(t) a risk exchange and 
(Oi ( t )  x(t)) a portfolio of agent i at time t E T, where 

Once the market M is given, each agent z chooses a non-negative comumption process 
c = { ~ i ( t ) ;  t â T),  and a portfolio process (ei7 K) = {(Oi(t) ,  x(t)); t E T} to maximize 
his/her expected discounted total utility from consumption. 

Given a portfolio process (Oi x)  and a camalative net-income pmcess { J: (zi ( s )  - ( s )  ds ; 

t E T} ,  the ~ t ~ ~ l t h  process {Wi(t); t â is defined by Wi(0)  = 0 and 
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where 

and lm denotes an m-dimensional unit vector. For simplicity) the volatility matrix E ( t )  is 
assumed to be invertible) i.e., there exists the inverse matrix E-'(t) for all t E 7. We note 
that this assumption implies that the security market is complete (see Theorem 1.6.6. of 
Karatzas and Shreve [ll]). 

Definition 2.2 We define a process # = {#(t); t E T }  satisfying #(O) = 1, 0 < #(t) < m) 
and for each t E T and any s > t, s E 7, 

and 

as the state price densit9 process. 

We note that for each A E Ft, E[#(~)I{~}]  could be considered to be the time-0 price of 
a state contingent claim which pays one w i t  of the commodity at time t if and only if A 
occurs) where I{.} denotes the indicator function. Once the state price density is given) an 
equivalent martingale measure P* is given by P*(A) = E[4(T)So(T)l{A}], VA E F. See, 
e.g., Chapter 7 of Huang and Litzenberger [7] for more details as to the state price density 
process. 

Now, we show our &st result which is simple application of the Girsanov theorem. 

Lemma 2.1 (i) The state price density zs represented as 

where 

and where 11 11 denotes the Euclzdeun norm zn P. Here, $ = {+(t): t zs a positive, 
predictable process with respect to lF'. (ii) The process $ represents the intensit3 process 
ander the equzvalent madingale measure P* . 

*If the market A4 is incomplete (typical in insurance), then we may employ the jict2tzou.s securitg approach 
in the following analyses. The idea is to add fictitious securities to the market in such a way that the market 
becomes complete and to  solve optimization problems with the constraint that no position is taken for the 
added securities. See Cuoco [4], Section 6.7 of Karatzas and Shreve [ll] and Section 5.7 of Pliska 1141 for 
details. 
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An Economic Premium Principle 

Proof. First, from (lo), we have 

or, in the differential form, 

where lnz denotes the natural logarithm of x. By applying a version of Ito's formda, we 
then obtain 

It follows that 

so that the process {$(t)So(t)>t E 7) is an exponential martingale under P. The require- 
ment (8) and (9) can then be verified at once, and thus the first statement is proved. The 
second statement is established by Theorem in Brernaud [I], p.166 and the definition of 
equivalent martingale measures (see Harrison and Kreps [5] and Harrison and Pliska [GI). 0 

We note that, for each t E T, the expectation EISo(t)-l$N(t)l{A~}] for any AN E .FF 
(E[so(t)-l#B ( ~ ) I { ~ B } ] ,  A* â Fp, resp.) can be considered as the time0 price of the con- 
tingent claim that pays one unit of the commodity at time t if and only if the event AN 
(AB) occurs. 

Hereafter, fiom Lemma 2,1(ii), we refer to + as a risk-nefhtml zntensitg prucess. It is 
readily seen fiom (7) and Lemma 2.1 that for t T, 

The next definition is similar to the one given in Karatms and Shreve [Ill. 

Definition 2.3 A cons~ption/portfolio process (ci, (Oi> K)) is admi.s.~zbZe for agent z if 
the corresponding wealth process satisfies 
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The class of admissible processes is denoted by 

In Definition 2.3, Equation (15) says that the sum of the curreit wealth and the present 
value of the total income in the future is nonnegative at any time t E 7. Hence, if a 
consumption/portfolio process is admissible, we can exclude the possibility of bankruptcy 
in the following analyses. Also, fiom (14) and ( I s ) ,  if (Q, (Oiy E)) is admissible, then the 
consumption process must satisfy the budget constraint, 

for each agent z. 
Now, suppose that, while all the agents have a common discount process ,8 = {O(t); t E 

7-1, agent i has a utility function Ui : (0, m) -+ R which is strictly increasing, strictly 
concave and twice continuously differentiable with the properties U ~ ( C Q )  = limz+m Ui(x)  = 0 
and U,(O+) limzA0 U , ( x )  = CQ. The problem that each agent faces in the market M is as 
follows . 

(MP) Find an optimal commption/po~folio process (E i ,  (hi g) )  to maximize the ex- 
pected total, discounted utility from consumption 

over the admissible commption/po~folio processes (ci7 (oi7 x)) E J& that satis@ 

We note that, in problem (MP), the condition (17) is just technical to guarantee the 
existence of an optimal solution. Also, the factor O ( t )  discounts the utility from consumption 
at time t and can be considered to represent the time preference of the agents. Of course, 
it can be the risk-free discount factor, in which case we define P ( t )  = r ( t ) .  

3. Main Results 
In order to solve the problem (MP) eficiently, we apply the martingale method (see, e.g., 
Karatzas and Shreve [ I l l )  to our model. 

Lemma 3.1 In the market M ,  consider a non-negative comumption process ci that satis- 
fies 

There exzsts then a uniqae portfolio process (Oi K), such that ( ~ i :  (Oi2  K)) â and 

Proof. We introduce the martingale 
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and invoke the martingale representation theorem (see, e.g., Karatzas and Shreve [lo] and 
Brgmaud [ I ] )  to write it as a stochastic integral with respect to the Brownian motion and 
the Poisson process, 

for a unique FB-progressively measurable q : [O, 7'1 x $2 -+ P and a unique FN-pre&ctable 
K : [O,T] x C2 + R with J; [lq(s)l12ds < oo and 1; l ~ ( s ) [ d s  < 00. Then, from (71, we can 
identik 

1 t 
Wi ( t)  sf - [ ~ ( t )  - / 4 ( ~ )  (ci ( s )  - Zi(s))dS] , t E 7, 

#(t)  0 

as a wealth process with the consumption process Q and a portfolio process defined by 

whence the result follows by the definition of the admissibility of the comumption/portfolio 
process. 0 

For every utility function Ui7 we shall denote by Ii the inverse of the derivative Ul. Under 
the assumptions stated above, the inverse Ii is also continuous, strictly decreasing, and maps 
(0 ,oo)  onto itself with the properties Ii(O+) = U.(O+) = CCI and I i ( m )  = U:(cm) = 0. The 
next theorem provides an optimal comumption/portfolio rule for each agent. We omit the 
proof since it is similar to that of Theorem 4.4.5 in Karatzas and Shreve [ll].  

Theorem 3.1 Under the conditions stated above, a unique optimal comt~mption process Ei 
for agent i and the corresponding wealth process wi in the market M are given, respectively, 

t â 7, (22) 

where yi is a solution of the equation; 

E #(t)  { ~ i  (yi ' ( ~ ' ~ ~ ~ ( t ) )  - ~i ( t )  } dt = O I 
and 

where w i ( ~ )  = 0 for all agents. A unique optimal podfolio (ei(t), $(t))  is given by (19) - 
(21) with Wi(t) being replaced by wi(t). 
We note that the solution of the problem (MP), which is a result of Theorem 3.1, coincides 
with that of the following optimization problem: 
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We also note that yi which appearing in (22) and (23) corresponds to the Lagrangian 
multiplier with respect to the linear constraint in (MP') . 

We are now in a position to develop our economic premium principle. To this end, we 
formally state the notion of equilibrium market. 

Definition 3.1 Given the income processes Zi and utility functions Uij z = 1,2: - - n, as 
well as the discount process /3, we say that M is an equilibrium market, if the following 
conditions hold: 

(I) Clearing of the commodity market: 

(2) Clearing of the insurance market: 

(3) Clearing of the securities market: 

(4) Clearing of the money market: 

Here Ei (t) ey' (t) (t) are the optimal solutions for problem (NIP). 

The next theorem characterizes the equilibrium market. The proof is si~nilar to that of 
Theorem 4.5.2 in Karatzas and Shreve [ll] and omitted. 

Theorem 3.2 If M zs a n  equzl ib~um market, then 

where yl, - - - , yn are solutions of (23). 
Conue~selg, if M is a market for whzch the state price density C$ satzsjies (29) and 

for some (yl - - - , Yn) E (0; CO)~, then M is a n  q u i l z b ~ u m  market. 

Given I' = (71 - - , yn) E (0; OO)~, let 
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Then, we can rewrite (29) as 

with I'* = ( y ~ l ,  - ; yzl), where 91, - . - , yn are given by (23). The function I(3; I') is continu- 
ous and strictly decreasing with respect to y, and maps (0, m )  onto itself with the properties 
I (O+; I') = rn and I (ca; r )  = 0. Therefore, it has a continuous, strictly decreasing inverse 
X(- ;  I') : ( 0 , ~ )  020 (OJ m )  with the properties R(O+; r )  = w and R ( m ;  I?) = 0. That is, 

It follows fiom (32) that, if the market M is in equilibrium, then the state price density 
4(t) and the aggregated income Z(t) are comected through 

Also, from (22) and (341, the optimd consumption process of agent i is given by 

We can characterize the function R(y;l?) using a utility function of a representative 
agent, which is defined by 

The next theorem is well known. For the proof, see) e-g.) Karatzas and Shreve [ll]. 

Theorem 3.3 Let I' (07 mln be gzven and let Ui be of class C3(0, ca). Then the finetion 
U(-; I?) zs of class C3(0, m )  , strictlg zncreaszng, and strictZy concave with 

Now, we can obtain the expression for the state price density 4(t), which is similar to the 
one given by Biihbann [2, 31 and Iwaki, Kijima and Morimoto [9]. Given a utility function 
U(X; I'), we call 

the Arrow-Pratt index of absolute risk aversion. 

Theorem 3.4 If the market M zs in quilzbrium, then the state price denszty #(t) is given 
bu 
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Proof. From (34) and (37), we have 

Solving (38) with respect to U', we obtain 

~ ' ( x ;  T )  = K exp {- / * K ( u ; r ) d u }  , 

where K is the normalizing constant. Since E[#(t)So(t)] = 1, the theorem follows. 

, then we have the following. If, in particular, p(t)  = r ( t )  so that So(t) = e 0 

Corollary 3.1 Suppose that O ( t )  = r ( t ) ,  t E 7. Then, under the conditions of Theorem 
3.3. we have 

We note that if So( t )  = 1, t E 'T, then Corollary 3.1 agrees with the result of Blihimann 
[3]. Also, the expression (40) suggests us consider #( t )So( t )  rather than the state price 
density #(t)  itself. Namely, we can define a new probability measure P* whose conditional 
expectation, given &, is defined by 

for any random variable X .  For any price S(t ) ,  we define the relative price with respect to 
the money market account So( t )  by 

The next result can be easily proved using (8) and (9). The new probability measure P* 
may be called a risk-neutral measure. 

Theorem 3.5 The relative insurance premium with cumulative s u m  insured, p*(t) +fo 6(s) 
p* ( s ) d N ( s ) ,  as well as the relative security prices S* ( t )  is a martingale under P*. 

For risk X ( t )  at hture time t ,  the insurance premium P ( X  ( t ) )  at time 0 is given by the 
economic premium principle 

Here the second equality follows from (41) with t = 0 and T = t. That is, the economic 
premium principle agrees with the risk-neutral valuation in finance, which calculates the 
expectation of relative price under the risk-neutral measure. We here note that our economic 
premium principle possesses the same properties examined in Theorem 4.1 and Corollary 
4.1 of Iwaki, Kijirna and Morimoto [9] although we do not repeat them here. 

Finally, we characterize the risk- free interest rate process r , the risk-neutral intensity 
process + and the process of the market price of risk in the equilibrium market M by the 
utility function of the representative agent. 
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An Economic Premium Principle 357 

Theorem 3.6 Suppose that the utility function of the representative agent is  analytic, i.e., 
infinitely differentiable and that 

for all x > 0, c 6 (0 , l )  and y 6 R, where u ( ~ ) ( - )  denotes the k- th  derive function of 
U(-). Then, in the equilibrium of the market M ,  the risk-free rate process r ,  the risk-neutral 
intensity process i f ) ,  and the process of the market price of risk f are given, respectively, by 

.utqx;r) 
where J (x; I?) = - 

z- 7 7 T  is  the index of relative risk-aversion for the representative 

agent's 16ti1it y function. 

Proof. Let us consider the process 

An application of Ito's rule gives 

On the other hand, the process 

satisfies the equation 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Now (34) and (37) hold if and only if < = h. Therefore, comparing the coefficients of (47) 
and (49), we obtain 

uf ( ~ ( 0 ) ;  r*) = 1 (50) 

and the desired results. 

We note that from (10) and Theorem 3.6, for any given paying-rate process 5, the accumulation- 
rate process a of the insurance is in equilibrium given by 

with r ( t )  and +(t) given by (43) and (44). Similarly, for any volatility process S ,  the mean 
rate of return process u, of the securities in the equilibrium is given by 

with r ( t )  and S, given by (43) and (45). Note that, from (34), (37) and (49), we obtain 

(53) says that the rate of increase in the marginal utility of the representative agent, i.e., 
the rate of change in the time-preference of the representative agent in the market M ,  
consists of 3 factors, a deterministic discount-factor in real terms, Q - r ,  a premium for the 
risk represented by the Brownian motion B and a premium for the risk represented by the 
Poisson process N .  This interpretation of (53) might help us understand a meaning of the 
results of Theorem 3.6. 

4. Some Special Cases 
In this section, we consider an equilibrium market M with some special utility functions for 
the agents. Namely, we study the cases of power and exponential utility functions, and show 
that the state price density 4(t) can be expressed in terms of the aggregated income Z ( t ) ,  
the discount function /3(t) and the parameter of the utility function. Recall that the general 
form (49) in Theorem 3.4 includes the unknown values 7;. However, in the special cases, 
these parameters are expressed by the initial aggregated income in equilibrium through (32)  
or (50). 

4.1. Power utility functions 
First, we consider the case in which each agent has a utility function defined by 

where Q is termed as the shape parameter.^ Note that every agent has the common shape 
parameter p. 

Now, it is easily seen that the inverse of the marginal utility is given by 

5The case g = 0 corresponds to the logarithmic utility function. 
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It follows from (31) that 

Note that, in equilibrium, we have from (32) with t = 0 that 

Since N(x ;  T) is the inverse of I ( y ;  I'), we obtain 

It follows from (34) that 

Especially, in the case that So(t) = eJiP^" as in Corollary 3.1, we have 

Since E[(f>(t)So(t)] = 1, it follows that 

The economic premium principle for this case is given, from (42), by 

where X*( t )  = X( t ) /So( t )  is the relative price of X ( t ) .  Ftom Theorem 3.6, the risk-neutral 
intensity process $J is given by 

The premium-per-share of the insurance in equilibrium is given, from (4) ,  by 

with the accumulation-rate process a given by (51). 
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4.2. Exponential utility functions 
We next consider the case in which each agent has a utility function defined by 

where pi and 1C are positive constants. Note that the parameter ei represents the index 
of absolute risk aversion. We choose K in such way that limxm U*) becomes sufficiently 
large so that the probability of negative consumption becomes negligible. Using similar 
arguments to the power utility case, it is not difficult to derive 

Letting g be such that 

we then obtain 
R(x; T*) = e -e(x-ZOT),  i E (O,oo). 

It follows that 

Especially, in the case that So(t) = e KW", we have 

The economic premium principle for this case is given by 

Note that if X*( t )  = Z( t ) ,  then 

which is called the Esscher principle. Finally, the risk-neutral intensity process $, is given 

by 
Mf) = ~ ( t ) e - @ ' @ ) ~ ( ~ ) ,  t â r. 

5. Concluding Remarks 
This paper considers a continuous-time economic equilibrium model for deriving the eco- 
nomic premium principle of Buhlmann [2, 31 and Iwaki, Kijima and Morimoto [9]. The state 
price density in equilibrium is obtained in terms of the Arrow-Pratt index of absolute risk 
aversion for a representative agent. As special cases, power and exponential utility functions 
are examined, and we derive an endogenously decided equilibrium insurance premium in ex- 
plicit form. However, in this paper, we implicitly assume that the market is complete, both 
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of insurance and security markets may be actually incomplete. Extension of our economic 
premium principle to incomplete market models will be treated in the near future. 
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