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Abstract We study a queueing system having a mixture of a special semi-Markov process (SSMP) and 
a Poisson process as the arrival process, where the Poisson arrival is regarded as interfering traffic. It is 
shown by numerical examples that the SSMP customers receive worse treatment than Poisson customers, 
i.e., the mean waiting time of SSMP customers is longer than that of Poisson customers. We also propose 
a model of Moving Picture Experts Group (MPEG) frame arrivals as an SSMP batch arrival process. This 
model captures two features of the MPEG coding scheme: (i) the frequency of appearance of the I-, B-, 
and P-frames in a Group of Pictures (GOP), and (ii) the distinct distributions for the size of the three 
types of frames. The mean and variance of waiting time of ATM cells generated from the MPEG frames 
are evaluated in the numerical examples drawn from some real video data. 

1. Introduction 
Numerous models have been proposed that characterize the feature of traffic source on com- 
municat ion networks. For example, Poisson (M) and interrupted Poisson processes (IPP) 
have been used for audio traffic, and a Markov modulated Poisson process (MMPP) [3] for 
video traffic. In the multimedia environment such as B-ISDN the data compression is indis- 
pensable for sending huge amount of video data. A strong candidate for such compression 
scheme is the Moving Picture Experts Group (MPEG) [lo]. Since most of the video will be 
encoded using the MPEG standard, there is a need for appropriate modeling of the video 
traffic generated by the MPEG coding scheme. 

A Transform Expand Sample (TES) and a Markov chain have been used to characterize 
the traffic generated with MPEG. In a TES based modeling [15], each frame type I, B and 
P is modeled by a TES process and these frames are interleaved in the Group of Pictures 
(GOP) pattern like "IBBPBBPBBPBB" to faithfully model an MPEG video. The queueing 
model with these data as an input process is simulated. On the other hand, in a Markov 
chain based modeling 1171, Markov chains are formed for the GOP as well as scene levels by 
avoiding the modeling of the exact frame pattern in every GOP. 

The aim of this paper is to present an analytic model for evaluating the traffic character- 
istics of MPEG frames fed to a communication buffer together with other interfering traffic. 
The effects of interfering traffic have been studied by means of queues with mixed arrival 
processes in the past. The motivation for the queueing model with mixed arrivals is that, in 
the situation where many traffic sources are superposed, a tagged source is modeled closely 
while other sources can be regarded as interfering traffic all together. The GI+M/M/l ana- 
lyzed by Kuczura f7] is a queueing model having two types of the arrival process, a renewal 
process (GI) and a Poisson process. In fl3, 141 the service time distribution is allowed to 
be general (i.e. GI+M/G/l) and GI and M customers may have different service time dis- 
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tributions. When there is a priority between GI and M we refer to [5]. Queueing models 
without any waiting room are analyzed in [9] and [22]. An overview of research on the 
single server queues with independent GI and M input streams is provided in [14]. These 
queueing systems operate in continuous time. A few studies [ l l ,  121 deal with queueing 
systems that operate in discrete time such as GI+M^~/D/~ /K ( K  < ca or K = oo) and 
GI+M[~]+B/D/I. 

This paper consists of two parts. In the first part (Section 2), we study a queueing 
system having SSMP batch and Poisson arrivals combined as an input process, i.e. an 
SSMP[~]+M/M/~  system, where the Poisson arrival is regarded as interfering traffic. The 
special semi-Markov process (SSMP) is a special case of the semi-Markov process such that 
the sojourn time distribution in each state depends only on that state. We assume that 
SSMP customers arrive in batch. Namely, each SSMP arrival point corresponds to the 
arrival of a batch of SSMP customers, where the batch size (the number of customers in 
a batch) may depend on the state of the SSMP immediately after the arrival. The SSMP 
was introduced by Ding and Decker [l] with the aim of modeling the video traffic with 
variable bit rate. It can be used as the arrival process of a wide class of traffic, because it 
fits any marginal distribution function for interarrival times, including GI and MMPP as 
special cases [2]. We extend Kuczura's approach for a GI+M/M/l system [7] to  analyze our 
S S M P ~ ~ ] + M / M / ~  system, where the SSMP and Poisson arrivals have a common service time 
distribution function, namely exponential distribution with the same mean. We evaluate the 
waiting times of both SSMP and Poisson customers. Numerical results reveal the influence 
of Poisson customers on the waiting time of SSMP customers. 

In the second part (Section 3)) we propose an SSMP batch arrival process for the MPEG 
frame sequence in which major features of the MPEG coding are incorporated. We have 
not modeled the scene changes and the correlation among GOPs as done by Rose [17]. It 
is preferable to  take these characteristics into account, but that would make our model too 
complicate to  analyze. Hence we assume that the traffic feature is mainly affected by the 
coding scheme, and leave the modeling at  the scene and GOP levels for the future work. 
The results in Section 2 are applied to the MPEG frame sequence as the SSMP["] arrival 
process. The Markov chain underlying the SSMP has three states corresponding to the I-, 
B-, and P-frames. The transition probabilities are determined according to the frequency 
of appearance of these frames in a GOP. The batch size accounts for the number of ATM 
cells in these frames. From the results of analysis, we can evaluate the waiting time of an 

.arbitrary cell in the frame. Numerical examples are shown based on the data from three 
real video films. 

2. S S M P ( ~ ] + M / M / ~  Queue 
In this section, we start with definition of a special semi-Markov process (SSMP) and then 
analyze an SSMP^]+M/M/~ queueing system. In Section 2.1 an SSMP batch arrival process 
is introduced. The queue length in the SSMPP^+M/M/~ system is analyzed in Section 2.2. 
Then, the waiting time distributions for SSMP and Poisson customers are derived in Sections 
2.3 and 2.4, respectively. A numerical example is shown in Section 2.5. 
2.1. Special semi-Markov batch arrival process 
The semi-Markov process with L (< oo) states is a renewal process that passes through L 
states a t  successive renewal points according to a Markov chain with transition probability 
matrix P = ( p i m ) ;  l ,  m = 1, . . . , L. The sojourn time spent in state 1, given that the next 
state is m, has distribution function AiSm(t). For a given sequence of states visited, all 
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sojourn times are mutually independent. The special semi-Markov Process (SSMP) is a 
special case of the above semi-Markov process such that the sojourn time distribution in a 
given state depends only on that state [I, 21. Hence the probability that the SSMP moves 
from state l to rn in t time units is given by pimAi(t), where A((() is the distribution function 
of the sojourn time in state I. Since P is a stochastic matrix, we have 

Let (xI, . . . , TT^J be the stationary distribution of the Markov chain with transition probabil- 
ity matrix P. Then we have the following set of the balance equations and the normalizing 
condition: 

We consider an SSMP with L states as a process governing the batch arrivals of customers 
(called SSMP customers) to a queue. In other words, every arrival of an SSMP batch 
corresponds to the state transition in the underlying Markov chain. See Figure 1 for the 
diagram of the SSMP arrival process, where Ai denotes the sojourn time in state I. 

state n 3 
Markovian 

state I 

state transition 
I 
I 
I 
1 
1 
I 
I 

state m 

Figure 1: SSMP arrival process. 

2.2. Queue length 
In an SSMP^~+M/M/~ queueing system, the arrival process is a mixture of an SSMP batch 
and a Poisson process. Let g i ( k )  be the probability that the size of a batch that arrives 
to bring state I is k, where k = 1,2, .  . .. The arrival rate from the Poisson process is 
denoted by A. The service times for the SSMP and Poisson customers are assumed to  have 
common exponential distribution with mean 1/p. Finally, it has a single server and an 
infinite-capacity waiting room. 

We analyze the queue length in the SSMP^I+M/M/~ system. The queue length X(t) 
a t  time t is the number of both SSMP and Poisson customers, including those both waiting 
and in service, in the system at time t. We extend Kuczura's approach [7] for a. GI + 
M/M/l queueing system in order to analyze our SSMP[~]+M/M/~  system. Notice that, 
between the successive batch arrival epochs of SSMP customers, the process X(t)  behaves 
exactly like the queue length in an M/M/l system. Whereas the arrival points of GI cus- 
tomers in a GI + M/M/1 system are regeneration points of a piecewise Markov process [8], 
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the arrival points of SSMP customers are not regeneration points in the S S M P [ ~ ~ + M / M / ~  
system. Therefore we study the bivariate Markovian sequence {(x^, s^); n = 0,1,2,  . . .} 
embedded a t  the points of SSMP arrivals, where x^) denotes the number of both SSMP 
and Poisson customers found in the system by the first customer in the nth arriving batch 
of SSMP customers, and s(") denotes the state of the underlying Markov chain immediately 
after the nth SSMP arrival (Figure 2). Since the SSMP with a single state degenerates to 
the GI process, our SSMP[^+M/M/~ system is an extension of the GI + M/M/1 system 
studied in [7]. 

nth SSMP arrival n + 1st SSMP arrival 

Figure 2: State transition in the Markov chain {(x("), S'")); n = 0,1,2, . . .}. 

Recall that the transition probability 

PÃ£(t := P{X(t) = j\X(0) = i}; t > 0 

in the birth-and-death process for the queue' length of an M/M/l system with arrival rate 
A and service rate p is given by [18, p.931 

where p := Xf'fi, and Ii(t)  is the modified Bessel function of the first kind of index i. For a 
nonnegative integer 2, it is defined as 

For the time-homogeneous Markov chain {(x^), Ŝ }', n = 0,1,2,  . . .}, the state transi- 
tion probability is given by 

Assuming that this Markov chain is ergodic, the limiting distribution 

P(i, Z) := lim P{x(~) = i, S  ̂ = Z}; 2 = 0 , 1 , 2  ,...; I==I,... ,L 
n+oo (4) 
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satisfies the 

P ( j , m )  = 

balance equations 

and the normalization condition 
00 L 

Let us introduce the generating function for {P( i ,  1); i = 0,1,2, .  . .} by 

By definition, we must have Qi (1) = IT(; I = 1, . . . , L. Multiplying (5) by z j  and summing 
over j = 0,1,2, .  . ., we obtain 

where 

While this function is not simple, its Laplace transform is given by [18, p.891 

00 zi+l - ( I  - z)Ms)]W/[ l  - ~ ( s ) ]  yi(z, S) := L cS t r , ( z ,  t)dt = 
2s - (1 - z)(p - Az) Ã 

where 

Let us transform the real integral 

appearing in (7) into a complex integral involving ~ ~ + ~ ( z ,  s) and cti(s), the Laplace-Stieltjes 
transform (LST) of Ai(t). To do so, note the inverse transform 

c+iw where c > 0, i := Â¥^Ã‘\ and the integration path (--,= is the Bromunch integral, being 
written as {or hereafter. Furthermore, if a i ( t )  denotes the LST of Al(t), we have 

Thus we get 
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Substituting (9) into (7), we obtain 

Changing the order of summation and integration, we get the following set of simultaneous 
equations for {9i{z); l = 1, . . . , L}: 

where Gi (z) is the generating function of {gL ( k )  ; k = 

J 

1,2 , .  . .}, and 

Note that letting z = 1 in (11) recovers (I), because 

Following Kuczura [7], we may comment on the Bromwich integral in (11) as follows. 
Since Pi+k,j(t) is the probability, its generating function ri+k(z, t )  is uniformly convergent 
for \ z \  <, 1, and ~ + ~ ( - z ,  s )  is analytic for \z\ < 1 and %(s) > 0. Hence the bracketed part of 
the integrand in (11) is analytic for \z\ < 1 and Ws) > 0, since it is the convergent series 
of xo P(z, Z)T~+~(Z, 5). On the other hand, since Ai(t) is the distribution function, ai(s) is 
analytic for %(s) > 0. For R(s) < 0, ai(s) may or may not be analytic. However, ~ ( s )  is 
meromorphic for Ws) < 0 in many cases, including the cases in which the distribution of 
Al is exponential, Erlang , and a linear combination thereof. 

If we assume that ai(s) is meromorphic for the left-half plane Ws)  < 0, all the poles of 
a((-s) are in the right-half plane %(s) > 0. Hence the integrand in (11) is meromorphic in 
the right-half plane. Thus we can use the residue theorem to evaluate the integrand over the 
contour consisting of the line (c + iR, c - iR) and a semicircle of radius R in the right-half 
plane which connects c - iR with c+ iR counterclockwise. We can choose c and R such that 
all the poles of a(-s) are interior to this contour for all I = 1 , .  . . , L. Then the Bromwich 
integrals in (11) are evaluated only at  the poles of a((-s)'s. Here the terms resulting from 
&(s) are simply constants. Therefore, (11) is not a set of integral equations but simply a set 
of linear equations for {w); I = 1, . . . , L}  containing unknown constants as coefficients. 
These constants are determined from the condition that the generating function î(z) is 
analytic for \z\ < 1 and that a (1) = T T ~  for I = 1, . . . , L. See the examples in Sections 2.5 
and 3.2 for this procedure in the specific cases. For the moment, let us assume that @l(z)'s 
are obtained by solving (11) and determining the constants in this way. 

The marginal distribution for the number of SSMP and Poisson customers found in the 
system by an SSMP batch arrival is denoted by 

The generating function for {P(i); z = 0,1,2, . . .} is then given by 
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Substituting (11) into (14) yields 

z G i ( z W z )  - (1 - z)Hi(s) 
- (1 - z)(p - Az) 1 w(-s)ds, 

1=1 
from which we can confirm that  $(I)  = 1. 
2.3. Waiting times of an SSMP customer 
We proceed to consider the waiting times of SSMP and Poisson customers. Let us start with 
the waiting time W of an SSMP customer, which is defined as the delay from the arrival 
instant of an arbitrary SSMP customer until the beginning of his service. 

Let us consider a randomly chosen tagged SSMP customer included in a batch that 
arrives to bring state 1. Recall that the probability generating function for the number of 
customers placed before the tagged customer in this batch is given by [20, p.451 

where gi is the mean batch size. Thus the LST Di(s) of the distribution function for the 
sum of the service times t o  those customers before the tagged customer in the batch is given 
by 

where B{s) := p/(s + p). 
If the service is given in the order of arrival, the waiting time of an  arbitrary SSMP 

customer (tagged) in a batch consists of the waiting time of the first customer of that  batch 
and the service times for the customers placed before the tagged customer in the batch. 
Therefore, the LST of distribution function for the waiting time of an  arbitrary SSMP 
customer included in a batch that brings state I is given by 

Hence we get the LST of the distribution function for the waiting time W of an arbitrary 
SSMP customer as 

where 
L 

1=1 

is the overall mean batch size. The mean E[W] and the second moment E[W2] of the 
waiting time are then given by 

where 
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2.4. Waiting time of a Poisson customer 
We also consider the waiting time W* of a Poisson customer. According to the PASTA 
(Poisson arrivals see time averages) property, the number of customers that an arriving 
Poisson customer finds has the same distribution as the number X* of customers present in 
the system at an arbitrary time in steady state. Thus we will find the generating function 
@*(z) for the probability distribution of X*. 

To do so, note that the interval between an arbitrary time and the preceding SSMP 
arrival time corresponds to the backward recurrence time in the Markov renewal process 
that counts the number of state transitions in the SSMP. The joint distribution for the 
backward recurrence time and the probability that the SSMP is in state I is given by 

where 

E[A] :=:x v&[Al] 
l=1 

is the mean interarrival time between the batches of SSMP customers. The LST &(s) of 
(t) is given by 

&(s) = 
1 - a1 ( 4  

EMS - (21) 

Conditioning on the number of customers and the state of the SSMP at the preceding 
arrival point, and integrating with the backward recurrence time distribution in (20)) the 
steady-state distribution of X* is given by 

which is transformed into 

Using the relation similar to (9), we obtain 

where f i  (s) and &L (s) are given in (12) and (2 I), respectively. Again, the Bromwich integrals 
are evaluated only at  the poles of iii(-s)'s in the right-half plane Ws) > 0 in most cases. 

The LST H*(s) of the distribution function for the waiting time W* of a Poisson customer 
is expressed as 

!J*(s) = v[B(s)]. 

The mean E[W] and the second moment E[(W )2] are then given by 

respectively, where E[X*] and E[(X*I2] are obtained from the generation function a* ( z )  . 
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2.5. Numer ica l  example:  SSMP+M/M/l 
We illustrate the results of analysis in the preceding sections numerically by assuming that 
the arrivals are single and that the sojourn time in state I follows exponential distribution 
with mean 1/cq: 

G, (2) = 2 ; Al (t) = 1 - e-Â¥"' , t > 0 , 1 = 1 ,  ..., L. 

Then the complex integral in (9) reduces to 

which is free from the Bromwich integral. In this case, the equations in (11) become 

where 

L 

' M z )  = E pl.mal[z2@l(z) - (1 - z)Hl] 
; m =  1, ..., L, 

1=1 CQZ - (1 - z)(p - Xz) 

are constants to be determined. Similarly, from (24) we have 

In the case L = 2, let us assume that the transition probability matrix of the underlying 
two-state Markov chain is given by 

where 0 < p, q < 1. The stationary distribution of this Markov chain is 

We solve the simultaneous equations (28) with L = 2 for $1 (2) and (4, and get 

where K := 1 - p - q, and 

Adding (2) and @ (z) yields 

Hlai[a2z(l - KZ) - (1 - z)(p - Az)] + H2a2[alz(l - tz) - (1 - z)(p - Az)] 
@(z) = 

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



These expressions contain two unknown constants H\ and 6. They can be determined 
by first applying the normalization condition @(I) = 1 and then forcing the zero of the 
numerator in the unit circle to coincide with the zero of the denominator in (31), since @(z) 
is analytic in 121 < 1. Clearly, T(0) = -p2 < 0, and 

where 

is the overall arrival rate of SSMP customers. Therefore, if the condition 

is satisfied, we have T(1) > 0. Hence T(z) has a (real) zero, say 21, such that 0 < zl < 1. 
Using the normalization condition @(I) = 1 and requiring that the numerator in (31) be 
zero a t  z = zl, we find H\ and f i  as 

These constants also make Q1(z) and Q2(2) analytic in \z\ < 1. Note that the left-hand 
side of the inequality in (33) is the sum of the arrival rates of SSMP and Poisson customers 
and that the right-hand side is the service rate. Hence, (33) is a sufficient condition for the 
stability of the present system. 

We can now calculate the mean and variance for the waiting times of SSMP and Poisson 
customers. For this purpose, the following set of parameters is assumed: 

Let us plot the performance values by changing the arrival rate a of SSMP customers. We 
show the results for several values of Poisson arrival rate A in the same figures in order to 
observe the influence of the interfering traffic. In Figures 3 and 4 the mean and variance 
of the waiting time of SSMP and Poisson customers are shown respectively. We observe 
the influence of the interfering traffic on the waiting time of SSMP customers. Given the 
interfering traffic rate A, they increase as a gets big until the condition (33) is reached. On 
the other hand, in the limit a -+ 0, the waiting time for both SSMP and Poisson customers 
approaches that of the M/M/l queue as 

A 
lim E [ w ~ ]  = lim qV2] = 

2A 
lim E[W] = Urn E[W*] = 
Q-o ~ l + o  & - A ) '  a-0 Q+O ^ n - W *  

It is also observed that SSMP customers always receive worse treatment, i.e., bigger mean 
and variance of the waiting time, than Poisson customers. This is because the coefficient of 
variation (c.v.) of the interarrival times for the SSMP is bigger than that of the Poisson pro- 
cess which is unity. Kuczura's [7] reports that the arrival process having bigger c-v. receives 
worse treatment than that with smaller c-v., which agrees with the present result. 
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Figure 3: Mean waiting time for SSMP and Poisson customers. 
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Figure 4: Variance of the waiting time for SSMP and Poisson customers. 
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3. Modeling of MPEG Video Traffic 
In this section we present a queueing model for evaluating the waiting time of an arbitrary 
ATM cell generated from the frames of MPEG sequence in the presence of interfering traffic. 
An SSMP batch arrival process is assumed such that the underlying Markov chain has three 
states corresponding to the I-, B-, and P-frames, and that the batch accounts for a group 
of ATM cells generated from each frame. In Section 3.1 a brief description of the MPEG 
coding scheme is given. Analysis of the SSMP~'~ + M/M/1 queueing system is done in 
Section 2. In Section 3.2 we determine the state transition probabilities of the Markov 
chain underlying the SSMP with three states as mentioned above. Assuming that the frame 
arrival process is Poisson we can obtain the formulas for evaluating the waiting time of an 
arbitrary ATM cell in the frame. Numerical examples using the statistics from real video 
films are presented in Section 3.3. 
3.1. MPEG video coding scheme 
In the MPEG coding [10], a video traffic is compressed using the following three types of 
frames. 

I-frames are generated independently of B- or P-frames and inserted periodically. 
P-frames are encoded for the motion compensation with respect to the previous I- or 
P-frame. 
B-frames are similar to P-frames, except that the motion compensation can be done with 
respect to the previous I- or P-frame, the next I- or P-frame, or the interpolation between 
them. 

forward prediction 

bidirectional prediction 

~ i g u r k  5: Group of pictures (GOP) of an MPEG stream [10]. 

These frames are arranged in a deterministic sequence "IBBPBBPBBPBB" as shown 
in Figure 5, which is called a Group of Pictures (GOP). The length of the GOP in Figure 
5 is 12 frames. It is expected that this coding scheme leads to the statistical properties 
that are typical for MPEG video traffic streams. We utilize the MPEG frame traces for the 
Jurassic Park (dino), the Soccer World Cup Final 1994 Brazil-Italy (soccer), and the Star 
Wars (starwars). These data were prepared by Rose [17], and are now available from the 
web site http://nero. inforrnatik. uni-wuerzburg. de/MPEG/. 

Table 1 contains the statistics for the number of ATM cells in each frame (frame size) 
that have been calculated by assuming that every frame is divided into a group of cells each 
with a payload of 48 bytes. Clear difference can be observed in the frame size distribution 
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Table 1: Statistics for the frame size in ATM cells calculated from the MPEG traces in the 
web site http://nero. informatik-uni-wuerzburg. de/MPEG/. 

I-frame B- fr ame P-frame 

video mean var C.V. mean var C.V. mean var C.V. 

soccer 206.101 4321.554 0.319 33.809 268.692 0.485 123.719 3584.561 0.484 
starwars 114.615 1355.569 0.321 12.158 123.430 0.918 26.379 618.138 0.942 

among the three types of frames I, B, and P. Namely, the I-frames require much more cells 
than the P-frames. The B-frames have the lowest cell requirement. The coefficients of 
variation (c.v.) are also different. Thus the traffic stream generated by the MPEG coding is 
mainly characterized by two features, (i) deterministic frame pattern in the GOP, and (ii) 
distinguishable frame size distributions for the three types of frames (I, B and P). In the 
following section, we propose a traffic model containing these two features of MPEG coding. 
However, we do not take into account the correlation of the frame size between successive 
frames. 

3.2. Traffic model for MPEG frame sequence 
We are now in a position to apply the analysis results of an SSMP^+M/M/~ system in 
Section 2 to the queueing model with MPEG frame sequence and interfering traffic. In this 
model, the Markov chain underlying the SSMP has three states denoted by I, B, and P 
corresponding to the I-, B-, and P-frames, respectively. We determine each element of the 
transition probability matrix P of the Markov chain so as to match the frequency of frame 
appearance in a GOP. It is evident from Figure 5 that an I-frame is always followed by a 
B-frame and that a P-frame by a B-frame. Thus we set the transition probability from state 
I to state B to 1 and to any other state to 0. The transition probabilities from state P are 
the same as those from state I. We also observe that B-frames are followed by I-, B-, and 
P-frames. Taking the frequency of transitions from B-frames into account, we determine 
the transition probability matrix for the underlying Markov chain as follows: 

I B P  

The stationary distribution 

For the sake of simplicity in 
is Poisson with rate a as a 

of this Markov chain is given by 

the expressions, we assume that the arrival process of the frames 
(very) special case of the SSMP. Let G+), Gs[z), and Gp(z) 

. . 

be the probability generating functions for the number of ATM cells ,generated from the I-, 
B-, and P-frames, respectively. Equations in (1 1) become 
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where 
q(z) := a z  - (1 - z)(p - Az), 

and a, I = I, B, P, are constants to be determined. Solving this set of equations we get 

and 
a ( l  - z){8(Hi + Hp)q(z} + Hs[4q(z) + ~ [ G i ( z )  + 3Gp(z)I} <M^) = 

T(z1 
1 

where 
T(z) := azG&)&(z )  + az [G~(z )  + 3Gp(z)]} - 8[q(z)I2. 

Note that T(1) = 0. From the condition Qi(l) = TI, we get the relation 

where 
c : = p - a g - \  ; g : = L  291 + ?  f l ~ + i ~ f -  

Recall that g is the mean size of a frame. We can then write 

and 

It is shown in the Appendix that there are two zeros of T(z) in \z\ <_ 1 under the condition 

one of which is z = 1. Let z\ be the other one. By forcing the zero in the numerator of (39) 
to coincide with 21, we determine HQ as 

This choice also makes aB(z)  and @(z) analytic in lzl < 1. The inequality in (42) is a 
sufficient condition for the stability of the system. This completes the determination of 
parameters in the model. 
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Table 2: Parameters of the negative binomial distributions for the frame size in Table 1. 

I-frame B-frame P- frame 
video HI PI HB PB VP 

soccer 9 0.044 4 0.118 4 0.032 
starwars 9 0.079 1 0.082 1 0.038 

3.3. Numerical examples 
Let us evaluate the waiting time of an arbitrary ATM cell in the model with MPEG frame 
sequence and interfering traffic. We need to assume some distribution function for the num- 
ber of cells in each frame (frame size) so that we can calculate the value of z1 numerically. 
Frey and Nguen-Quang [4] and Sarkar et al. [19] propose the gamma distribution for the 
frame size. As a discrete version of the gamma distribution, let us assume that the distribu- 
tion of the frame size is negative binomial whose parameters are determined from the mean 
and variance of the actual data given in Table 1. Thus the probability generation functions 
for the frame size are given by 

with parameters given in Table 2. We also assume that cells are transmitted on a 10 Mbps 
channel, which corresponds to p = 2,350 cells/sec. 

Figures 6 and 7 show the mean and the variance of the waiting time of an arbitrary 
ATM cell in the MPEG frames for the Jurassic Park in the presence of interfering traffic. 
It is observed that at low arrival rate a (frames/sec) both the mean and variance are flat, 
while at high load they increase rapidly with a. We can also observe the influence of the 
interfering traffic, where its rate A is given in the unit of cells/sec. Figures 8 and 9 are for 

, the World Cup Final 1994, and Figures 10 and 11 for Star Wars. In the limit a Ã‘> 0, the 
waiting time for both SSMP and Poisson customers approaches that of the corresponding 
M ~ ] / M / I  queue as . - 

gw 
lim E[W] = lim E[W*] = - + A 
ff+O a + O  2 f i g ^ ( ~  - A)  ' 

lim E[W2] = lim E[(W*)2] = - 
2A 

a + O  ff+o r(f - A)2' 

4. Concluding Remarks 
In this paper we have studied a queueing system having a mixture of an SSMP batch and 
a Poisson process as the arrival process, where the Poisson arrival is regarded as interfering 
traffic. It is shown by numerical examples that the SSMP customers receive worse treatment 
than Poisson customers, i.e., the mean waiting time of SSMP customers is longer than that 
of Poisson customers. 

We have also proposed a model of the MPEG frame arrivals as an SSMP batch arrival 
process. This model captures two major features of the MPEG coding scheme: (i) the 
frequency of appearance of the I-, B-, and P-frames in a GOP, and (ii) the distinct distribu- 
tions for the size of the three types of frames. In the numerical examples, the waiting time 
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Figure 6: Mean waiting time for an arbitrary cell [sec] (dino). 

Figure 7: Variance of the waiting time for an arbitrary cell (dino). 
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5 10 15 2 0 2 5 3 0 35 
alpha 

Figure 8: Mean waiting time for an  arbitrary cell [see] (soccer). 

I I I I I 1 I 

5 10 15 20 2 5 3 0 3 5 
alpha  

Figure 9: Variance of the waiting time for an arbitrary cell (soccer). 
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Figure 10: Mean waiting time for an arbitrary cell [see] (starwars). 

4 0 60 
alpha 

Figure 11: Variance of the waiting time for an arbitrary cell (starwars). 
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of each ATM cell generated froin the MPEG frames is evaluated. It  is observed that  both 
the mean and variance are flat when the arrival rate cllai~ges a t  low levels) but  that  they 
increase rapidly at high levels of the arrival rate. 

For modeling the MPEG frame sequence, we have assuined an  underlying Markov chain 
with only three states representing the B-$ P-frames) and replaced the deterministic 
pattern "IBBPBBPBBPBBJ) with probabilistic transitions among the three states. However, 
it is possible to construct a Markov chain with 12 states exactly modeling the deterministic 
pattern "IBBPBBPBBPBBJ'. Then there will be 12 constants in (37) to  be determined from 
the same number of conditions derived from the zeros of the denominator in the expression 
for ( z )  . 

From queueing theoretic point of viewJ it is straightforward to generalize the present 
analysis of the S S M P [ ~ ] + M / M / ~  system to a n  SMP[~]+M/M/I system, i.e., the one with 
a mixture of a batch semi-Markov process and a Poisson process as the arrival process. 
Furtller extension to an  S M P ~ ~ ~ + M / M / C  system is also possible. These can be done again 
by the application of the theory of piecewise Markov processes found in [8]. 
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Appendix: Number of Zeros of T(z) in (38) in IzI 5 1 
The denominator in the expression for Ql(z) in Section 3.2 is 

where 
q(z) := a z  - (1 - z ) ( ~  - Az). 

We show that T(z) has exactly two zeros on the unit disk [zl 5 1, one of which is z = 1, if, 
the condition 

a g + A < p  (A-3) 

is satisfied. The proof is based on Rouch6's theorem 121, p. 1161: Iff (z) and h(z) are analytic 
functions of z inszde and on  a closed contour C, and lh(z)[ < If(z)l o n  C,  then f (z) and 
f(z) + h(z) have the same number of zeros inszde C. We prove the above claim in a way 
similar to that in [6]. 
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Then T(z) = f(z) + h(z). Let us choose a closed contour C so as to include z = 1 as an 
internal point, which is obviously a zero of T(z). In particular, we choose C as 

where 
7r 

Câ := { z =  1 + & e i ~ ; - -  < p 5 E} 
2 - 2 

is a semicircle centered at z = 1 with radius E > 0. The functions f(z)  and h(z) are analytic 
inside and on the contour C. 

We now compare lf(z)l and lh(z)l on C. First, we look a t  z on the unit circle izl = 1. 
Since q ( z )  = (a -I- A + p)z - (Az2 + p) ,  we see that 

on [zl = 1. Hence, for lzl = 1, z # 1, it holds that 

because Gl(z) < 1 for l = I, B, and P. Thus, lh(z)l < lj(z)i for 121 = 1, z # 1. 
We next look at  z = 1 + &eiP on CE, for which 

It follows that 

where 3p - 3A + 2a - ag* > 0 if (A-3) holds, and cos 9 2 0 for -: 5 q 5 $. We also have 

Therefore, if (A.3) holds, we see that [h(z)J2 < 1 f (z)I2 (thus [h(z)l < 1 f(z)l) on CE for a 
sufficiently small value of E .  Hence we have shown that 1 h(z) 1 < If(%) 1 on the entire contour 
C. Thus the functions f (z) and h(z) satisfy the condition of Rouch6's theorem with contour 
C. It follows that f (z)  and f (z) + h(z) = T(z) have the same number of zeros inside C. 
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Fii~ally, we consider the nuxnber of zeros of j ( z )  = 4q(z)  [~ .ZGB(Z)  - Zq(z)] inside C. 
Clearly there is one zero of q ( z )  inside C,  which is 

We again apply Rouch4's theorem to c ~ z G ~ ( z )  - 2q(z)  with contour C given in (A.5). We 
then see that I a z G B ( ~ ) [  < lq(z)l (5  1 - 2q(z)I) on C- T h s  ~ z G B ( z )  - 2 q ( ~ )  and -2q(z) 
have the same number of zeros inside C. The latter has a single zero inside C as given in 
(A.9). Thus f ( z )  has two zeros inside C. Hence we coilclude that T ( z )  has two zeros inside 
C. q.e.d. 
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